
An integrated analysis of the March 2015
Atacama floods
Andrew C. Wilcox1, Cristian Escauriaza2,3, Roberto Agredano2,3, Emmanuel Mignot2,4, Vicente Zuazo2,3,
Sebastián Otárola2,3,5, Lina Castro2,3,6, Jorge Gironás2,3,7,8, Rodrigo Cienfuegos2,3, and Luca Mao9

1Department of Geosciences, University of Montana, Missoula, Montana, USA, 2Departamento de Ingeniería Hidráulica y
Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile, 3Centro de Investigación para la Gestión Integrada de
Desastres Naturales (CIGIDEN), Santiago, Chile, 4University of Lyon, INSA Lyon, CNRS, LMFA UMR5509, Villeurbanne, France,
5Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA, 6Escuela de
Ingeniería Civil, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, 7Centro de Desarrollo Urbano Sustentable
(CEDEUS), Santiago, Chile, 8Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile, Santiago,
Chile, 9Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Santiago, Chile

Abstract In March 2015 unusual ocean and atmospheric conditions produced many years’ worth of
rainfall in a ~48 h period over northern Chile’s Atacama Desert, one of Earth’s driest regions, resulting in
catastrophic flooding. Here we describe the hydrologic and geomorphic drivers of and responses to the 2015
Atacama floods. In the Salado River, we estimated a flood peak discharge of approximately 1000m3/s, which
caused widespread damage and high sediment loads that were primarily derived from valley-fill erosion;
hillslopes remained surprisingly intact despite their lack of vegetation. In the coastal city of Chañaral, flooding
of the Salado River produced maximum water depths over 4.5m, meters thick mud deposition in buildings
and along city streets, and coastal erosion. The Atacama flooding has broad implications in the context of
hazard reduction, erosion of contaminated legacy mine tailings, and the Atacama’s status as a terrestrial
analog for Mars.

1. Introduction

Large rainfall and sediment-rich flooding events struck the hyperarid Atacama Desert of northern Chile from
24 to 26 March 2015, reflecting complex interactions of the climate and the geomorphic characteristics of the
region. These events were remarkable because of their human toll and their setting, in the driest area on
Earth outside of Antarctica, where hillslope vegetation is largely absent and stream channels are dry or
ephemeral. The March 2015 storm affected an approximately 80,000 km2 area of the Atacama Desert. The toll
of the flooding included 31 deaths, 16 people disappeared, 30,000 people displaced, and 164,000 people
affected, as well as widespread damage to homes, roads, bridges, and railroads [United Nations Office for
the Coordination of Humanitarian Affairs, 2015; Oficina Nacional de Emergencia del Ministerio del Interior y
Seguridad Pública, 2015]. Hydrometeorological data in this remote region are sparse, hindering quantification
of precipitation, discharge, and flood frequency in the basins affected by the March 2015 flooding.
Infrequent, high-magnitude precipitation and flooding events have been observed in some areas of the
Atacama Desert [Houston, 2006a], but the March 2015 event had distinctive characteristics that have never
been recorded.

Understandingextremefloodevents suchas thosedocumentedhere is important inseveral contexts, including
reducing hazards and the human impacts of flooding, improving rainfall-runoff modeling, and understanding
the role of floods in channel and landscape evolution [e.g.,Wohl, 2000]. Here we describe the meteorological,
hydrologic, and geomorphic drivers and responses to the 2015 Atacama floods. Our objectives are to
characterize the forcings, water and sediment routing from source areas in the upper watershed to the outlet
at the Pacific Ocean, and the urban flooding impacts of this event.

2. Study Area

The Atacama Desert extends from 18°S to 31°S and is the driest and oldest desert on Earth [Hartley et al., 2005;
Amundson et al., 2012], with mean annual precipitation below 5mm in its driest regions. Three factors cause
aridity in the Atacama Desert: (a) the influence of the South East Pacific Anticyclone (SEPA), a subtropical
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high-pressure system that minimizes precipitation in the region; (b) the orographic rain shadow effect of the
Andes, which inhibits moisture advection from the east; and (c) the cold water upwelling to the west asso-
ciated with the Pacific Ocean’s Humboldt Current [Garreaud et al., 2003; Houston, 2006a; Jungers et al.,
2013; Barrett et al., 2016]. The onset of aridity in the Atacama has been traced to the middle Miocene; hyper-
arid conditions have been present for at least 2million years [Riquelme et al., 2007; Amundson et al., 2012].
These climatological conditions produce an almost complete lack of vegetation in a significant portion of
the Atacama Desert, which has therefore been treated as a terrestrial analog for Mars [Navarro-González
et al., 2003; Stepinski and Stepinski, 2005; Morgan et al., 2014].

TheMarch 2015 floods occurred in the southern part of the AtacamaDesert andprimarily influenced the Taltal,
Salado, Copiapó, Huasco, and Elqui basins. Here we focus on the Salado River watershed, which received the
maximumtotal precipitation during the event, experienced the largest river discharges, andwasmost severely
damaged by flooding. The Salado River typically has little or no flow and is ungauged. Its basin is at approxi-
mately 26°S, in a transition zone from hyperaridity in the northern Atacama to semiaridity to the south
[Owen et al., 2011], and has an area of 7530 km2 and maximum elevation of 4882m. The basin includes zones
typical of the Atacama Desert, extending from a Precordillera in the headwaters, to a Central Depression, to a
Coastal Cordillera in thewest. To the east and separated by a subtle topographic divide lies an endorheic basin
that drains to the Salar de Pedernales [Dorsaz et al., 2013], and the Andean Cordillera (Figure 1).

The Salado basin is sparsely populated, with towns built along the Salado River that largely supportmines (e.g.,
copperminesat Potrerillos andEl Salvador). The largest town isChañaral, at themouthof theSaladoRiver along
the PacificOcean (Figure 1). Coastal sediment transport typically forms a sandbar that closes the rivermouth at
Chañaral. Road construction on an elevated levee, composed largely ofmine tailings, atop this sandbar further
separated the coast from the urban area, which exacerbated flooding impacts, as described below. Deposition
of an estimated 150–300× 106 t of mine tailings within the formerly arcuate Chañaral Bay, covering an area of
approximately 4 km2with a thickness of 10–15m,occurred fromthe1930s to1970s andextended the coastline
seaward and away from Chañaral [Dold, 2006]. These tailings contained copper, molybdenum sulphides, and
other mining-related contaminants, resulting in elevated trace metals in the adjacent marine environment
and biota [Castilla, 1983; Ramirez et al., 2005; Lee et al., 2006; Dold, 2006].

Figure 1. The Salado River basin in the Atacama Desert (inset shows location in northern Chile) and satellite-based spatial distribution of precipitation [Huffman et al.,
2015] during theMarch 2015 storm event. Precipitation was greatest over the Precordillera, in the Salado basin’s headwaters, and decreased toward the basin’s outlet
at Chañaral on the Pacific Coast. The Andes and an endorheic basin draining to the Salar de Pedernales are to the east. Black circles denote precipitation stations used
in hydrologic modeling; the Cine Inca station (denoted 1) measured hourly precipitation during the event (Figure S2a).
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The drainage basin has diverse geology, characterized by lower to upper Cretaceous continental sediments
and volcanic rocks, and is traversed by the north-south oriented Atacama Fault Zone [Riquelme et al., 2003].
Hillslopes across much of the Salado basin are mantled by Atacama Gravels, a coarse sedimentary unit hun-
dreds of meters thick from Miocene aggradation, as a result of both aridification (reduced transport capacity)
and uplift of the Coastal Cordillera [Riquelme et al., 2007]. Soils are thought to have formed in the last 2million
years, to be influenced by salt weathering of bedrock, and to experience transport via overland flow during
extreme events [Amundson et al., 2012]. Very thin soils with low production rates (i.e., bedrock-to-soil conver-
sion) and variable infiltration capacities have been documented near Chañaral, and this zone of the Atacama
marks a transition from biotically to abiotically influenced hillslope processes [Owen et al., 2011, 2013].

The last large flood occurred on the Salado River in 1972 [Desinventar, 2016], but in general little is known
about past flooding in the basin. Elsewhere in the Atacama, most large flooding events are associated with
the South American summer monsoon, a seasonal pattern that can bring precipitation to the Atacama
[Zhou and Lau, 1998], and with El Niño [e.g.,Magilligan et al., 2008]. For example, large floods were documen-
ted in the Atacama Desert north of our study area in June 1991 in Antofogasta [Ramirez and Perez, 2011],
February 2001 in the Loa River [Houston, 2006b], and in 2012 in the Tarapacá region [Sepúlveda et al., 2014].

3. Methods

In a region where few direct measurements of precipitation and discharge are available, we combine meteor-
ological data and hydrologic and hydraulic modeling with field and aerial photograph interpretation of sedi-
ment sources and geomorphic change. The meteorology was studied from precipitation gages, the National
Centers for Environmental Prediction (NCEP)0.25DegreeGlobal Forecast System(GFS)historical archive,which
included precipitable water output [National Center for Atmospheric Research (NCAR), 2015], the NCEP/NCAR
(National Center for Atmospheric Research) Reanalysis 1 data set [National Oceanic and Atmospheric
Administration (NOAA), 2015a], sea surface temperature (SST) data [NOAA, 2015b], and satellite-based Global
Precipitation Measurement data [Huffman et al., 2015].

Because no streamflow data are available for the Salado River, we estimated the peak discharge by combin-
ing field surveys of channel geometry with a Manning equation approach. Using a differential GPS (dGPS), we
surveyed channel slope, cross-section topography, and high-water marks (to determine flow depth, hydraulic
radius, and flow area) after the flood event in a straight reach of the Salado River, 4 km upstream from
Chañaral (supporting information Figure S1). We estimated flow resistance (and in turn velocity) by testing
ranges of sediment concentration and relative bed roughness values [additional details are provided in
supporting information Text S1; Bagnold, 1954; Parsons et al., 2001; Julien, 2010; Takahashi, 2014].

We also reconstructed the flood hydrograph using the U.S. Environmental Protection Agency’s Storm Water
Management Model (SWMM), a semidistributed rainfall-runoff model that represents a basin as a collection
of subcatchments with distinct properties contributing to the channel network, through which flow is routed
[Rossman, 2009; Gironás et al., 2010]. We divided the Salado basin into 11 subcatchments and assigned
attributes (e.g., area and slope) to each with data from a digital elevation model. Different effective hyeto-
graphs and total effective precipitation obtained from seven stations across the watershed (Figure 1) were
applied to each subcatchment. A value of the runoff coefficient Cr, which represents the ratio of runoff at
the outlet to total rainfall for an event [Chow et al., 1988], was selected to produce a similar peak flow at
Chañaral as estimated using the methods in the previous paragraph [additional details are presented in
supporting information Text S2; Reiz et al., 1988; Food and Agriculture Organization, 2007].

We evaluated the geomorphic effects of the event using field observations, from the headwaters to the
coastal portion of the Salado basin, completed ~1month after the event, and aerial image analysis. To docu-
ment the flood effects in Chañaral, we completed dGPS surveys and measurements of flood marks on build-
ings in the downtown area (supporting information Text S3). These data were combined in maps of
maximum water levels. In addition, along a 85 km reach of the Salado River, extending from the mouth to
~20 km upstream of Diego de Almagro, we assessed channel change by measuring and comparing active
channel width (w), defined as the width of channel with evidence of recent fluvial reworking, in preflood
and postflood aerial images at 1 km intervals. Preflood and postflood channel width could not be accurately
determined at all locations (e.g., because of clouds or other obstructions), so we narrowed these data to 62
locations for which we could accurately measure preflood and postflood active channel widths.
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4. Results
4.1. Atmospheric and Oceanic Drivers and Resulting Precipitation

A confluence of unusual oceanic and atmospheric conditions set the stage for the March 2015 Atacama
floods. Very high SST anomalies off the coast of northern Chile, up to +3°C (Figure 2a), may have reflected
warming of the eastern equatorial Pacific Ocean during the 2015 El Niño [Bell et al., 2015; Barrett et al.,
2016]. Moreover, the NCEP/NCAR GFS and reanalysis data suggest weakening of the SEPA at this time; cyclo-
nic (clockwise) patterns of wind-velocity fluctuations at 1000 hPa from 22 to 28 March (Figure 2b) illustrate a
reversal of the normal anticyclone conditions. As a result a low-pressure system built off the coast of Chile and
moved inland starting on 24 March (Figure 2c) and strengthening on 25 March (Figure 2d), when the greatest
precipitation occurred over the study area. A core of cold air in the middle and upper troposphere trapped
moist air moving inland over the warmer-than-normal ocean, producing a cutoff low (COL) pressure system
[Fuenzalida et al., 2005; Garreaud and Fuenzalida, 2007]. The warm ocean conditions would have also

Figure 2. Oceanic and atmospheric drivers of the 2015 Atacama floods: (a) high sea surface temperature (SST) anomalies preceding the storm produced high
evaporation rates and humid air that encountered the low-pressure zone shown in Figures 2c and 2d; (b) wind speed anomalies during the dates of the events
(the historical mean has been subtracted) are cyclonic (clockwise), contrary to the South East Pacific Anticyclone typically present in this region; (c and d) geopo-
tential height contours at 300 hPa (black lines) overlain on precipitable water (colored contours), illustrating that a cutoff low-pressure system (denoted L) built off
the coast and reached inland on 24 March 2015 and strengthened by 25 March, accompanied by high amounts of precipitable water coming from the north.
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contributed to attenuation of the SEPA, promoted evaporation, and contributed to high amounts of precipi-
table water (Figures 2c and 2d) along the northern Chile coastline. The combination of anomalously high
amounts of precipitable water and an unstable atmosphere, due to the presence of the COL, produced inland
flow of warm, moist air and record rainfall over the upper Salado basin and its environs [Barrett et al., 2016].

The greatest amount of precipitation fell in the upper Salado basin, over the Precordillera. All precipitation
occurred as rain rather than snow, including at elevations exceeding 4000m in the headwaters, reflecting
the warm nature of the storm. Precipitation data from a rain gage northeast of Diego de Almagro (Cine
Inca, 2240m elevation; Figure 1) showmultiple (at least three) pulses of precipitation over a 51 h period, with
maximum rates of 7.5mm/h and total rainfall of 77mm (Figure S2a). Similar magnitudes were recorded at
other nearby rain gages at similar elevation, including 80mm from a gage southeast of Diego de Almagro
(elevation 2,250m) and 87mm from a gage at El Salvador, just outside of the Salado basin and northeast
of Diego de Almagro [Barrett et al., 2016]. In coastal areas, where flood damages were greatest, precipitation
was much lower; gages at Chañaral recorded total precipitation of ~20mm [Olea and Arce, 2015]. Satellite
data [Huffman et al., 2015] showed strong orographic gradients of precipitation (Figure 1), with estimated
totals over the Precordillera in the range of 50–70mm. Comparison to data from gages in those locations
suggests that the satellite-based precipitation totals were underestimates.

4.2. Hydraulic and Hydrologic Reconstruction and Urban Impacts

We estimated peak discharges of 1450m3/s (water-sediment mixture) and 1150m3/s (water only) at the
entrance of Chañaral. These values are averages over a range of sediment concentration and relative bed
roughness values (Figure S3); the coefficient of variation of discharge estimates was 0.16. At the only gage
in the region that measured discharge during the event, in upper reaches of the adjacent Copiapó River
basin, the peak flow was 36m3/s [Copiapó en Pastillo station, elevation 1305m; Figure S2b; DICTUC, 2010].

Modeling using SWMM provides an alternative approach to reconstructing flood hydrology. A calibrated
value of Cr= 0.06 in SWMM produced a peak, clear-water discharge of ~1000m3/s at Chañaral, as well as peak
discharges of 310 and 800m3/s for the towns of Diego de Almagro and El Salado, respectively (Figure S4).
Modeled peak discharge estimates are highly sensitive to Cr (Figure S4). For comparison to the Cr value used
in SWMM, we deduced a value of Cr= 0.02 in the adjacent Copiapó River basin from the volumetric record in a
local reservoir and the upstream contributing precipitation. Both Cr values are within the range reported for
extremely arid regions [Kidron and Pick, 2000; Cantón et al., 2001; Yair and Raz-Yassif, 2004] and indicate low
rates of overland flow on hillslopes (see Text S2 for additional discussion of Cr values).

In the urban area of Chañaral, high-water and mud markings on roads and infrastructure showed that the
town experienced zones of both high flow velocity, reaching approximately 8m/s (estimated from the
Manning equation and measured high-water marks), and dammed, low-velocity flow (Figure 3). Flooding
in Chañaral occurred in two distinct phases. First, culverts that normally passed Salado River flow beneath
Highway 5, which was built on an elevated levee constructed using legacy mining sediments (3m above
the lower parts of the city), were overwhelmed and blocked, damming flow southeast of the highway and
causing flow stagnation, inundation, and massive mud deposition in buildings and on the streets of low-
elevation portions of Chañaral. Maximum water depths of 2.5–2.7m were documented, with decreasing
depths with distance southeast from the highway (Figure 3 and Text S3). Horizontal flood marks on buildings
in the downtown area of Chañaral, which were similar inside and outside the buildings, provided evidence of
very low flow velocities during this period (Figures S6–S8). Second, as the water level increased in Chañaral as
a result of the damming effect of the highway, eventually water overtopped the highway and produced two
significant breaches. One breach was more than 450m wide and in the vicinity of the Salado River channel;
this breach allowed high-velocity river flow directly toward the Pacific Ocean, resulting in scouring of
buildings and other dramatic damage in the areas bordering the channel. A second breach, to the south,
was about 300m wide, permitted evacuation of water from the downtown area and produced erosion at
the outlet of the breach (Figure 3). Additional mud deposition likely occurred as floodwaters receded, but
our observations suggest that the greatest deposition occurred earlier during the event.

4.3. Flood Geomorphology: Sediment Sources and Geomorphic Change

A remarkable element of the flood, particularly with respect to its effects on urban areas, was its high sedi-
ment load. No measurements of fluxes or concentrations are available, but observations of videos from the
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flood event and of postflood mud deposits indicate that suspended sediment concentrations were high
enough to produce hyperconcentrated flow.

Observations in the upper watershed, where the greatest precipitation occurred, indicated widespread rilling
and gullying initiated by overland flow (Figure S9). Rills or gullies did not show evidence of progressive bulk-
ing (i.e., enlargement and entrainment of additional sediment in a downslope direction); however, rills were
typically shallow, linear features showing no consistent spacing or clear initiation threshold. Moreover, sedi-
ment from these sources typically did not reach valley bottoms; rills and gullies typically faded near the base
of the hillslopes (i.e., at the footslope), with small, individual fan-like sediment deposits debouching from
each feature on footslopes. Moreover, we observed only limited, small-scale mass wasting during field sur-
veys, typically as shallow translational slides (Figure S8) or rockfall where hillslopes had been undercut by
channel erosion; the overall contribution to fluvial sediment flux from mass movements appeared to have
been negligible.

Whereas hillslope sediment delivery to channels was surprisingly small, dramatic erosion of valley fills
occurred. Field observations indicated that the sediment load was primarily derived from erosion of channel
bed, bank, and floodplain material (i.e., valley fill). Aerial photograph analysis found that the scaled change in
active channel width [(wpost�wpre)/wpre] was 2.3 ± 8.6; i.e., on average, active channel width more than
doubled, with large variation (Figures S10–S12). No channel-widening trend was observed in the
downstream direction. Although widening was the primary erosion mechanism and sediment source,
channel incision was also evident along many reaches, especially in valleys confined by either hillslopes or
by infrastructure (roads and railroads).

Flooding also altered the morphology of the mouth of the Salado River and produced dramatic coastal ero-
sion, likely following the highway breach described above. In places the shoreline receded by 500–1000m
(Figures S3, S8, and S13). Much of the eroded coastal material consisted of mine tailings that had previously
deposited in Chañaral Bay.

5. Discussion and Conclusions

The 2015 Atacama floods resulted from a confluence of unusual ocean and atmospheric conditions that pro-
duced a cutoff low-pressure system that moved inland, high amounts of precipitable water, and warm,
intense storms concentrated over the upper Salado basin. Meteorologic conditions, COL development, and
the anomalously high precipitable water driving this event are also described by Barrett et al. [2016], who also
document extreme warm temperatures in central and southern Chile preceding and concurrent with the
March 2015 floods. Dynamics of COL systems such as the one implicated here, and of their interactions with

Figure 3. Chañaral at the Salado River mouth: (a) preflood image (22 July 2013) showing coastline location, Highway 5 and channelized Salado River; (b) postflood
image (27 March 2015) showing coastal erosion and breaches of Highway 5, measured flow depths, estimated flow direction, and flood limits (Google Earth, Fuerza
Aérea de Chile).
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the Andes, have also been simulated using the Weather Research and Forecasting model by Garreaud and
Fuenzalida [2007]. They showed that the Andes influences COL systems by, on the one hand, obstructing
the inflow of warm, moist air from the interior that would otherwise cause convection and COL weakening
and, on the other hand, contributing to COL dissipation as a result of latent heat release associated with cloud
formation over the Andes [Fuenzalida et al., 2005; Garreaud and Fuenzalida, 2007].

Accurate measures of peak flow magnitude are typically lacking for large floods in the Atacama Desert, but
comparison to published reports [e.g., Houston, 2006b] suggests that the March 2015 event was the heaviest
andmost extensive documented rainfall, producing the largest documented floods, in the region. For example,
floodmagnitudes measured in the adjacent Copiapó River were by far the largest since gaging began in 1971
(the previous peak discharge at the Copiapó en Pastillo station was ~23m3/s, compared to 36m3/s in March
2015). The only documented large flood in the Salado River, in February 1972, was smaller than the March
2015 event, judging from ground photographs of Chañaral taken after the event; to the best of our
knowledge, its peak flow was neither measured nor estimated.

The floods were unusual not only in their magnitude but also in terms of their high sediment supply, which
produced high-sediment-concentration flows and extensive mud deposition in urban areas. Previous work
has suggested that during extreme precipitation and flooding events in the Atacama, landslides and debris
flows are widespread and an important sediment source, as would be expected in areas with low infiltration
capacity and hillslopes dissected by ravines [Sepúlveda et al., 2014]. The erosional response we observed
differed from this; however, field observations indicated that hillslope erosion was largely restricted to rilling
rather than debris flows and that interrill erosion was limited and hillslopes were largely stable. These
observations were consistent with both the calibrated value of Cr used in our rainfall-runoff modeling, and
with Owen et al.’s [2013] finding of spatially variable infiltration rates near Chañaral. Rilling observed on
hillslopes provided evidence of low infiltration capacities, whereas limited interrill erosion and the tendency
of rills to dissipate rather than growing into gullies or debris flows suggested locally higher infiltration rates
(e.g., along footslopes), although spatial variability in infiltration rates likely lessened as the storm progressed
[e.g., Yair and Raz-Yassif, 2004] and runoff rates to valley bottoms increased. Although vegetation is absent on
hillslopes, theabsenceofhillslopeunravelingsuggests that soil characteristics (e.g., theAtacamaGravels,desert
pavement, and salt crusts [Riquelme et al., 2007; Davis et al., 2010; Owen et al., 2013]) may have produced
cohesionand stabilized slopes. Regardless, themagnitudeofflooding, andourfieldobservations, provide clear
evidence that the March 2015 event generated runoff to valley bottoms with sufficient stream power to pro-
duce widespread lateral and vertical erosion of valley fill that comprised most of the flood’s sediment supply.

Flood damages were a consequence of the high-magnitude discharge and sediment-rich nature of the flood
and also were exacerbated by land uses and infrastructure. In the upper watershed, roads and railroads con-
fined the channel inmany locations, concentrating flood energy and increasing incision and valley-fill erosion.
Building construction immediately adjacent to the channel (e.g., in Diego de Almagro) created flow resistance,
promoted sediment deposition, resulted in extensive damages, and illustrated low awareness of flood poten-
tial. In Chañaral, road infrastructure and obstructed culverts reduced channel capacity and blocked the flood’s
path to Chañaral Bay, damming the flow and greatly increasing flood extent, mud deposition, and associated
damages, after which breaching of the highway produced rapid channel flow, erosion, and building removal.
Overall patterns of erosion anddeposition therefore reflectednot only downstream increases anddecreases in
stream power, as documented for other extreme floods [Gartner et al., 2015], but also local infrastructure
effects. Headward erosion of contaminatedmine tailings along the coast may have also produced contamina-
tion of the adjacent marine environment, as has previously been documented in Chañaral Bay [Ramirez et al.,
2005], highlighting the long-term challenges of managing mining-contaminated sediments.

Meteorologists predicted unusual atmospheric conditions and high-magnitude precipitation in advance of
this event [Centro de Ciencia del Clima y la Resiliencia, 2015], but those predictions were not translated into
flood predictions to encourage flood preparation or evacuations [El Mostrador, 2015], highlighting key gaps
between science and management. The 2015 Atacama floods reinforce Rasmussen et al.’s [2014] call for
improved understanding of weather events in South America in order to reduce the death and economic tolls
of extreme events such as floods. The floods also point to the need to reduce flood fatalities by discouraging
human settlement in flood-prone areas and by taking better advantage of Earth observation data to improve
early-warning systems, planning for extreme events, and disaster response [Pappenberger et al., 2008; Di
Baldassarre et al., 2010; Schumann et al., 2016].
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