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Abstract: This paper formulates the optimal decentralized control problem for a class of mathematical
models in which the system to be controlled is characterized by a finite-state discrete-time Markov process.
The states of this internal process are not directly observable by the agents; rather, they have available a set
of observable outputs that are only probabilistically related to the internal state of the system. The paper
demonstrates that, if there are only a finite number of control intervals remaining, then the optimal payoff

function of a Markov policy is a piecewise-linear, convex function of the current observation probabilities
of the internal partially observable Markov process. In addition, algorithms for utilizing this property to
calculate either the optimal or an error-bounded Markov policy and payoff function for any finite horizon is
outlined.
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Sur les politiques Markoviennes pour les Dec-POMDPs
Résumé : Cet article formule le problème du contrôle optimal décentralisé pour une classe de modèles
mathématiques dans laquelle le système à contrôler est caractérisé par un processus de Markov à temps
discret et à états finis. Les états de ce processus ne sont pas directement observables par les agents; ces
derniers ont à leur disposition un ensemble d’observations lié de manière probabiliste à l’état du système.
L’article démontre que, s’il ne reste qu’un nombre fini de pas de décision, la mesure de performance
optimale d’une politique Markovienne est une fonction convexe, linéaire par morceaux, des probabilités
d’observation courantes. En outre, sont décrits les algorithmes approchés d’exploitation de cette propriété
pour le calcul de politiques Markoviennes et la mesure de performance associée pour tout horizon fini.

Mots-clés : Processes décisionnels de de Markov partiallement observables et décentralisés, Planifica-
tion Multi-Agents
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4 Jilles S. Dibangoyet

1 Introduction
The two concepts of state and state transition are essential to the modeling of complex dynamic systems.
The concept of state allows one to focus on the features system that are essential to the problem at
hand, while the concept of state transition provides the mechanism for structuring the system’s dynamic
behavior. In most situations, there is an element of uncertainty in the transitions of the process from one
state to another, and this leads naturally to the use of Markov processes as quantitative models of the
system.

r
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2
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z1

a2

z2

“tiger world”

Figure 1: Decentralized Control of partially observable Markov process.

Unfortunately, in many practical applications agents are not permitted exact observation of the state
of the process; rather, each agent possesses only certain local, unshared observation outputs, and acts
without full knowledge of what others observe or plan to do. For example, there are many situations in
game theory in which we would like to model the dynamics of the game’s internal state as a Markov
process, but this state is not directly observable. In such cases, we can often model what is observable as
probabilistically related to the true state of the system. Figure 1 presents a pictorial representation of such
a model, termed a decentralized partially observable Markov process (Witsenhausen, 1971; Yoshikawa
and Kobayashi, 1978; Bernstein et al., 2002; Nair et al., 2003; Emery-Montemerlo et al., 2004). In this
paper we shall consider decentralized partially observable Markov processes for which the underlying
Markov process is a discrete-time finite-state Markov process; in addition, we shall limit the discussion
to processes for which the number of possible outputs at each observation is finite.

As an example of this system, consider a simple two-agent “tiger world” – see Figure 1 – where the
optimal control policies require the agents to coordinate their control alternatives (Nair et al., 2003). In
this world there are two doors: behind one randomly chosen door is a hungry tiger, and behind the other
is a pile of gold. Each agent has unique abilities. Agent 1 (the tiger listener) can hear the tiger roar –
e.g., z1 – which is a noisy indication of its current location, but cannot open the doors. Agent 2 (the door
opener) can open the doors – e.g., a2 – but cannot hear the roars. To facilitate communication, agent 1 has
two control alternatives, signal left and signal right – e.g., a1 – which each produce a unique observation
– e.g., z2 – for agent 2. When a door is opened, the world resets and the tiger is placed behind a randomly
chosen door. To act optimally, agent 1 must listen to the tiger’s roars until it is confident about the tiger’s
location and then send the appropriate signal to agent 2. Agent 2 must wait for this signal and then open
the appropriate door.

This example illustrates the characteristics of the general optimal decentralized control problem for
partially observable Markov processes. This paper formulates and solves this general optimal distributed
problem for a process that is to operate for only a finite number of periods under the control of a Markov

Inria



On Markov Policies For Decentralized POMDPs 5

policy. A later paper will examine this decentralized control problem for a process that is to operate into
the indefinite future.

Over the past decade there has been extensive research into decentralized partially observable Markov
processes. Earlier work on decentralized control problems relies on distributed planning (Peshkin et al.,
2000). By distributed planning we meant both:

• the planning process is distributed among a variety of agents;

• a control policy is formulated that can be distributed among a variety of agents;

This is the most challenging version of distributed planning, that is when both the planning process and its
results are intended to be distributed (Durfee, 2001). In this case, it might be unnecessary to ever have a
multi-agent control policy represented in its entirely anywhere in the system, and yet the distributed pieces
of the control policy should be compatible, which at a minimum means that agents should not conflict
with each other when executing the control policies, and preferably should help each other achieve their
control policies when it would be rational to do so (e.g., when a helping agent is no worse off for its
efforts).

ri
a1

z1
Environment

4(S × Π¬i)

Figure 2: Agent 1’s internal partially observable Markov process.

The literature of this kind of distributed planning is relatively rich and varied. It ranges from ad-hoc
distributed coordination strategies, e.g., logic formalization; theory of intentions (Cohen and Levesque,
1990; Jennings and Mamdani, 1992), to more formal approaches, e.g., distributed constraint reasoning
(Yokoo, 2001). In decentralized control of partially observable Markov processes, the control problem is
broken into separate and independent partially observable Markov processes, one for each agent. Figure
2 illustrates a pictorial representation of such a model. In order to avoid sequences of control alternatives
that lead to conflicts, each agent i’s internal partially observable Markov process incorporates the total
available information – denoted 4(S × Π¬i) – of the other agents, that is, what they observe and plan to
do. As such, the planning process for each agent is achieved independently and separately for almost all
exact state-of-the-art methods. Such solution methods discussed in (Hansen et al., 2004) and (Szer and
Charpillet, 2006) suggest to computing the optimal history-dependent policy for each agent over the con-
tinuum 4(S × Π¬i). That is, the space of all possible probability distributions over what the other agents
observe and plan to do. Unfortunately, the space of history-dependent policies Π¬i of the other agents
can become prohibitively huge as time goes on. More precisely, it grows doubly exponentially with the
number of agents and control intervals. While such approaches preserves the ability to eventually find
an optimal control policy for each agent – which is a key property – yet it makes planning impracti-
cal even for small toy problems. In attempts to scale up, specific policy classes have been addressed.
(Amato et al., 2010; Szer and Charpillet, 2005; Oliehoek et al., 2008; Dibangoye et al., 2011; Oliehoek
et al., 2013; Dibangoye et al., 2014, 2015, 2016) focus the effort of exact techniques only over memory-
bounded history-dependent policies. (Seuken and Zilberstein, 2008; Dibangoye et al., 2009; Kumar and
Zilberstein, 2010; Kumar et al., 2011, 2015) pushed a little bit further the envelop by investigating the
approximate calculation of memory-bounded and history-dependent policies.

RR n° 9202



6 Jilles S. Dibangoyet

In this paper, we review the optimal Markov policy computation in the context of decentralized control
of partially observable Markov decision processes (Dibangoye et al., 2012, 2013), providing new insights.
From the perspective of applications, we find it comforting that by restricting attention to Markov policies,
which are simple to implement and calculate, we may achieve as large expected total reward as if we used
approximate memory-bounded history-dependent policies.

Of special significance for this paper is the work of (Dibangoye et al., 2016), who considered the
general problem from the standpoint of centralized planning for decentralized control. (Dibangoye et al.,
2016) argued that control policies that are to be executed in distributed fashion can nonetheless be formu-
lated in centralized manner. A centralized coordinator agent with such a policy can break it into separate
threads. These separate control policies can be passed to agents that can execute them. To do so, (Diban-
goye et al., 2016) formulated the general problem as a partially observable Markov problem with a single
constraint. The constraint induced that the resulting control policy can be broken into separate control
policies, one for each agent. This process is illustrated in Figure 3. However, this work is significantly
different. Indeed, it is the first research to consider control policies from the class of Markov policies.
This class of policy plays a central role in our results.

π1

π2

centralized coordinator agent

centralized planning

π

decentralized control
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a2 z2

a1 z1
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Figure 3: The centralized planning for decentralized control.

2 Properties of the Model

2.1 Basic Terminology

To begin the explicit formulation of the control problem for a decentralized partially observable Markov
process, we assume that the internal dynamics of the system under control can be modeled as a |S |-
state discrete-time Markov process. If there are τ control periods remaining, the problem is to select an
alternative from the available set A that will optimize the performance of the system during its remaining
lifetime. If alternative aτ is selected, then the conditional probability that the internal process will make
its next transition to state sτ−1 if it is presently in state sτ will be written as

T (s′|s, a) = p(s′ = sτ−1|s = sτ, a = aτ) (1)

Inria



On Markov Policies For Decentralized POMDPs 7

An observation will follow each transition, with

O(z′|s, a, s′) = p(z′ = zτ−1|s = sτ, a = aτ, s′ = sτ−1) (2)

denoting the probability of observing output zτ−1 if the internal state of the process is sτ−1 and alternative
aτ is controlling the system in state sτ. It will prove convenient to define the probability of transiting from
internal state s and observation output z to the internal state s′ and observation output z′ when agents
together execute action alternative a:

p(s′, z′|s, a) = T (s′|s, a) · O(z′|s, a, s′). (3)

With this representation of the process, it is easy to see that, if O(z′|s, a, s′) is independent of s′, then
the observation of the output will yield no additional information about the internal state of the process.
This is the case of the nonobservable Markov process. The other extreme is the more usual case that has
been studied extensively in the literature (Howard, 1960; Puterman, 1994). If there is one output for each
internal state of the process and if for each alternative O(z′|s, a, s′) > 0 if and only if s′ ≡ z′, then the
process is said to be completely observable. In the paper, we refer to the latter model as decentralized
Markov decision process with full joint observability (Bernstein et al., 2002).

The calculation of an optimal control policy requires a reward structure for the process. Thus, we
define

R(s, a) = r(s = sτ, a = aτ) (4)

as the immediate award accrued if, while under the control of the alternative aτ during one control interval,
the process internal state is sτ. The analysis to follow assumes that the centralized coordinator agent has
no direct observation of the accrued rewards; that is, it only observes the outputs of the observation part
of the process. If this assumption is violated, then it is easy to redefine the observation outputs of the
process to include the internal states that are immediately available to the centralized coordinator agent.

These quantities (S , A,Z,R,T,O) define the probabilistic model that underlies each decentralized con-
trol problem of partially observable Markov decision process. When the agents operate over N control
intervals and has a discount factor λ ∈ [0, 1), the model is referred as finite horizon case with discounted
rewards.

2.2 Decentralized Control Policy
The central objective of decentralized control of Markov decision process planning is to compute a de-
centralized control policy ξ for selecting action alternatives in order to maximize the expected sum of
reward, that it gets on the next N control intervals; it should maximize

Eξ

N−1∑
τ=0

λτ · rτ(sτ, aτ) + rN(sN)

 (5)

where rτ is the reward received at control interval τ.
A decentralized control policy ξ ≡ {ξi}i describes the behavior ξi of the agents at the execution time.

When there is only one control interval remaining, all the agents can do is to take a single action alter-
native. With two control intervals remaining, they can take an action, make an observation, then take
another action. In this paper, we represent an agent’s control policy ξi by a sequence of decision rules
ξi := (ξ0, · · · , ξN−1). A decision rule ξτ at time τ is a mapping from histories of observation outputs to
actions. In general decentralized decision-making, there are two different classes of policies of potential
interest. In the more general class, an action can be chosen on the basis of the entire history of past obser-
vations. That is, the class of history-dependent decision rules and policies, which are often represented
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8 Jilles S. Dibangoyet
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Figure 4: Exponential-size (left-hand side) vs. polynomial-size (right-hand size) deterministic control
policies.

using decision tree, as illustrated in Figure 4. In a more restricted class, the action at time τ is based only
on the current observation.

Agent i’s policy ξi = (ξi
0, ξ

i
1, · · · , ξ

i
N−1) is said to be Markovian if it depends on the past history

only through the local observation. That is, (Markov) decision rule ξi
τ is a mapping from observations

zi ∈ Zi to local actions ai ∈ Ai. We note pξ
i
τ (ai|zi) the probability of taking local action alternative

ai after perceiving local observation output zi when executing decision rule ξi
τ. Since we are mainly

concerned with decentralized decision making, we need to introduce a specific class of policies that is
appropriate for this purpose. We define the class of decentralized control policies as follows. Team policy
ξ = (ξ0, · · · , ξN−1) is said to be a decentralized control policy if decision rule ξτ is defined as a n-tuple
(ξ1
τ , · · · , ξ

n
τ) of decision rules, one ξi

τ for each agent i = 1, · · · , n. Notice that pξτ (a|z) =
∏

i pξ
i
τ (ai|zi) is

the probability of selecting joint action alternative a after perceiving joint observation z when following
ξτ.

2.3 Sufficient Statistic

The uncertainty in the dynamic of the internal process produce uncertainty about the internal state of the
system. For our formulation of the decentralized control problem, the current state of information about
the internal state of the system can be encoded as the occupancy state θ, where θ(s, z) is the probability of
observing output z and the internal state of the process is s. In other words, if the centralized coordinator
agent has available to him his past observations of the process’s outputs, then at any time the vector θ is
a sufficient statistic for these past sequences of observations. Appendix A presents a proof of this rather
intuitive result.

From this result it follows that the dynamics behavior of the occupancy state θ is itself a discrete-time
continuous-state deterministic Markov process. This dynamic behavior of the state information is crucial
to the calculation of the optimal as well as approximate control policy. If our prior state information
about the observation output of the system is denoted by θ, and if the current decision rule is ξτ, then
we must be able to calculate our updated state information. If θ′(s′, z′) is the updated probability that the
observation output and internal state of the system are z′ and s′ respectively given the new information,
then the application of simple probability operations yields the following equation (Appendix A contains

Inria



On Markov Policies For Decentralized POMDPs 9

the complete derivation):

θ′(s′, z′) =
∑
s,z,a

pξτ (a|z) · θ(s, z) · p(s′, z′|s, a) (6)

Equation (6) defines a transformation from the vector θτ to the vector θτ−1. Since this transformation
plays an important role in the succeeding development, it is useful to introduce the notation

θτ−1 = χ(θτ|ξτ) (7)

The space of all probability distributions over S and Z is known as a standard (|S ||Z|−1)-simplex, denoted
for the sake of simplicity 4 in the remainder of the paper.

2.4 The Optimality Equations

With this as a background, the remainder of this section will introduce the optimality equations. These
equations and their solutions play a central role in the theory of decentralized control of Markov decision
processes.

To this end, we define Vτ(θτ) as the maximum expected reward that the system can accrue during
the lifetime of the process if the current occupancy state is θτ and there are τ control intervals remaining
before the process terminates. Then, expanding over all possible next transitions yields the recursive
equation (8), for any occupancy state θτ ∈ 4.

Vτ(θτ) = max
ξτ

∑
s,z,a

pξτ (a|z) · θτ(s, z) · R(s, a) + λVτ−1(χ(θτ|ξτ)) (8)

We refer to this system of equations (8) as the optimality equations for decentralized control of partially
observable Markov decision processes under the control of Markov policies. Equation (8) can be sim-
plified somewhat by defining the expected immediate reward for occupancy state θτ if decision rule ξτ is
used during the next control interval as

R(θτ, ξτ) :=
∑
s,z,a

pξτ (a|z) · θτ(s, z) · R(s, a) (9)

Equation (8) then becomes

Vτ(θτ) = max
ξτ

R(θτ, ξτ) + λVτ−1(χ(θτ|ξτ)) (10)

Equation (10) is valid for any control interval τ ≥ 1. The value of terminating the process with a final
occupancy state θ0 is just:

V0(θ0) = max
ξ0

R(θ0, ξ0) (11)

Equation (10) represents a dynamic-programming problem over a continuous state space, the space of
occupancy states. This is consistent with the previous assertion that the occupancy state θτ is itself the
state of the discrete-time continuous state deterministic Markov process. Appendix A discusses this in
more detail.

RR n° 9202



10 Jilles S. Dibangoyet

p(z)p(z′)

Vτ(θτ)

χ(θτ|ξτ)

υ1

υ0

θτ

υ2

χ(θτ|ξ′τ)

ξτ
ξ′τ

Figure 5: Information state transformation over {z, z′} of the multi-agent tiger problem.

2.5 Convexity and Piece-Wise Linearity
We have shown that the solution of the decentralized control of Markov decision process is the solution
of the optimality equations

Vτ(θτ) = maxξτ R(θτ, ξτ) + Vτ−1(χ(θτ|ξτ))

V0(θ0) = maxξ0 R(θ0, ξ0), θ0 ∈ 4

(12)

Although (12) appears rather formidable, its solution has a rather simple form. In particular, we shall
show that Vτ(θτ) is piecewise linear and convex, and can thus be written as

Vτ(θτ) = max
k

(υ`τ · θ
>
τ ) (13)

for some set of vectors υk
τ, for k = 1, 2, · · · . We shall use the term hyperplane to refer to one of the vectors

υτ in Equation (13). Apart from being an amusing curiosity the convexity and piecewise linearity of the
value function is particularly useful for establishing convergence properties as well as for simplification
of numerical algorithms.

Before giving the main theorem we will establish some simple properties of convex functions. We
have

Lemma 1. Let f1(x) and f2(x) be convex functions. The function f (x) = max { f1(x), f2(x)} is then also
convex.

We have further

Lemma 2. Let the function R(·, ξτ) : 4 → R be convex and let χ(·|ξτ) be a convex transformation which
maps 4 into 4. The function f : 4 → R defined by f (x) = R (χ(x|ξτ), ξτ) , ∀x ∈ 4 is then also convex.

Inria



On Markov Policies For Decentralized POMDPs 11

Let 0 ≤ λ ≤ 1 and µ = 1 − λ, take x ∈ 4 and y ∈ 4, then using convexity of Rξτ and χ(·|ξτ) we find

f (λx + µy) = R (λ · χ(x|ξτ) + µ · χ(y|ξτ), ξτ) (14)
≤ λ · R (χ(x|ξτ), ξτ) + µ · Rξτ (χ(y|ξτ), ξτ) (15)
= λ f (x) + µ f (y) (16)

and the result is established. �

We can now state the main result.

Theorem 1. Let χ(·|ξτ) be mappings from 4 into 4, the functions Vτ : 4 → R defined recursively by (12)
are then convex.

The linear function R(θτ, ξτ) is convex. By repeated application of Lemma 1 we now find that V0(θ0)
is convex. Now consider V1(θ1). It follows from Lemma 2 that V0(χ(θ1|ξ1)) is convex. As a sum of
convex functions is convex we find that both terms within the brackets of the right member of (12) are
convex. Application of Lemma 1 now shows that V1(θ1) is convex. Now proceeding by induction we can
show that all functions Vτ(θτ) are convex, and the theorem is proved. �

There are two important practical points to keep in mind. First, if the set of hyperplanes for Vτ−1
has been calculated, then it is possible to calculate the optimum decentralized control policy and the
corresponding hyperplane for any specified occupancy state θτ for the τ-horizon case. This property will
be most useful when we derive an algorithm for calculating the value function in Section 3. Secondly,
the calculation of a new hyperplane using (13) yields an optimal decentralized control policy associated
with each new hyperplane. Thus, in storing the optimal distributed decision rule, it is not necessary to
store the complete description of the policy regions as illustrated in Figure 5; we need only store the set
of hyperplanes along with the appropriate distributed decision rule for each hyperplane. Then, to find the
optimal distributed decision rule for some occupancy state θτ, we merely carry out the maximization in
(13) and then use the control alternative associated with the maximizing hyperplane. This represents a
considerable practical saving over previous solutions to this problem.

3 Exact Algorithm for Computing Vτ(θτ)

Having discovered the relatively simple form of the solution to the optimal decentralized control prob-
lem, it only remains to construct an orderly practical procedure for computing the hyperplanes and the
corresponding mapping of these vectors onto the set of distributed alternative controls. In the succeeding
discussion, we shall assume that the hyperplanes υk

τ−1 for the case of (τ − 1) control intervals have been
calculated. The problem then is to find an algorithm for calculating the hyperplanes υk

τ from this infor-
mation. Let Pξτ be the matrix whose the rows are p(·, ·|s, ξτ(z)) and Rξτ be the vector whose components
are R(s, ξτ(z)), for any internal state and observation output (s, z). To implement the exact calculation of
exact value function Vτ, we first generate hyperplanes υξτ defined as follows:

υ
ξ
τ = Rξτ + γPξτ · υτ−1, ∀ξτ, ∀υτ−1 (17)

Finally value function Vτ is represented by the set of hyperplanes υξτ.
It is often the case that an hyperplane υτ will be completely dominated by another hyperplane υ̂τ.

Similarly, an hyperplane may be fully dominated by a set of other hyperplanes. Those hyperplanes can be
pruned away without affecting the solution. Checking whether a single hyperplane is dominated requires
solving a linear program with |S ||Z| variables and |Vτ| constraints. But, it can be time-effective to apply
pruning after each control interval to prevent an explosion of the solution size. Formally, an hyperplane

RR n° 9202



12 Jilles S. Dibangoyet

υ is dominated, if for each occupancy state θ there exists another hyperplane υ̂ such that (υ̂ − υ) · θ ≥ 0.
This leads directly to the linear program below:

maximize ζ

subject to: (υ̂ − υ) · θ ≥ ζ, (∀υ̂ , υ)
with

∑
s,z θ(s, z) = 1 (∀θ)

If the result of that program is negative or equal to zero (ζ ≤ 0), then hyperplane υ can be pruned away
without affecting the solution.

To better understand the complexity of the exact calculation of Vτ, let |Vτ−1| be the number of hyper-
planes required to represent value function Vτ−1, and D the space of deterministic decision rules. So, in
the worst case, the new solution Vτ has size |D||Vτ−1|. Given that this polynomial growth occurs for over
times, the importance of pruning away unnecessary hyperplanes is clear. The most critical point of this
exact algorithm for computing V?

τ is the linear program described above. While the theoretical complex-
ity of solving such a problem is only polynomial, in practice this problem is computationally intensive
since in the worst case the number of constraints increases with decreasing control intervals remaining.
Notice that we consider only deterministic control policies, while the main body of the paper consider
randomized control policies. We rely on the assumption that deterministic policies may achieve as large
an expected discounted total reward as if we used randomized control policies.

4 An Algorithm for Approximating Vτ(θτ)

To begin the algorithm, we pick a set of representative occupancy states at control interval τ, say Θτ, and
then applies value function calculation on those occupancy states only. As shown in the previous section,
given hyperplanes at control interval (τ − 1), it is relatively straightforward to generate hyperplanes at
control interval τ. In this algorithm, we apply this procedure to the entire set of occupancy states Θτ such
that we generate a full value function at control interval τ. Given value function Vτ−1, we compute the
hyperplane υθτ that is optimum for each occupancy state θ ∈ Θτ as follows:

υθτ := max
ξτ

Rξτ · θ
>
τ + γVτ−1(χ(θτ, ξτ)) (18)

To better understand the complexity of information-based approximations, let |Θτ| be the number of
occupancy states at control interval τ, and |Vτ−1| the number of hyperplanes in value function one step
earlier. A full information-based approximation takes only polynomial time, i.e., |S ||Z||D||Vτ−1||Θτ|, and
even more crucially, the size of value function Vτ remains constant, i.e., |Θτ|, over control intervals.

Despite these outstanding results, it is likely that the information-state approximation does not scale
up to realistic applications. That is mainly because, in such applications size |D| of the set of all possible
decision rules may be too prohibitive. Moreover, a large number of hyperplanes generated when using
the exact technique is pruned away since each information-state θτ ∈ Θτ keeps only a single hyperplane.

4.1 The Error-Bound

For any occupancy state setΘτ and control interval τ, our approximation produces Vτ. We now show that
the error between Vτ and the optimal value function V?

τ is bounded. The bound depends on how densely
θτ samples the occupancy state simplex 4; with denser sampling, Vτ converges to V?

τ . Cutting off the
approximate algorithm iterations at any control interval, we know that the difference between Vτ and the
optimal V?

τ is not too large.
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Figure 6: Theoretical properties of the approximation of Vτ.

We begin by defining the density β of a set of occupancy states θ to be the maximum distance from
any legal occupancy state to θ (Pineau et al., 2006). More precisely:

β = max
θ′∈4

min
θ∈Θτ

‖θ′ − θ‖1 (19)

Then, we can prove that the error introduced by a single application of operator H̃, instead of 4τ, is
bounded by ε,

ε ≤
1 − γN−τ

1 − γ
‖r‖∞β (20)

To better understand this error bound, let θ′ ∈ 4 be the occupancy state where our approximate algorithm
makes its worst error in the value update, and θ ∈ Θτ be the closest (1-norm) sampled occupancy state to
θ′. Let υ be the hyperplane that is maximal at θ, and υ′ be the hyperplane that would be maximal at θ′.
By failing to include υ′ in its solution set, our approximation makes an error σ of at most (υ′ · θ′ − υ · θ′).
On the other hand, since υ is maximal at θ, then (υ′ · θ ≤ υ · θ). So,

ε ≤ υ′ · θ′ − υ · θ′

≤ υ′ · θ′ − υ · θ′ + (υ′ · θ − υ′ · θ)
≤ υ′ · θ′ − υ · θ′ + υ · θ − υ′ · θ

≤ (υ′ − υ) · (θ′ − θ)
≤ ‖υ′ − υ‖∞‖θ

′ − θ‖1

≤
1 − γN−τ

1 − γ
‖r‖∞β

The last inequality holds for ‖r‖∞ = maxs,a |R(s, a)|. Moreover, 1−γN−τ

1−γ ‖r‖∞ represents the maximum
reward achievable starting at any state and following some sequence of action alternatives and observation
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outputs during (N−τ) control intervals. When we apply operator H̃ over the τ control intervals remaining
the error στ =

(1−γN−τ)(1−γτ+1)
(1−γ)2 ‖r‖∞β produced by our approximation is given by,

ετ = ‖Vτ − V∗τ ‖∞ (21)
= ‖H̃Vτ−1 −HV∗τ−1‖∞ (22)
≤ ‖H̃Vτ−1 −HVτ−1‖∞ + ‖HVτ−1 −HV∗τ−1‖∞ (23)

≤
1 − γN−τ

1 − γ
‖r‖∞β + ‖HVτ−1 −HV∗τ−1‖∞ (24)

≤
1 − γN−τ

1 − γ
‖r‖∞β + γ‖Vτ−1 − V∗τ−1‖∞ (25)

=
1 − γN−τ

1 − γ
‖r‖∞β + γετ−1 (26)

=
(1 − γN−τ)(1 − γτ+1)

(1 − γ)2 ‖r‖∞β (27)

The bound described in this section depends on how densely θ samples the occupancy state simplex
4. In the case where not all occupancy states are reachable, we don’t need to sample all of 4 densely, but
can replace 4 by the set of reachable occupancy states 4̄ (Figure 7).

4.2 Occupancy State Set Θτ Expansion

There is a clear trade-off between including fewer occupancy states (which would favor fast planning
over good performance), versus including many occupancy states (which would slow down planning,
but ensure better performance). This brings up the question of how many occupancy states should be
included. However, the number of occupancy states is not the only consideration. It is likely that some
collections of occupancy states (for example those frequently encountered) are more likely to produce
a good value function than others. This brings up the question of which occupancy states should be
included.

The error bound in (20) suggests that the occupancy state-based approximation performs best when
its occupancy state set is uniformly dense in the set of reachable occupancy states. As shown in Figure
7, we can build a tree of reachable occupancy states. In this representation, each path through the tree
corresponds to a sequence in the occupancy state space, and increasing depth corresponds to an increasing
plan horizon.

As shown in this figure, the set of reachable occupancy states at control interval τ – denoted 4̄τ –
increases exponentially with increasing time, i.e., |4̄τ| = O(|D|τ−1). Including all reachable occupancy
states would guarantee optimal performance, but at the expense of computational tractability. Therefore,
we must select a subset Θτ ⊂ 4̄τ, which is sufficiently small for computational tractability, but sufficiently
large for good value function approximation.

The approach we propose consists of initializing set Θ0 to contain the initial occupancy state θ0,
and then gradually expanding θτ by greedily choosing new reachable occupancy states that improve the
worst-case density as rapidly as possible.

To choose new reachable occupancy states, we stochastically simulate single-step forward trajecto-
ries from those occupancy states already in θτ. Simulating a single-step forward trajectory for a given
θτ ∈ Θτ requires selecting a distributed decision rule ξτ, and then computing the new occupancy state
θξττ = χ(θτ|ξτ). Rather than selecting a single distributed decision rule to simulate the forward trajectory
for a given θτ ∈ Θτ, we do so with each distributed decision rule, thus producing new occupancy state
set Θτ+1 = {θξτ |∀ξτ ∈ D,∀θ ∈ Θτ}. Rather than accepting all new occupancy states, we calculate the L1
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Figure 7: The reachable occupancy states.

distance between each θξττ and its closest neighbor in Θτ+1. We then keep only the occupancy state θξττ
that is farthest away from any occupancy state already in Θτ+1.

5 Conclusion and discussion

As stated earlier, previous authors have attacked the calculation of the optimal decentralized control
policy for partially observable Markov processes. Most of these exact methods are based on a single
agent occupancy state – that is a mixture over the internal state of the process and all possible control
policies of its teammates. With this as a background, the authors derive different smart strategies to
compute the optimal history-dependent control policy for each agent. While useful, this occupancy state
increases exponentially with increasing control intervals – thus restricting the ability to scale up to realistic
applications. As an attempt to scale up, multiple approximate solution methods have emerged. Among
all the class of information-state based approximation has shown impressive performances on the two-
agent small toy problems. These methods – known as point-based algorithms – perform the update of
the value function based solely on the mixture over the internal state of the system. By planning over a
bounded number of such occupancy states, they favor fast planning over good performance. Indeed, a
recent analysis on the solution produced by such techniques show that the error increases with decreasing
number of occupancy states and increasing planning horizon. This is mainly because the occupancy
state based on the mixture over the internal states of the system does not provide the sufficient statistic
for decision-making in decentralized control of partially observable Markov decision processes. The
other major limitation of information-states based approximations is the selection of a small parameter
that bounds the number of possible control policies. Unfortunately, choosing the right parameter is not
obvious, even more dynamically adjusting it may raise non negligible computation costs. Our work
provides a alternative to this approximation scheme.

In this paper, we provide both theoretical and algorithmic insights for optimal as well as error-bounded
approximate decentralized control of partially observable Markov decision processes using Markov poli-
cies. On the one hand, we demonstrate that the mixture over internal states of the process and observation
outputs is the sufficient statistic for decision-making in such a setting. Having discovered the relatively
simple form of the sufficient statistic, we demonstrate the piecewise linear, and convex nature of the value
function. On the other hand, we derive a method for automatic generation of these occupancy states. This
opens a large range of possible applications. From the perspective of applications, we find it comforting
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that by restricting attention to Markov policies, which are simple to implement and calculate, we may
achieve as large expected total reward as if we used approximate memory-bounded history-dependent
policies. We hope this work lays the foundation for further work in applying Markov policies in decen-
tralized decision-making problem.

6 Appendix A
In this appendix we show that a sufficient statistic for the past histories of a decentralized control prob-
lem of partially observable Markov processes under the control of a Markov policy is just the cur-
rent observation-state vector θτ. In demonstrating this property, we derive the rule for updating the
observation-state vector from one control interval to the next. To make this explicit, we define ξ0:t as the
total available information about the process at the end of the control interval t. Notice that in this ap-
pendix the time variable t increases with increasing time, whereas in the main body of the paper the time
variable τ, which is equal to the number of remaining control intervals, decreased with increasing time.
For the process as defined in this paper, the only information that we obtain during a control interval is the
fact that a particular distributed decision rule ξt has been executed. If ξ0:t−1 and ξt denote the distributed
Markov policy at the end of control interval (t − 1), and the current decision rule, respectively, then we
can write

ξ0:t =
(
ξ0:t−1, ξt

)
(28)

That is, ξ0:t represents our state information prior to control interval t plus the additional information that
a particular distributed decision rule was recorded.

By the definition of the observation-state vector,

θt(s′, z′) = p(s′ = st, z′ = zt |ξ0:t), (29)

where zt is the discrete-valued randomized variable equal to the observation output of the process at the
conclusion of control interval t. Application of the definition of conditional probability yields

θt(s′, z′) = p(s′ = st, z′ = zt, ξ0:t)/p(ξ0:t) (30)

The expansion of (30) over all possible internal states and observation outputs of the process at the
end of (t−1) plus the expansion of the joint probability as a product of conditional probabilities produces

θt(s′, z′) =
∑
s,z

p(s′, z′|s, z, ξ0:t) · p(s, z, |ξ0:t) (31)

The substitution of (28) into (31) yields

θt(s′, z′) =
∑
s,z

p(s′, z′|s, z, ξ0:t−1, ξt) · p(s, z|ξ0:t−1, ξt) (32)

The first probability in (32) will be independent of ξ0:t−1, since the next internal state s′ and observation
output z′ of the system depend on the past history only through the previous internal state s, observation
output z and control alternative prescribed by decision rule ξt in ξ0:t. Moreover, the second probability in
(32) will be independent of ξt, since control alternatives do not impact past internal states or observation
outputs of the system. Then, expression (32) becomes:

θt(s′, z′) =
∑
s,z

p(s′, z′|s, z, ξt) · p(s, z|ξ0:t−1) (33)
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Expanding the first probability in (34) over all possible control alternatives a ∈ A yields

θt(s′, z′) =
∑

s∈S ,z∈Z

p(s, z|ξt)
∑
a∈A

pξt (a|z) · p(z′|s, a, s′) · p(s′|s, a) (34)

where pξt (a|z) denotes the probability of taking control alternative a after perceiving observation output z
when following decision rule ξt. The remaining two probabilities in (34) are just transition probabilities
and observation probabilities for the process, while the first probability is just the information-state vector
defined as follows:

p(s = st−1, z = zt−1|ξ0:t−1) = θt−1(s, z)

Thus, we have

θt(s′, z′) =
∑

s∈S ,z∈Z

θt−1(s, z)
∑
a∈A

pξt (a|z) · O(z′|s, a, s′) · T (s′|s, a) (35)

The important feature of (35) is that the calculation of the observation-state vector after control interval
t requires only θt−1, the observation-state vector after control interval t − 1; thus, θt−1 summarizes all the
information gained prior to control interval t and represents a sufficient statistic for the complete past
history of the process ξ0:t−1.

In fact, (35) describes the possible transformations for a continuous-state deterministic Markov pro-
cess in which the state of the process is the occupancy state vector θt. For this process, the transition
probability from one state to another is deterministic p(θ′|θ, ξt) = 1 if and only if θ′ = χ(θ|ξt) other-
wise p(θ′|θ, ξt) = 0. This is a rather special case of continuous-state Markov process, since the state is
continuous but the transition function is both discrete and deterministic.
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