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Don’t Make the Same Mistakes Again and Again:
Learning Local Recovery Policies for Navigation

from Human Demonstrations
Francesco Del Duchetto1, Ayse Kucukyilmaz1, Luca Iocchi2, and Marc Hanheide1

Abstract—In this paper, we present a human-in-the-loop learn-
ing framework for mobile robots to generate effective local
policies in order to recover from navigation failures in long-
term autonomy. We present an analysis of failure and recovery
cases derived from long-term autonomous operation of a mobile
robot, and propose a two-layer learning framework that allows
to detect and recover from such navigation failures. Employing
a learning by demonstration (LbD) approach, our framework
can incrementally learn to autonomously recover from situations
it initially needs humans to help with. The learning framework
allows for both real-time failure detection and regression using
Gaussian processes (GPs). Our empirical results on two different
failure scenarios indicate that given 40 failure state observations,
the true positive rate of the failure detection model exceeds 90%,
ending with successful recovery actions in more than 90% of all
detected cases.

Index Terms—Service Robots, Failure Detection and Recovery,
Learning from Demonstration.

I. INTRODUCTION

THE ability to detect and recover from errors during
navigation is an essential ability for autonomous service

robots, which are designed to function in human environments
for extended periods of time. However, navigation failures
are still common in state-of-the-art systems, where robots get
stuck near obstacles or their global navigation plans fail as
we show with our analysis of about a year of autonomous
operation in a care home. Such navigation errors pose a severe
limitation on the long-term autonomy, since they may cause a
breakdown of the whole robotic operation.

In order to mitigate operational errors, different recovery
strategies have been proposed in the literature. Among these,
some take advantage of being in a human-inhabited environ-
ment, where the robot can actively consult a nearby human
for assistance. Asking questions when plans are ambiguous or
presenting the humans with options have been used in human-
robot interaction to achieve semi-autonomous operation in
real-world scenarios [1], [2], [3], [4], [5]. Most of these studies
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take on a conversational approach to bring the human in the
loop to verbally clarify task goals. In this study, we adopt a
learning by demonstration (LbD) approach to teach robots re-
covery policies by requesting physical human demonstrations.

Fig. 1: Scitos G5

In our framework, an operator
teaches the robot when a failure oc-
curs and demonstrates how to recover
from that situation by assuming its
control. Once trained for failure de-
tection, the robot can autonomously
detect situations that it cannot pos-
sibly handle using an existing navi-
gation policy, and either run a previ-
ously learned recovery behaviour or
ask for a new demonstration depend-
ing on the variance of the predicted
actions for the current failure.

II. RELATED WORK

Robust navigation in long-term
scenarios in somewhat dynamic en-
vironments remains a challenge in
robotics. The ”Office Marathon” [6]
uses a navigation system based on
move base, which is also used in our
STRANDS system [7], although only
aimed to reach marathon distance.
Recently, Biswas and Veloso [8] have
traversed over 100 km with their fleet of CoBots. However,
they also report that a number of expert interventions were
required in these runs, despite optimising the navigation sys-
tem explicitly for robustness. Similarly, a way to put humans
in the loop to increase navigational autonomy is presented
in [5], where a mobile robot actively seeks a human when it
needs assistance for spatially-situated actions, such as pushing
buttons to access an elevator. Also, [9], [10], [11] suggest using
the paradigm of LbD to learn navigation policies from human
demonstrations.

LbD provides an intuitive way for humans to teach robots
physical skills. Kinesthetic teaching has been a popular ap-
proach to program new skills on a robot, where the human acts
as the teacher, who physically demonstrates the task for the
robot to generalize from [12], [13], [14]. The key idea behind
LbD is to learn a skill with minimum number of demonstra-
tions. Hence, providing new demonstrations where necessary
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is crucial to improve skill learning by making the models
generalize better to new situations. How to switch between
autonomous mode and human demonstration has been a topic
of interest in the literature. Lockerd and Breazeal [15] use a
Bayesian likelihood method with a fixed threshold to identify
low confidence behaviors, which require new demonstrations.
Similarly, Grollman and Jenkins [16] determine the uncertainty
of actions by identifying low confidence states, again, using
a threshold, to request demonstrations. Chernova and Veloso
[17] use multiple automatically-calculated thresholds to com-
pute low confidence regions within the task space, and propose
a confidence-based autonomy switching technique. In [18], the
robot gradually expands its range-of-motion via asking for new
demonstrations from the human.

In this study, we take on a LbD approach for robotic naviga-
tion, where the robot automatically detects failures and learns
recovery trajectories from human demonstrations. We evaluate
the variance of the predicted actions as a measure of model
confidence, and provide demonstrations where necessary. To
our knowledge, ours is the first comprehensive framework for
mobile navigation where the robot learns how to deal with
abstract navigation failures from human expertise in a realistic
scenario, rather than learning specific task descriptions.

As mentioned earlier, we take on a Gaussian process (GP)-
based approach in our framework for dealing with navigation
errors. Even though LbD is most popularly used for object
manipulation tasks, the use of GPs for navigation has been
explored by different researchers. Nardi and Stachniss [19]
present a GP-based navigation system, designed to be robust
against dynamic environments. They propose a planning ap-
proach to predict the trajectories of moving agents and adjust
local plans to avoid collisions based on previous navigation
experience. This technique illustrate the robustness of GPs for
generalizing trajectory observations. Hüntemann et al. [20] use
a Bayesian approach in conjunction with GPs to model user
driving behavior to reason about the user’s local navigation
plan. In [21], [22], GPs are used to learn assistance policies
by demonstration, where a human provides guidance to a user
by means of taking over the control of the navigation. In [23],
[24], the utility of GPs for learning continuous shared control
policies from human demonstrations is proposed to provide
active navigation assistance to a wheelchair user. In our study,
we extend these ideas to an unexplored field and focus on real-
life problems faced in long-term autonomy of social robots.
Our focus, therefore is to improve the autonomy of the robots
to make them more stable against navigation failures.

III. ANALYSIS OF NAVIGATION FAILURES

In our previous work [7], [25], an autonomous mobile robot
(See Fig. 1) was deployed in a care home for a total of
just over a year, in the context of the STRANDS project1.
This experiment was split over three individual deployments,
spread over a period of three years. Here, the robot served as
a mobile info-terminal and was also engaged in occupational
therapy sessions [25]. It was left without any technician or
researcher on site; hence, the robustness of navigation in this

1http://strands-project.eu/

dynamic and challenging environment was essential. In the
rest of this section, we outline some key findings from the of
the navigation issues in this long-term deployment.

STRANDS Care Robot Navigation System: The robot’s
navigation system was based on the ROS move base navi-
gation framework2, augmented with a topological navigation
component [26], which also serves in the architecture proposed
in this paper (See Section IV). move base is widely employed
by many robot systems and has proven its suitability as a
generic navigation framework. However, in real-world appli-
cations with unforeseen dynamics, navigation commands sent
to the local planner [27] will often fail due to sensing noise,
obstacles appearing close to the robot, or control inaccuracies,
despite manual and automatic [28] parameter optimisation
having been conducted extensively.

Failure Situations: Typical navigation failures encoun-
tered during the deployment of the robot were: robot get-
ting stuck on carpet, bumper being pressed and no valid
global/local navigation plan being generated. For each of these
failure situations, a specific ad-hoc recovery behaviour was
defined.

Ad-Hoc Recovery Behaviours: In order to meet the
robustness requirement and deal with local planning failures,
we initially developed a dedicated recovery system, featuring
hard-coded autonomous recovery behaviours. These ranged
from a simple (i) wait and retry behaviour, which cleared the
local cost-map and then re-issued the navigation command,
over a (ii) backtrack behaviour, which reversed the last 15 (1
second) motion commands sent to the robot to return to a pre-
vious position, up to an (iii) interactive help seeking behaviour,
in which the robot would ask any human in its surrounding
–verbally and by screen display– to push it from its current
position to a free area. Asking the human was designed as a
fall-back behaviour, triggered after all autonomous behaviours
had failed to successfully take the robot to its destination.

Analysis of Navigation Issues and Recoveries: Over the
three individual deployments, the robot travelled more than
160 km, during which a total of 5591 recoveries (autonomous
and involving the human) were required. This averages to
almost 35 recoveries per km – or, in other words, one recovery
every 28.6 m travelled, in an environment spanning an area of
approximately 54 m× 135 m, as shown in Fig. 2. In many of
these cases, the robot could successfully recover using one of
the hard-coded autonomous recovery behaviours; yet in 1605
cases (i.e., 28.7% of all cases) human help was required, as all
autonomous recoveries had failed to succeed. Fig. 3 presents
a breakdown of the cases where the robot sought help from
humans (e.g., staff, visitors or residents in the care home),
in the form of an ordered histogram. It shows the number of
requests occurring at each edge within the topological map
shown in Fig. 2; hence indicates the spatial distribution of the
problem areas. As seen in the figure, the edge where human
recovery was requested most is plotted as the leftmost bar
with a total of 146 recovery requests. Out of these 146 cases,
only in 19 cases, the robot received help. When the robot was

2http://wiki.ros.org/move base
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Fig. 2: Map of the care home, with superimposed topological map. The annotations indicate specific waypoints relevant for the robot’s task
and the areas in which video recording was permitted for further analysis in order to comply with local privacy regulations. The analysis
presented in this paper involves the navigation errors along all edges in this topological map.

not helped, it aborted its current task and failed the operation,
often requiring remote manual recovery by a technician.

Conclusion and Objectives: The conclusions drawn from
this study directly lead to our objectives in this paper:

1) Failures are spatially clustered
As Fig. 3 shows, 80% of all error cases are distributed
over only about 25 edges in our quite fine-grained
topological map (Fig. 2), indicating a strong dependency
of failures on location. Indeed, it was observed that the
robot repeatedly failed at the very same spot as it was
not taking advantage of the learning opportunities. In
this paper, this limitation shall be addressed by learning
suitable recovery strategies from few demonstrations
given by a helping human, to avoid making the same
mistake again and again.

2) Human help is rare and precious
Physical human assistance is a scarce resource. Overall,
out of the 1605 cases where the robot asked for help,
only in 257 (16%) it received help that allowed it to
continue its operation. Furthermore, the number of cases
where the robot was successfully helped by a human
varied significantly between edges. This evidences a
need to develop recovery models that are not bound to
specific locations, but to navigational situations. Hence,
another objective of this study is to correctly classify a
known navigational situation and to invoke the correct
recovery policy.

0 20 40 60 80 100 120 140

Edge Number

0

50

100

150

#
 r

e
c
o

v
e

ri
e

s

not helped

helped

Fig. 3: Edges in topological map requiring human recovery, ordered
with respect to the number of issued recovery actions

IV. GAUSSIAN PROCESSES FOR LEARNING LOCAL
RECOVERY POLICIES

In this work we describe a LbD framework3 that gives
a robot the ability to detect failures and recover from them
during navigation. During a navigation task, failures are man-
ifested in different ways (such as spinning in place or crashing
against an obstacle) and they may happen for different reasons
(e.g. local navigation can’t generate a plan or due to sensing
errors). In our context, we define a failure situation as the
situation in which the robot is not able to progress toward
the goal, because it is not moving or it is performing some
counterproductive behavior. Some failures are detected by the
underlining navigation system, whereas others may not. In
order to take into account all such situations independent from
the navigation system, we delegate the task of deciding and
signaling a failure situation to the humans.

Our local navigation framework makes use of a two-layer
cascaded learning approach, where a GP classification model is
trained to detect failure situations, and a GP regression model
is trained to learn local recovery trajectories. We present an
active learning approach, where the human operator presents
demonstrations when necessary, to incrementally teach the
robot how to handle failure situations. To begin our discussion,
we firstly present our overall navigation architecture, followed
by the methodology behind GPs, the features and the mod-
elling approach adopted in the experiments.

A. Overall Architecture

Fig. 4 shows the overall software architecture developed
in this study. The global navigation system4 extends the
move base package from the ROS navigation stack.

Global task planning is done using a conditional Petri net
planner (PNP) [29], which provides high level descriptions
of actions within a topological map of the environment. A
topological map is an undirected graph, where vertices stand
for possible waypoints that the robot can navigate to, and

3The source code will be available at https://github.com/LCAS
4The global navigation system is based on open-source software developed

during the STRANDS project [7]
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Fig. 4: General software architecture: white boxes indicate the global
navigation functionality, whereas the red ones implement our strategy
for local recovery policy generation.

the edges define the connections between waypoints. During
navigation, PNP issues goto commands to the topological
navigation node [26], which extracts the goal position and
sends that to move base 2D navigation node to compute
commanded velocities to drive the robot.

In order to deal with failure situations, PNP plan descrip-
tions are conditioned by execution rules, which provide a
mechanism for interrupting the navigation in case of failures.
For more details on Petri net plans, the reader is referred to
[29]. For the approach in this paper, it is sufficient to consider
PNP as a way to integrate exception handling and therefore
recovery into task planning. Our local recovery framework (red
nodes in Fig. 4) makes use of PNP’s conditioning property and
issues failure signals to override the operation of topological
navigation and move base. Specifically, failure classifier is
responsible for identifying a navigation failure situation, and
issuing a signal to PNP to demand a recovery action. Receiving
this, PNP interrupts the goto action and invokes the recovery
regressor to run a local recovery policy.

The failure classifier and the recovery regressor constitute
the two layers in our interactive LbD framework. Fig. 5 shows
the process through which the human supplies new failure
state observations and demonstrates recovery trajectories (blue
nodes) to get the robot to execute the learned recovery
policy (green node). The failure classifier is a binary GP
classification model trained with a labelled set of positive and
negative observations for failure states. Positive observations
represent the environmental context leading to the failure,
and are provided by the human operator, who interactively
signals for a new failure situation whenever (s)he observes a
navigation error. This signalling halts the global navigation and
the corresponding data is added to the training set, labelled
as a positive failure. Once the model is trained for failure
detection, the robot can autonomously detect situations that it
cannot handle properly, before they occur. When a failure is
detected, the human is prompted to confirm the correctness of
the detection. In case the human rejects the detected state as a
failure, a negative failure observation is added to the training

Fig. 5: Flowchart showing the human-in-the-loop approach for
collecting failure state observations and recovery demonstrations, as
well as recovery execution during goto actions

set, and the classification model is updated. This action also
resumes the global navigation plan.

In our setup, upon receiving a failure signal, the human
is prompted to assume control of the robot to demonstrate
how to recover from the failure situation. The demonstration
is used to train a GP regression model (recovery regressor),
to be used as the local recovery policy for failure situations.
By using a Bayesian approach we get a variance for the
predictions of the regression model. If the human verifies the
pertinence of the detection, this variance is used to evaluate
the goodness-of-fit for the regression model. In particular, we
prevent the execution of the recovery, in situations where the
prediction variance is too high, i.e. the model is overfitting the
data5. In such a case, the human is asked to provide a new
demonstration to improve model performance. If the variance
is smaller than a predefined threshold τ 6, the GP regression
model is used to execute the learned recovery policy.

B. Methodology

In this study, we are interested in 1) detecting a navigation
failure in an online fashion, and 2) learning the corresponding
local recovery plan for the specific failure situation, i.e. the
velocity commands to be issued on the robot depending on
the environmental context. For these purposes, we learn two
GPs, respectively for classification and regression [30].

GP is powerful non-parametric Bayesian technique that
describes prior distributions over functions. Formally: given
input space X , f : X 7→ R is a GP, if for every input
x = [x1, x2, . . . , xn]T , s.t. xi ∈ X , the output vector
f(x) = [f(x1), f(x2), . . . , f(xn)]T is normally distributed.
The function evaluation in GPs is drawn from a multi-variate
Gaussian distribution, fully specified by a zero mean vector µ
and a kernel matrix K, s.t. f ∼ N (µ,K).

5This situation can be encountered especially at the beginning of the trials,
when the model is trained with many features but has too few observations.

6In this study we empirically set τ = 0.03.
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For classification and regression models, two different ker-
nel choices were implemented. The failure classifier model
was trained using a linear covariance kernel:

k(x,x′) = x · x′ , (1)

which required short training time, and observed to be suffi-
cient for separating failure and non-failure states.

The recovery regression model was trained using a squared
exponential covariance kernel, which can model short and
medium term irregularities in input space [30]:

k (f(x), f(x′)) = exp

{
−|x− x′|2

2l2

}
, (2)

where l is a free hyper-parameter that defines the characteristic
length-scale of the process. The length-scale denotes the
minimum distance you have to move in the input space for the
function values to be automatically uncorrelated. The initial
length-scale of the kernel was set to 40 seconds, which is close
to the average duration for a typical demonstration. The final
length-scale was optimized using maximum likelihood esti-
mation during model selection. Due to the high-dimensional
input space in our task, automatic relevance determination
(ARD) [31] was turned off to reduce training time.

For a test instance x∗, the predictive distribution of the target
value, y∗, is given by

p(y∗|x∗,X,y, Θ̂) =

N (y∗|k>K−1y, k(x∗,x∗)− k>K−1k + σ2
n),

(3)

where kN×1 consists of elements of the kernel matrix [k]i =
k(x,xi), X and y are respectively the training observations
and the corresponding targets, σ2

n is the hyper-parameter
denoting noise variance, and Θ̂ denotes the estimated optimal
hyper-parameters related to the covariance function and the er-
ror variance, estimated by maximizing the marginal-likelihood:

p(y|X,Θ) = N (y|0,K). (4)

As mentioned in Section IV-A, the GP classifier is used
to detect failures. The model is trained with positive and
negative examples for failure states, where a positive obser-
vation indicates the existence of a genuine failure. We define
a failure state as the environmental context that leads to a
failure situation. In response to detected failure situations, we
train a GP regression model which will be used to generate the
recovery control actions. Since the failure states and recovery
control actions are diverse by nature, our framework requires a
rich spatio-temporal representation of the environment, which
involves information about the trajectory and obstacles around
the robot.

In order to have a good spatial representation and to
decouple the performance of the approach on the sensor, we
simulate virtual laser scan data surrounding the robot to denote
a sparse obstacle map, consisting of N points (See Fig. 6).
However, one can consider using directly the laser scan data
from the sensor. We infer the virtual laser scan data from the
local costmap provided by move base. In order to simulate
a 360◦ cover for laser scans (See Fig. 6 right), we cast N
rays in the local costmap, originating from the robot’s center

Fig. 6: Left: Local costmap around the robot. Right: Laser scan
simulated by raytracing 30 points within the local costmap.

pose, where the ith ray propagates in the direction of αi = iπ
N

radians, i ∈ {1, . . . , N}. Raytracing these rays’ intersection
with obstacles within a given radius, provides us with N
simulated laser scan points.

In order to capture the temporal structure of the environment
in failure situations, we use sliding windows covering a fixed
length of time to populate our feature set. In this way, our
features consist of laser scan data spanning the full 360◦ circle
around the robot, occurring inside a past window of data. Our
initial observations indicated that the recovery performance
under specific failure scenarios is affected by the size of the
scan window. Intuitively, a larger window size allows the
model to exploit the history of the trajectory, and is suitable
for longer demonstrations; whereas a smaller one makes the
models depend more on recent samples. The exact window
sizes are set empirically for the experimental scenarios in this
study, as mentioned in section V.

These spatio-temporal laser scan features are used to train
both the GP classification model –for failure detection– and
the GP regression model –to learn velocity commands that
drive the robot on the recovery trajectory.

V. EXPERIMENTAL VALIDATION

To evaluate the proposed technique for local navigation
recovery, we gathered data using the STRANDS mobile care
robot, SCITOS G5, (See Fig. 1) at Lincoln Centre for Au-
tonomous Systems (L-CAS).

A. Experimental Scenarios and Procedure

We evaluated our technique in two different navigation
scenarios, where the robot typically fails to reach the goal
using ROS move base. Fig. 7 illustrates these scenarios within
our experimental area (also see supplementary video).
• Door passing: This scenario is encountered when the

robot attempts to pass through a narrow passage between
two obstacles to reach a goal waypoint (See Fig. 7a).
We observed that the robot occasionally gets stuck as
it detects a non-existing potential collision, and cannot
evaluate the necessary navigation commands.

• Corner: In this scenario, the robot needs to turn a corner
in order to reach a goal, which is positioned very close
to the obstacle (See Fig. 7b). A failure happens when the
robot also gets close to the corner and ends up with a
continuous spinning motion on its place.
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(a) Door passing scenario (b) Corner scenario

Fig. 7: Map of the laboratory area used in the experiments and the
programmed waypoints for robot navigation.

In each scenario, the robot was programmed to continuously
loop between two waypoints wi and wj , until the experimenter
stopped the operation. As seen in Fig. 7, for the door passing
scenario, we tested our approach with two waypoint pairs,
w1 ↔ w2 and w3 ↔ w4; whereas for the corner scenario, we
only used a single pair of waypoints, w5 ↔ w6. The waypoints
were located around the aforementioned failure scenarios;
hence it was expected that the robot will occasionally fail its
global navigation plan.

The features used in the two scenarios are N = 30 laser
scan points collected over a temporal window of 10 samples
(i.e. 1 second) for scenario 1: door passing, and 20 samples
(i.e. 2 seconds) for the scenario 2: corner.

We designed two experiments to provide insight about
the performance of our framework. The first experiment is
designed to evaluate the performance of the failure classifier.
We collected failure observations while the robot is traversing
between the waypoint pairs. In doing so, we created different
training sets of size 5, 10, 20, and so on, increasing the number
of observations by 10 until we can no longer provide any new
positive observations. A GP classification model was trained
for each training set size, and the detection performance was
evaluated over 20 failure runs through the waypoints (10 in
each direction), where the robot was expected to encounter a
failure situation. We recorded the number of times a failure
is correctly detected out of these 20 situations. The runs, in
which the robot could successfully reach the goal waypoint
without facing a failure state, were restarted without logging
the data.

This experiment allowed us to evaluate the performance of
detection with respect to training set size. At the end of the
experiment, we selected the optimal training set size regarding
the precision of the classifier to correctly classify failure states,
and used this well-trained detector to evaluate the recovery
policies.

In the second experiment, we followed a similar procedure,
and trained the recovery model with different number of
demonstrations. The demonstrations were provided by the
human via remotely operating the robot using a gamepad;
however, without loss of generality, the same commands could
have been estimated via physically pushing the robot. Similar
to the first experiment, we trained the model with an increasing
number of demonstrations; this time, in increments of 5, i.e.
5, 10, 15 up to 35. The training size was limited to 35 in
this case due to increased training time. A GP regression

model is learned for each training set size; and the number of
successful recovery trajectories was recorded over 20 failure
runs through the waypoints (10 in each direction). A recovery
was considered successful if the robot was able to reach the
goal, starting from a failure state, only by using a sequence of
velocity commands from the learned recovery model. In this
evaluation scenario, we only focused on successful detection
cases to isolate the performance of the recovery regressor from
that of the failure classifier. In doing so, we discarded all the
runs, in which the failure was not detected successfully or the
robot didn’t encounter a failure at all. The discarded runs were
restarted and not counted in the total number of executed runs.

VI. RESULTS AND DISCUSSION

This section presents the results of our experimental study
to evaluate the performance of the failure detection and local
recovery control modules. In total, we trained and evaluated
three detection models and three recovery models (one for each
waypoint pair w1 ↔ w2, w3 ↔ w4 and w5 ↔ w6). During our
experiments we observed that failure detection and recovery
was needed in about 82% of the cases, as the robot wasn’t
able to reach the commanded goal.

A. Failure Detection Performance

In order to provide insight on model performance, we
investigated the sensitivity (i.e. the true positive rate) and
the precision of the classifier. The sensitivity reports the
percentage of correctly identified failures among all failures
that are encountered during the experimental trial, whereas
precision measures what percentage of the detected failures
are genuine.

Fig. 8 (a-b) shows the sensitivity for the door passing
and corner scenarios. In both, we observed that the detector
sensitivity is maximized when the dataset size approached 40-
50 observations. Practically, after that point, it was difficult to
collect more positive observations (true failure states) under
both scenarios, as most of the possible failure states had
already been learned. For this reason, in the door passing
scenario the number of training samples is capped at 50.

Fig. 8 (e-f) plots the distribution of positive and negative
samples in the dataset used for training the classifier under
both scenarios. For the door passing scenario, the number of
negative samples –denoting false positives– were consistently
low, indicating good overall precision of the model (See Fig.
8 (c)). On the other hand, in the corner scenario, the number
of negative observations grew significantly, eventually to out-
number the positive samples, as we continued the procedure.
This deteriorated the precision of the classifier as shown in
Fig. 8 (d).

For both scenarios, we selected the training set size to
optimize for sensitivity and precision. As a result, the number
of observations to train the optimal detector, which will be
used to detect failures when evaluating the recovery control
performance, was set to 50 for the door passing scenario,
whereas it was set to 40 for the corner case.
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Fig. 8: Evaluation of the failure classifier model and analysis of the dataset composition for the experimental scenarios.

B. Recovery Control Performance

In this section, we report our results to evaluate the ac-
curacy of the learned recovery actions. Similar to the case
of failure detection, we investigate the performance of our
recovery models with respect to the number of demonstrations
used to train the model. In order to assess performance, we
investigated the number of successful recovery trajectories.

Fig. 9 shows the percentage of successful recovery trials
on both scenarios as a function of the number of demonstra-
tions. Evidently, the recovery performance got better with the
number of demonstrations, reaching values over 90% for both
scenarios after the model is provided with 30 demonstrations.

Fig. 10 plots the trajectories recorded during our experi-
ments in the corner scenario for the human demonstrations,
as well as those generated by the machine learned recovery
policy. The figure illustrates that training only one detection
model, we were able to distinguish different failure cases. The
illustrated recovery trajectories indicate that a single regression
model was able to generalize the demonstrations applied by
the human to reproduce his/her operation under similar but not
identical failure situations.

VII. CONCLUSION AND OUTLOOK

In this work, we proposed a technique to generate local
policies for motion-level control recovery, in order to equip
robots with the ability to exploit demonstrations provided by
humans in long-term scenarios. We highlighted the relevance
of such an approach from the analysis of the data gathered
from long-term operation in a care home. We used a two-layer
cascaded LbD technique using GPs, and adopted an active
learning approach, where the system automatically evaluates
the relevance of failure states to already seen ones, and
demands new demonstrations when necessary.

Our technique works with real or simulated laser scan data
to extract the environmental context. Hence, it can be applied
to a range of robots with similar sensing capabilities, and

provides a platform-independent approach for human-in-the-
loop recovery generation for navigation.

We evaluated our approach over two different real-world
failure scenarios. Our experiments indicate the utility of the
technique to learn active local navigation recovery policies
from human demonstrations. However, our technique depends
on manually-set parameters for specific failure situations. Our
future work will focus on automated parameter selection to
generalize for scenario-dependent requirements. Additionally,
our active learning approach will be supplemented with an
automated decision procedure to select the necessary number
of training samples based on model precision and sensitivity
to avoid model degradation.

As future work, we intend to generalize our method to work
with multiple failure situations and provide a more general
framework, suitable for long-term deployment of robots in
human spaces. In doing so, we plan on extending the experi-
mental study to test with multiple human demonstrators. Ad-
ditionally, we plan to identify similar techniques and provide
a comparison with other methods.

Finally, in addition to the results we presented in this paper,
we collected preliminary data on another robotic platform,
MARRtino7, using a similar approach to learn how to push
aside an obstacle from the path that the robot is traversing.
Sample results are illustrated in the supplementary video. In
order to learn the trajectory, we used a GP regression model,
as described in this paper, while an image classifier was in
charge of recognizing the type of obstacle. Even though the
classifier is different than what we used in the current study,
we show that the framework is usable on various platforms and
that the regressor model is able to learn different navigation
behaviors not necessarily limited to failure recoveries.
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