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Abstract: In this work, a joint experimental and theoretical study on 5F-PB-22 (1-(5-

fluoropentyl)-8-quinolinyl ester-1H-indole-3-carboxylic acid) is reported. The molecular 

vibrations of 5F-PB-22 were investigated by Raman and SERS spectroscopies. In parallel, 

quantum chemical calculations based on density functional theory (DFT) were used to determine 

the geometrical and vibrational characteristics of the molecule with emphasis on the interaction 

and adsorption geometry of the molecule to the silver colloidal surface. The SERS spectrum of 

5F-PB-22 was recorded using a 532-nm laser line and hydroxylamine phosphate reduced silver 

colloid as SERS substrate after developing two-step aggregation procedures by studying the 

effect of NaCl on the Surface Plasmon Resonance. Raman and SERS spectra of 5F-PB-22 were 

assigned based on DFT calculations with the hybrid B3LYP exchange-correlation functional, 

coupled with the standard 3-21G basis set. The calculated molecular electrostatic potential 

(MEP) was used in conjunction with the SERS data to predict the adsorption geometry of the 

molecule on the silver surface. 

 

 

Keywords: SERS, 5F-PB-22, synthetic cannabinoids, DFT 

 

Introduction 
5F-PB-22 also known as 5F-QUPIC, is a quinolinyl carboxylate derivative belonging to the 

synthetic cannabinoids, but differs from the earlier generation naphthyl indole, AM-2201, by 

replacing the naphthalene group with an 8-hydroxyquinoline moiety. 5F-PB-22 has the chemical 

structure of 1-(5-fluoropentyl)-1H-indole-3-carboxylic acid 8-quinolinyl ester as shown in Figure 

1
 
and is a full agonist of the cannabinoid receptors

 [1]
.  It first appeared in 2013 and since then has 

been detected in products obtained from smoke shops, online vendors and retail outlets. Since 

May 2016, with the introduction of the Psychoactive Substances Act   the sale, distribution, 

imports and purchase of 5F-PB-22 is banned in the UK
 [2]

. 

The consumption of 5F-PB-22 has been linked to adverse effects including tachycardia, 

myocardial infarction, convulsions and seizures and it has been implicated in human deaths. It 

has also been associated with driving impairment cases 
[3-4]

. Thus there is a need for sensitive 
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methods to detect 5F-PB-22 at the low concentrations (e.g. ≤ 10
-7 

M)  found in biological fluids 
[5]

. 

Since the first reported Surface-enhanced Raman spectroscopy (SERS) of pyridine molecules on 

a silver electrode by Fleischmann et al. in 1974 
[6]

,
 
silver nanoparticles (AgNPs) have become the 

most commonly used nanostructures for SERS owing to their large enhancement factors with 

single-molecule detection being successfully achieved on colloidal nanoparticles 
[7]

.
 
Colloidal 

AgNP can be prepared by different methods, including chemical reduction, photo-reduction, and 

laser ablation.
 
Chemical reduction is the most frequently applied method for the preparation of 

AgNPs as stable, colloidal dispersions in water or organic solvents. Commonly used reductants 

are borohydride, citrate, ascorbate, hydroxylamine and elemental hydrogen. The reduction of 

silver ions (Ag+) in aqueous solution by hydroxylamine generally yields silver colloids with 

different properties (particle size, optical properties, stability, etc) depending on the 

hydroxylamine salt, the method of preparation and the stabilizing agent used. A simple, fast 

method has been proposed recently by fast injection of silver ions into alkaline hydroxylamine 

phosphate which produces a stable silver colloid with a shelf life greater than 1 year and a 

particle size of approximately 20 nm and narrow size distribution
 [8-10]

.
 
 

It is now generally accepted that the enhancement mechanisms underpinning the SERS effect are 

either electromagnetic or chemical in origin. The former arises from the optical excitation of 

surface plasmon resonances (SPRs) at the surface of the metal, which leads to a significant 

increase in the electromagnetic field strength. The latter is due to changes in the electronic 

structure of molecule adsorbed on the metal surface, which selectively enhances some Raman 

peaks. Charge transfer (CT) between the molecule and the SERS-active substrate is typically 

responsible for the chemical enhancement. Of these contributions to the overall enhancement, 

SPR is mostly a property of the metal, whereas charge-transfer resonance is a property of the 

combined metal-molecular system 
[11]

.
 
Nonetheless, the greatest SERS enhancement occurs for 

molecules adsorbed at electromagnetic hot spots; the gap region between closely spaced silver 

(or gold) nanoparticles where SPRs are coupled significantly increasing the Local Field Intensity 

Enhancement Factor (LFIEF). Aggregation of colloidal AgNPs is therefore required to maximise 

the LFIEF and the SERS response. 

Nanoparticle aggregates are of interest since they present many ‘hot spots’ and produce intense 

SERS 
[12]

. Chen et al. observed increases in SERS intensity with the degree of AgNP 

aggregation, using a gas-evaporation method. Variation in the observed enhancement of the Ag 

aggregated films was attributable to the density of particles and the degree of its “surface 

roughness”
 [13]

.
 
SERS of a set of structurally similar synthetic cannabinoids has been obtained by 

mixing the analyte with colloidal gold nanoparticles and alkali or alkaline earth salts. The salts 

produced an aggregation of the nanoparticles with a resultant spectral enhancement due to the 

formation of spectral hotspots with enhanced field effects within the aggregate 
[14]

.
 
 

Mabbott et al observed a color change in AgNPs when they added chloride to generate 

aggregation to get SERS for eighty different illicit drugs. Their observation is consistent with 

aggregation as the nanoparticle solution displays a bathochromic shift 
[15]

. Doctor et al.  observed 

the ability of different chloride salts, MgCl2, CaCl2, KCl, and NaCl, to generate SERS of 

benzodiazepines via aggregation for colloidal gold nanoparticles. However, they found that each 
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aggregating agent produced different levels of signal enhancement. An important reason for 

using aggregation agents is that most molecules are not able to generate complete self-

aggregation, or they have a limited contribution to the aggregation process when present at low 

concentrations 
[16]

. Which may explain the absence of a general aggregating agent for different 

compounds. 

It is noteworthy, that the general SERS procedures for different molecules (synthetic 

cannabinoids in particular) has been done by adding a specific volume of aggregating agent 

(≤critical coagulation concentration) to the colloidal nanoparticle followed by a small volume of 

the analyte (in general at very low concentration) with respect to mixing and equilibrium time in 

each step
 [14-17]

. To the best of our knowledge, none of the published reports about SERS of 

synthetic cannabinoids has considered the effect of the aggregating agent on SPR, the self-

aggregation of the target molecules, using a two-step aggregation procedure, and the orientation 

of the molecule on the surface of the nanoparticles. A direct relation between aggregation and 

SERS enhancement, which is empirically based, can facilitate the identification of the molecules 

through interpreting vibrational modes in the resulting spectra using computational methods such 

as density functional theory (DFT) or molecular electrostatic potential map (MEP).  

There is a lack of analytical research information available on 5F-PB-22 since it is relatively new 

to the market and consequently has not yet been fully characterized. DFT has recently become an 

efficient tool for the prediction of molecular structure, vibrational wavenumbers, IR and Raman 

activities of any compound of interest. These methods predict relatively accurate molecular 

structure and vibrational spectra with moderate computational effort. Comparisons of the results 

from DFT theory with the results of experiments have shown that the methods using Becke’s 

theory parameter hybrid functional (B3) with correlation functions such as the one proposed by 

Lee, Yang, and Parr (LYP) are most promising in providing correct vibrational wavenumber 

assignments 
[18-19]

.
  

In the present study, SERS and Raman spectra of 5F-PB-22 were assigned using DFT 

calculations based on the hybrid B3LYP exchange-correlation functional, coupled with the 

standard 3-21G basis set. A modified SERS procedure has been developed by adopting a two-

step aggregation using NaCl and the adsorption geometry of the 5F-PB-22 molecule on the 

colloidal silver surface was deduced from the SERS selection rules and the analysis of the 

calculated molecular electrostatic potential (MEP).
 

Experimental  
 
Chemicals and materials  

5F-PB-22 was purchased from the internet (Ravebeans.com), in September 2014, the label 

claimed that the purchased compound is GC/MS grade and has purity 99.5%, Identity and purity 

of the purchased compound were confirmed before use. Silver nitrate (99.9999%, metals basis, 

Sigma-Aldrich), hydroxylamine phosphate ((NH2OH)3 · H3PO4, 97%, Aldrich), sodium chloride 

(>99.5%, BDH), sodium hydroxide (>97%, Fisher Scientific), 18 MΩ deionised water was used 

for preparation of solutions. All other chemicals used were obtained from Sigma-Aldrich (St. 

Louis, MO) and used without further purification. 
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Preparation of hydroxylamine phosphate silver colloid and SERS 

Hydroxylamine phosphate silver nanoparticles (HPAg) were prepared following the procedure 

outlined by White and Hjortkjaer 
[10]

.
 
An aqueous solution of hydroxylamine phosphate (100 µl; 

0.077 M) was added to an aqueous solution of sodium hydroxide (4.5 ml; 3.33 × 10
-3

 M) in a 7.5 

ml polystyrene vial (Sterelin), capped and inverted slowly three times. After 30 s, an aqueous 

solution of silver nitrate volume (500 µl; 10
-2

 M) was introduced rapidly into the mixture in less 

than 0.5 s by using a 1 ml Eppendorf pipette and a 1 ml disposable tip (Fisherbrand) held 1 cm 

above the liquid surface. The capped vial was then inverted very slowly through 180° and back 

again 15 times in 60s. 

The 5F-PB-22 samples for UV-Vis and Raman analysis were prepared by spiking 5F-PB-22 into 

0.480 mL of colloid to have a concentration in the range 1.07× 10
-3

 to 1.06× 10
-7

 M without 

changing the total volume (0.5 mL) or the concentration of the nanoparticles as illustrated in 

Table S1 (Supporting Information). Samples for studying the effect of NaCl concentration on the 

SPR were in the range from 0-100 mM and are shown in Table S2 (Supporting Information). 

Instrumentation  

Identification of 5F-PB-22 was done using the mid-infrared spectrum of 5F-PB-22 powder 

recorded directly on a Golden Gate Attenuated Total-internal Reflection (ATR) accessory 

(Specac) housed in a Perkin-Elmer Spectrum 100 Fourier Transform Infrared Spectrometer 

(FTIR) equipped with a DTGS detector. Spectra were recorded at a scan speed of 0.2 cm/s, 64 

scans, and resolution of 4 cm
-1

. The obtained spectra were compared with the 5F-PB-22 

spectrum in the SWG-Drug Library (Version 4). 

Further confirmation of the identity and purity was done by direct infusion of a 5F-PB-22 

methanol solution into a high-resolution, accurate-mass (HR/AM) Thermo Scientific™ 

Exactive™ Plus Orbitrap Mass Spectrometer. Fragmentation pattern was obtained using a scan 

range 50-500 m/z, resolution 70.000, positive polarity, a micro scan of 1, 1e
6
 of AGC target, 3.80 

kV spray voltage. The fragmentation of the purchased compound correlated to the fragmentation 

pattern of 5F-PB-22 to confirm the identity. 

UV/visible spectroscopy absorption spectra of the colloid were obtained on a Shimadzu 

UV/visible 1800 PC spectrophotometer over a wavelength range of 300–600 nm or 250-900 nm 

with a sampling interval of 0.5 nm (fast scan). UV/visible spectra of colloidal solutions were 

obtained by pipetting 60 µl of the colloid into 4 ml disposable polystyrene cuvettes (Sarstedt) 

and adding 3 ml of water (characterization of the prepared nanoparticles). SERS-samples were 

diluted by the ratio 1:10 with water in Quartz cuvettes for UV-Vis measurements. Particle size 

and Zeta potential measurements were performed with a Malvern Zetasizer Nano ZS (Malvern, 

Herrenberg, Germany) equipped with a 633 nm He-Ne laser and operating at an angle of 173º. 

The software used to collect and analyze data was the Dispersion Technology software version 

6.01 from Malvern. 500 µl of sample was pipetted into a single-use polystyrene cuvette (Fisher 

Emergo, Landsmeer, The Netherlands) with a pathlength of 10 mm. The measurements were 

made at the position of 4.65 mm from the cuvette wall with an automatic attenuator and at a 

controlled temperature of 25 ºC. For each colloid batch, 15 runs of 10s were performed. The size 
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average and polydispersity index (PDI) were obtained from an auto-correction function using the 

“general purpose mode” for all batches.  

 Nanoparticle tracking analysis (NTA) was performed with a Nanosight LM20 (NanoSight, 

Amesbury, United Kingdom), equipped with a sample chamber with 532 nm green laser and a 

Viton fluoroelastomer O-ring. The sample chamber was filled with colloid using sterile syringes 

(BD Discarded, New Jersey, USA). All the measurements were performed at room temperature. 

The software used for capturing and analyzing the data was the NTA 2.0 build 127. The sample 

was measured for 1 minute with a manual shutter and gain adjustments. 

Raman and SERS spectra were recorded using a LABRAM 300 (Horiba Jobin Yvon) with an 

excitation line of 532 nm. The instrument was equipped with an Olympus microscope BX41, 

which was used to collect Raman spectra from the powder using a 50×, 0.50 NA Leica objective 

with a long working distance that focused the laser onto the surface of the powder. A sample 

holder was employed for glass cuvettes (0.5 cm path length), used to analyse liquid samples. In 

all the experiments, an output power of 50mW, 5 s of exposure time, and 2 accumulations were 

used. SERS samples were prepared as described previously for UV-Vis with aggregation 

induced by different concentrations of NaCl (10-100 mM) added before and/or after the addition 

of 5F-PB-22 to the HPAg colloid. 

Computational details 

The molecular geometry optimization, molecular electrostatic potential (MEP) and vibrational 

spectra calculations were performed with the Gaussian9w package using DFT methods with the 

B3LYP hybrid exchange-correlation functional and split valence plus polarization 3-21G basis 

sets to predict the Raman spectra of 5F-PB-22. No symmetry restriction was applied during 

geometry optimization. The vibrational wavenumbers were computed at the optimized geometry 

to ensure that no imaginary wavenumbers were obtained confirming that it corresponds to a local 

minimum on the potential-energy surface. The computed wavenumbers have been scaled by 

0.965 as proposed by NIST Computational Chemistry Comparison and Benchmark Database.  

Mode assignment is based on Gauss View 5 and VEDA as well as a direct comparison between 

the experimental and calculated spectra by considering both the wavenumber sequence and 

intensity pattern
 [20-22]

.
 

 
Results and discussion 
 
Confirmation of identity and purity of 5F-PB-22 

FTIR results show that the unique collection of absorption bands in the spectrum of purchased 

compound was consistent with the 5F-PB-22 chemical structures and in line with the 5F-PB-22 

spectrum in the SWG Drug Library (Version 4) as shown in Fig S1 (Supporting Information).  

The identification and the purity of the purchased compound was further confirmed using high-

resolution, accurate-mass (HR/AM) mass spectrometry. The EI fragmentation peaks for the 

purchased compound are reported in Fig S2 (Supporting Information) as m/z (% abundance) for 

peaks ≥1% abundance. The predicted fragmentation pattern of 5F-PB-22 shown in Fig S3 
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(Supporting Information) is consistent with the experimental results, where all the fragments 

(m/z) with ≥1% abundance of the purchased compound are related to 5F-PB-22 structure. Thus, 

no further tests were done, and the identity of the purchased compound was confirmed as 5F-PB-

22 with a good purity determined by the fragment patterns and relative abundances to the main 

ion.  

Characterisation of phosphate-capped silver nanoparticles  

The hydroxylamine phosphate silver nanoparticles (HPAg) used in this study were prepared 

adopting a previously reported procedure for reproducible preparation of silver colloid with 

strong SERS properties by the reduction of silver nitrate with hydroxylamine phosphate 
[10]

.
 
10 

batches were prepared and characterized by UV/Vis spectroscopy, dynamic light scattering 

(DLS), nanoparticle tracking analysis (NTA) and zeta potential as shown in Figure 2. The pH of 

the 24-hour aged colloid was 7.6±0.2 and the resultant nanoparticles ranged in size from 10 to 

100 nm with an average size (Z-ave) of 38.50 nm with a polydispersity index (PDI) of 0.146, and 

a zeta potential of -36±1.5 mV. The absorption spectra of all prepared samples showed a surface 

plasmon peak at a wavelength of 396.3±1.76 nm with absorbance 0.281±0.012 and a bandwidth 

at half height of 56.6±4.14 nm. NTA results give a particle size of 35 nm with a concentration of 

9.18×10
11

 particle/ml This is consistent with the spherical cluster approximation 
[23]

,
 
assuming 

that, the prepared nanoparticles are spherical 
[10]

 with an average size of 38.50 nm (zeta sizer), 

the total number of nanoparticles was 4.056×10
11 

per mL, the calculated concentration of the 

nanoparticles found = 6.73 x 10
-7

 M (see calculation of nanoparticle concentration, Supporting 

Information). The surface plasmon peak wavelength, absorbance, and bandwidth are in good 

agreement with White & Hjortkjaer, with a small difference in the nanoparticle size which may 

be related to the speed of injection of the silver nitrate solution into the sodium hydroxide-

hydroxylamine mixture during the manual preparation of the colloid.  A zeta potential greater 

than -30 mV, indicates a stable colloid and is in agreement with the results proposed by White & 

Hjortkjaer who found, that HPAg colloids were stable for more than a year.  

The effect of different concentrations of sodium chloride (0-100 mM) on the surface plasmon 

peak of the prepared HPAg was studied. 

Figure 3 shows the UV-Vis absorbance spectra changes of HPAg along with increasing the 

concentration of NaCl from 0 mM to 100 mM. The absorbance at 396.3 nm decreases with the 

increase of NaCl concentration. The aggregation of HPAg is indicated by a decrease in the 

absorption of 396.3 nm band and the appearance of a second band in the region 700-900 nm 

when using NaCl at a concentration of 20 mM. The small red shift of the absorption maximum 

with an increase in ionic strength (> 10 mM NaCl) suggests increased particle size and 

aggregation tendency, which may result from forming larger clusters of nanoparticles, according 

to the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory 
[24]

. The DLVO theory 

represents the interaction potential as a superposition of van der Waals and electric double-layer 

forces and explains why colloids are stable at low salt levels, and unstable at higher salt levels. 

According to DLVO theory and as observed in the UV-Vis results, at low NaCl levels (≤ 10 

mM), the repulsive double-layer forces dominate and lead to slow aggregation. At higher NaCl 

levels (≥20 mM), double-layer forces are screened, and the attractive van der Waals forces 

induce fast aggregation in which cluster-cluster interactions dominate resulting from the partial 
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removal of surface charges 
[25]

. NaCl concentrations of 10, 20, 40 and 100 mM were chosen for 

further investigation. 

 

Normal Raman, SERS, and DFT calculation 

Raman spectrum of 5F-PB-22 was obtained at excitation wavelength of 532 nm. Figure 4 shows 

that the obtained spectrum was not affected by background fluorescence emission across the 

spectral range (200-4000 cm
-1

). 

Figure 5 illustrates that at concentrations < 7.4× 10
-4

 M of 5F-PB-22, the only remarkable peak 

observed in normal Raman spectra is at ~ 1035 cm
-1

, which can be assigned to the Raman C – O 

stretching mode of methanol
 [27]

.
  

 SERS spectra were obtained at a concentration of 5F-PB-22 from 7.4× 10
-4

 M to 1.076× 10
-3

 M 

with the most intense peaks at 1363.8 cm
-1

, followed by peaks at 1565.4, 726.1 and 497.4 cm
-1 

respectively.  

The onset of SERS (when the concentration of 5F-PB-22 reached a 7.4× 10
-4

 M) indicates some 

changes in the solution. UV-visible spectra (Figure 6) of the SERS samples show a peak in the 

region 700-900 nm, along with decreasing intensity of the SPR band of HPAg at 396.3 nm and a 

small red shift. The red shift of 396.3 nm peak as 5F-PB-22 up to 6.36× 10
-4

 M may be explained 

according to Mie theory by the extinction cross section changing by coating the nanoparticles 

with 5F-PB-22
[28-30]

. However, a further increase in [5F-PB-22] brings the nanoparticles close 

enough to form dimers or higher aggregates shown by the appearance of the peak at 750 nm. 

Spectral changes due to aggregation are supported by the decrease of zeta potential value from -

36mV of pure nanoparticles to -18 and -2.08 mV when the concentration of 5F-PB-22 reaches 

6.36×10-4 M and 7.4×10-4 M respectively. The change in zeta potential value happens as the 

ratio of 5F-PB-22 molecules to the total number of nanoparticle-surface atoms reaches a value of 

approximately 2. This explains the weak effect of lower concentration (< 6.36×10-4) on zeta 

potential and SPR as there are insufficient molecules to cover all the nanoparticle-surface atoms 

(see, Calculation of 5F-PB-22 molecules number coating nanoparticle-surface atoms, Supporting 

Information).   

Commingling Raman and UV-Vis results may suggest that the aggregation of the nanoparticles 

and the onset of SERS are closely parallel. As can be observed in Figure 6, the SPR is shifted 

and becomes closer to the laser line (532 nm), in addition to the onset of SERS and the 

appearance of the peak in the range of 700-900 nm appear nearly concurrently which appears to 

drive the activation of SERS in the (HPAg,5F-PB-22) system. It was noticeable that the SERS 

activity appears when the absorbance declines from its maximum value to a critical value after 

which a small addition of 5F-PB-22 is enough to generate SERS. The absorbance decline at this 

point is comparable to the effect of adding NaCl in a concentration of 10 mM (Figure 3) and 
suggests that 10mM NaCl can be used as a trigger for aggregation as well as using NaCl 

concentrations in the range 20-100 mM to generate complete aggregation.  

A set of experiments, wherein aggregation was applied before and after the addition of 5F-PB-22 

to the nanoparticles solutions were performed to examine the possibility of observing SERS 

spectra at concentrations below those at which 5F-PB-22 itself appears to trigger the SERS as 

described previously. 
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 Figure 7 shows that, when a single spike was used to increase [5F-PB-22] to 1.06× 10
-7

 M, 

SERS was not observable however, following addition of 100 mM NaCl, a strong mode was 

immediately observed to appear at around 236.1 cm
-1

.   When NaCl was added before 5F-PB-22 

a concentration > 20 mM yielded a strong mode at 236.1 cm
-1

 that masks the 5F-PB-22 

spectrum. As little as 1.06× 10
-7

 M 5F-PB-22 is not sufficient to drive self-aggregation of 

nanoparticles and using NaCl for aggregation at a concentration higher than 20 mM has not been 

useful for SERS. However, the addition of a lower concentration of NaCl at10mM, followed by 

1.06× 10
-7

M 5F-PB-22, and finished with [NaCl] at either 20 or 40 mM yielded the most intense 

SERS. Using 10 mM NaCl and finished with 20 mM NaCl appears to give the strongest 5F-PB-

22 SERS and the weakest AgCl SERS. A similar result is obtained at 2.12×10
-8

 M 5F-PB-22. 

The previous results could be explained by the fact that the appropriate aggregation of the 

nanoparticles will form nano-junctions between two plasmonic surfaces, which would generate 

SERS “hotspots”
 [31]

. However, these “hotspots” usually exist at the nanogaps between the 

nanoparticles with rough surfaces and a random arrangement. Therefore, nanogaps are the key to 

obtaining strong SERS. The nanogaps seem to be more uniform when the aggregation is 

triggered with a small quantity of sodium chloride, rather than excessive aggregation induced by 

a high concentration of sodium chloride. The changes in UV-Vis properties of the nanoparticles 

indicate the formation of aggregates to form nanogaps and “hotspots” giving much stronger 

SERS signals
 [32]

.
 
Experimentally, it was found that the SERS of 5F-PB-22 is negatively 

correlated with the formation of extended aggregates as silver colloid slowly precipitates due to 

the formation of large clusters of silver particles. With gradual precipitation of larger clusters, 

fewer clusters are available for SERS, which explains the decrease in the SERS observed when 

collecting Raman spectra after 2 hours. In contrast to Figure 6 where absorbance declines with 

increasing concentration of 5F-PB-22, Figure 8 shows an increase in absorbance when using 

NaCl before the addition of 5F-PB-22 to the colloid. This result may suggest a role of NaCl in 

re-orientation of the 5F-PB-22 molecule in a way which helps the adsorption of the molecule on 

the surface of nanoparticles. 

 To better understand the SERS activity of 5F-PB-22 and the effect of low concentration of NaCl 

on triggering SERS, the optimized geometrical parameters, Raman activity, molecular 

electrostatic potential (MEP) and vibrational spectra were calculated for 5F-PB-22. In addition, 

spectra of 8-hydroxyquinoline and 1-(5-fluoropentyl)-1H-indole-3-carboxylic acid which result 

from the dissociation of 5F-PB-22 as seen in Fig S4 (Supporting Information) were calculated 

using the DFT/ B3LYP (3-21G). The optimized geometrical structure of 5F-PB-22 obtained by 

the bond length and bond angle values is given in Table 1. It is important to mention that the 

indole ring and quinolinyl ring are located in perpendicular levels as shown in Figure 9.  

DFT results show that the optimized geometrical structure of 5F-PB-22 has C1 point group 

symmetry with 141 fundamental modes of vibrations (3N-6) distributed into 48 stretching 

modes, 47 bending modes, 46 torsion modes without observing any imaginary wavenumbers. 

The experimental and calculated wavenumbers are scaled by the factor 0.965 and summarized in 

Table 2. 

Figure 10 shows Raman, SERS and DFT-calculated spectra of 5F-PB-22, as well as DFT 

calculated spectra of 8-hydroxyquinoline and 1-(5-Fluoropentyl)-1H-indole-3-carboxylic acid. 

SERS spectra of 5F-PB-22 collected with and without the addition of NaCl show that NaCl 

produces some spectral shifts with substantial re-distribution of mode intensities which might 
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explain how NaCl promotes the orientation. New modes appear at around 1716, 707.3, 1013, and 

1529 cm
-1

, as well as changes in the relative intensities of the modes at 770, 1096 and 1339 cm
-1

, 

taking into account that the mode at 236 cm
-1

 is associated with NaCl and is dependent on the 

presence of 5F-PB-22. 

DFT-calculated spectrum of 8-hydroxyquinoline shows a very strong mode at around 1337 cm
-1

, 

which appears as a strong mode at 1332 cm
-1

 in the calculated spectrum of 5F-PB-22 and in the 

normal Raman spectrum. However, this mode appears as a very weak mode at 1339 cm
-1

 in the 

SERS spectrum. The medium modes at 1535 and 1044 cm
-1

 in the calculated 8-hydroxyquinoline 

spectrum are shifted to 1446 and 1041 cm
-1

 in the calculated spectrum of 5F-PB-22 and its 

normal Raman spectrum, but are absent in the SERS spectrum. These three modes are assigned 

to CC stretching modes in the quinoline ring. Similar results were observed for the modes at 582, 

1411, 1440, and 1615 cm
-1

 which all are assigned to the contribution of the quinolinyl moiety in 

the Raman spectrum of 5F-PB-22. Previous results suggest that the 8-hydroxyquinoline 

contribution in SERS spectra is very weak. 

DFT-calculated spectrum of 1-(5-fluoropentyl)-1H-indole-3-carboxylic acid shows a strong 

mode at around 1362 cm
-1

, which appeared as a medium mode at 1361 cm
-1

 in the calculated 

spectrum of 5F-PB-22, and as a very strong mode at 1362 cm
-1

 in the SERS spectrum. 

The very strong mode at 1698 cm
-1

 is assigned to CO stretching in the calculated spectrum, 

shifted to 1718 cm
-1

 in the calculated spectrum of 5F-PB-22 and appeared as a medium band in 

SERS and disappeared in the spectrum of 5F-PB-22 driven by self-aggregation without NaCl. 

Similar findings were observed for the modes at around 1011, 769, 723, 1562 cm
-1 

in the SERS 

spectrum (Figure 10), which are all assigned to the contribution of 1-(5-fluoropentyl)-1H-indole-

3-carboxylic moiety in the SERS spectrum. 

The previous discussion suggests that the contribution of quinolinyl moiety in SERS spectrum is 

weak and the main features of the SERS spectrum are generated mainly from 1-(5-fluoropentyl)-

1H-indole-3-carboxylic moiety. Theoretically, the interaction of 5F-PB-22 with the silver surface 

can be established through the electron pairs of the O and N, as well as through the � −electrons 

of the rings. The adsorption of 5F-PB-22 to the silver surface is deduced based on the molecular 

electrostatic potential map and several marker bands as discussed above. Figure 11 shows the 

calculated 3D electrostatic potential contour map of 5F-PB-22 in atomic units with the electron 

density isosurface being 0.02 a.u. According to the SERS surface-selection rules, the normal 

modes, with a change in polarizability component perpendicular to the surface, are enhanced. As 

seen in Figure 11 the highest electron density is located on oxygen atoms, thus the molecule can 

interact through this group (CO) with the silver surface. Considering previous discussion, the 

quinolinyl moiety appears to lie in a preponderant parallel orientation to the silver surface. The 

intense Raman bands at 1332 cm
-1

, assigned to the quinoline ring, are present only as a very 

weak band at 1339 cm
-1 

in the SERS spectrum. Also, the bands due to CC stretching vibrations 

from quinolinyl moiety are absent. The very strong intensity of the NC stretching band (1362 cm
-

1
), indicate that this group lies in the proximity of the silver surface. Also, intense bands in the 

SERS spectrum are observed at 1011, 769, 723, 1562 cm
-1

 pointing to the adsorption of the 5F-

PB-22 molecule through the O atom to the silver surface. 

Previous discussion suggests that 5F-PB-22 has potential to drive nanoparticle-nanoparticle 

interaction via intermolecular forces (e.g via H-bonding) at a concentration of 10
-5

 M, however at 

lower concentration, NaCl is needed to promote the aggregation, where Cl
-
 will associate with 
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the nanoparticle surfaces, possibly displacing some of the capping agent (phosphate) and when 

5F-PB-22 is added to this solution will adsorb onto the nanoparticle surface and reduces the 

repulsive forces between the nanoparticles  promoting a limited aggregation. Subsequent 

addition of NaCl can cause the entrapment of 5F-PB-22 molecules in the junction between the 

particles “hot spot” which will produce the largest SERS signal. If the initial concentration of 

NaCl is high large aggregates will form with their surfaces saturated  by Cl
-
 which  prevents 5F-

PB-22 from adsorption onto the surface and hence  prevents SERS.  

Conclusions 
 
The results demonstrate that, in 5F-PB-22 SERS experiments, it is important to optimise NaCl 

concentration and the SERS procedure itself in order to obtain intense SERS using phosphate-

capped silver nanoparticles. It was found that sodium chloride affects the SPR and, consequently 

the SERS signal, when it is used to promote a limited aggregation prior to adding the analyte. 

The findings show that further aggregation after adding the analyte is another crucial factor to 

obtain intense SERS. This work shows the effect of NaCl, at low concentration, on local surface 

plasmon resonance and the benefit of using a two-step aggregation process to produce high 

intensity SERS. It was found that 10mM NaCl can be used as a trigger for aggregation before 

adding 5F-PB-22 where complete aggregation could be achieved easily using 20-100 mM.  It 

was shown that the optimized geometrical structure of 5F-PB-22 (DFT/B3LYP/3-21G) has C1 

point group symmetry with 141 fundamental modes of vibration that were used for interpretation 

of the SERS spectrum. The calculated 3D electrostatic potential contour map shows the highest 

electron density located on the oxygen atom of the carbonyl group. This result combined with the 

SERS selection rules   provides an orientation of the 5F-PB-22 molecule on the nanoparticle 

surface. The quinolinyl moiety in 5F-PB-22 lies in a preponderant parallel orientation to the 

silver surface with a poor contribution to the SERS spectrum which is generated mainly from the 

1-(5-fluoropentyl)-1H-indole-3-carboxylic moiety and the carbonyl group 
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Table 1; Optimized geometrical of 5F-PB-22 obtained by B3LYP/3-21G, density functional 

theory calculations 
Bond Angle  Value (Ǻ) Bond length Value (Ǻ) 
C2-C1-C5 108.5061 C1-C2  1.4019 

C2-C1-C15  125.7728 C1-C5 1.374 

C5-C1-C15 125.7211 C1-C15 1.5399 

C1-C2-C3 107.9753 C2-C3 1.3623 

C1-C2-C14 130.0035  C2-C14 1.391  

C3-N4-C6  126.4286  C3-N4 1.4583 

C2-C3-N4  107.0516  C3-C11 1.39  

C5-N4-C6 126.5466  N4-C5 1.3495 

C1-C5-N4 109.4423  N4-C6 1.07 

C1-C5-H28  125.2719  C5-H28 1.47 

N4-C5-H28 125.2858  C6-C7 1.5401 
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N4-C6-C7 109.4759  C6-H29 1.07 

N4-C6-H29 109.4922 C6-H30 1.07 

N4-C6-H30 109.4479  C7-C8 1.5401 

C1-C15-O16 119.989 C10-F49 1.35 

C1-C15-O17 120.0088  C15-O16  1.43 

O16-C15-O17 120.0022  C15-O17 1.2585 

C18-C22-N26 120.4033  O16-C18 1.4298 

C23-C22-N26 120.1628  C18-20 1.3576 

D(15,16,18,22) 89.7815  C9-C10 1.5401 

D(1,2,14,13)  -0.0466  C18-C22 1.3998 

D(1,2,14,42)  -0.0499  C22-N26 1.3418 

D(3,2,14,13)  179.9504  C19-C21 1.4052 

D(2,3,4,5)  0.0159  C19-H43 1.07 

D(2,3,4,6)  -179.9802  C20-H44 1.07 

D(11,3,4,5)  -179.9897  C21-C23 1.3991 

D(11,3,4,6)  0.0142  C21-H45 1.07 

D(16,18,20,44) -0.1105  C22-C23 1.3935 

D(22,18,20,19) -0.0969  C23-C24 1.3934 

D(22,18,20,44) 179.9043  C24-C25 1.3515 

D(16,18,22,23)  -179.8674  N26-C27 1.3015 

 

 

 

 

 

 

Table. 2 Experimental vibrational observed and calculated wavenumbers, Raman activity and 

possible vibrational assignment of 5F-PB-22 
Calculated at B3LYP/3-

21G 

Experimental Possible assignment 

scaled  Activity  ∆Raman cm-1 SERS 

239.0 1.0187 235.7  - C3C11C12C13 TORS+ N4C2C11C3 OUT 

OF PLANE 

311 1.8813 310.1  - C10C9C8 BEND+ C8C7C6 BEND 

+N4C3C11 BEND+ F49C10C9 BEND 

413 1.3161 411.9 - C15C1 stretching + O17C15O16 BEND+ 

N4C3C11 BEND 

437 5.5993 436.4 - C27N26C22C18 TORS+ C25C27N26C22 

TORS 

455 4.742 - - 
C22C18O16 BEND+ N4C2C11C3 OUT 

471 2.9910  - C27N26C22 BEND+ C22C18O16 

BEND+C23C21C19 BEND 

496 6.3782 495.9 495.9 
Ƴ C=C-C (QUIN) 

541 9.374 544.6 455.6 C3C11C12 Scissoring+ C6N4C5 Scissoring 

558 11.8321 556.0 556 C3C11C12 IN-PLANE BEND+ 

C19C20C18 BEND 

583 6.8591 580.0 580 C3C11C12C13 TORS+C23C21C19C20 

TORS 

634 3.3228 631.8 631.8 C13C12C11 BEND 
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693 26.9256 706.1 709 C24C25C27 TORS 

783 31.42 773.3 770 H45C21C23C22 TORS 

848 2.4297 850.5 849.1 H28C5C1C2 TORS 

875 1.095 875.0 - N26C18C23C22 OUT-OF-PLANE  

936 53.5961 

932.0 - O16C15 STRE+O17C15O17 BEND+ 

N26C18C23C22 OUT OF PLANE+ 

C22C20C16C18 OUT OF PLANE+ 

C22C20O16C16 OUT 

1005 4.8791 1013 1013.5 H41C13C14C2 TORS+ H42C14C13C12 

TORS 

1041 12.1966  1038.7 - H44C20C19 BEND 

1076 38.4476 1073.6 - C24C25C27 BEND 

1092.8 22.8317 1090.0 1189 N4C5 STRE+ C2C14C13 BEND 

1143 36.2266 1150.0 1140.7 C13C14 STRE 

1158 31.3188 1162.2 1163 H28C5C1 BEND 

1193 27.0019 1192.0 - N26C22 STRE 

1217 11.167 1217 1219 H37C10F49 BEND  

1249 22.6064 1245.9 - C20C18 STRE 

1298 24.8776 1295.0 - H45C21C23 BEND+ H46C24C25 BEND 

1332 147.2923 1334.8 1339 C23C21C19 BEND 

1363 41.13 1363 1362 N4C3 STRE 

1381 43.0814 1380.8 - H48C27N26 BEND 

1435 20.6823 1425.3 - H48C27N26 BEND 

1477 29.3723 1466.7 1463 C11C12 STRE+ C14C13 STRE 

1489 91.6731 1488.2 1485 H30C6H29 BEND+ H32C7C31 

1529 64.8058 1529.6 1529.6 N26C27 STRE+ C19-C20 

STRE+H38C10H37 STRE 

1570 8.5467 1572.5 - C24C25 STRE 

1718 244.7964 1712.6 1714 O17C15 STRE 

2939 116.2032 2922.7  C7H31+C9H32 STRE 

2952 17.2011 2947.8  C7H32 STRE 

2978 48.8728 2977.9   C7H32 STRE 

3067.1 95.3369 3067.1   C27H48 STRE 

3083 142.4699 -   C12H40 STRE 
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3099 175.0081 3100.0   C19H43 STRE 

3124 96.1257 3124.0   C20H44 STRE 

3191 42.3141     C5H28 STRE 
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Characterisation of prepared nanoparticles, UV-Visible spectra, size distribution, size determination using 
NTA, and zeta potential as indicated in captions  

 
297x210mm (300 x 300 DPI)  
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Effects of using diluted silver colloids with various concentrations of NaCl as indicated in legend on UV-Vis 
spectra (Surface Plasmon Resonance)  

 
297x210mm (300 x 300 DPI)  
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Experimental Raman spectrum collected at 532 nm excitation wavelength  

 

297x210mm (300 x 300 DPI)  

 

 

Page 18 of 25

John Wiley & Sons

Journal of Raman Spectroscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Effects of using diluted silver colloids with various concentrations of 5F-PB-22 as indicated in legend on SERS 
spectra (without using NaCl)  

 

281x199mm (300 x 300 DPI)  
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Raman, SERS spectra collected at 532nm from different sample preparation procedures ; pink line; 
background (diluted HPAg), Blue spectrum; 1.06× 10-7 M in diluted HPAg, green spectrum; 1.06× 10-7 M in 
diluted HPAg aggregated with 100mM NaCl, Black line; first spike 10mM NaCl, second spike to raise 5F-PB-
22 to 1.06× 10-7 M, third spike 20 mM NaCl.  Yellow line; first spike 10mM NaCl, second spike to raise 5F-
PB-22 to 1.06× 10-7 M, third spike 40 mM NaCl. Red line; first spike 10mM NaCl, second spike to raise 5F-

PB-22 to 2.12×10-8 M, third spike 20 mM NaCl  
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Effects of using 10mM NaCl pre-aggregated diluted silver colloids with various concentrations of 5F-PB-22 as 
indicated in legend on UV-Vis spectra (Surface Plasmon Resonance)  
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B3LYP 3-21 optimized molecular structure of the 5F-PB-22  
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Experimental and DFT- calculated Raman spectra of 5F-PB-22, and its dissociation products as indicated in 
legend above each of spectra  
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DFT calculated three-dimensional molecular electrostatic potentials in atomic units mapped on the electronic 

isosurface of 0.02 atomic unit  
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