This version is the one submitted for review, it is not the final version for publication
in the journal of FCAA.

PLC-BASED DISCRETE FRACTIONAL-ORDER CONTROL
DESIGN FOR AN INDUSTRIAL-ORIENTED WATER
TANK VOLUME SYSTEM WITH INPUT DELAY

Arkadiusz Mystkowski ', Argyrios Zolotas 2

Abstract

We present PLC-based fractional-order controller design for an indus-
trial -oriented water tank volume control application. The system com-
prises input delay which is a typified characteristic in such industrial pro-
cess control applications. The particular contribution of this work is on
discrete fractional-order PID implementation via PLC and its application
to the aforementioned realistic water tank test bed. Stability and robust-
ness properties of fractional-order discrete PID feedback-loops for different
approximation methods and orders are also shown. Fractional-order con-
trollers are obtained for a variety of stability margin choices, and benefits of
the non-integer-order controllers compared to the integer-order PID control
are illustrated via simulation and experimental runs on a realistic test-bed.
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1. Introduction

Control practitioners, when it comes to designing simple controller
structures for the relevant control applications as is the case in process
control industry, face challenges in understanding the process to control in
conjunction to design and operational experience (a common practice for
many years in tuning simple PI/PD/PID feedback loops in the aforemen-
tioned industry). Practices tend to change nowadays given the advances in
software tools, simulation packages and the deeper understanding of design
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methodologies. Obtaining mathematical models is now a common practice
and it can be based both on physical laws and mathematical equations
or via identification from experimental data. In fact, designs advance a
step further to include more elegant fractional-order models and associated
analysis and design tools for both linear and nonlinear control systems [1],
[15].

Hence, fractional calculus (in particular via fractional-order control
methods) becomes even more popular in terms of addressing modeling,
analysis and design of systems. Fractional-order methods have a long
standing theoretical foundation, i.e. commencing with fractional calcu-
lus in 1695. The foundation on fractional calculus started with Liouville,
Holmgren and Riemann, Grunwald, Letnikov, Riemann and others see for
example [4], [I6]. A number of problem investigations started soon after,
i.e. Abel in 1823 investigated the solution of the integral equation for the
tautochrone, which is more economical and useful than the conventional in-
teger order approach [16]. The problem of synthesis and analysis of control
systems described by fractional-order differential or difference equations are
considered in the last couple of decades, i.e. examples can be seen in [,
[10], [12], [15], [17], [18], also in terms of tuning [5] and a useful survey
[6]. In particular, Lanusse et al [I9] discussed on a PLC implementation
of a robust CRONE controller for a Festo Compact Workstation hydraulic
pressure control system. Their CRONE controller was implemented in the
S7-300 Simatic, Siemens controller, using the ladder-diagram language for
the controller algorithm. The nature of the paper presented here is differ-
ent to that of [I9] and hence forms novel contribution to the topic, both
from the type of controller and its PLC implementation (language used)
viewpoint as well as the way the discetisation process and its impact to
the robustness of the controller on the realistic testbed is mapped and ap-
praised.

This paper strongly contributes to the viewpoint highlighted in [20],
i.e. that fractional order (FO) calculus solutions facilitate better perfor-
mance compared to the best achievable ones previously using integer-order
calculus. We present rigorous study of fractional-order discrete-time lin-
ear PID-type control design for processes with input delay. The designed
controllers are validated on the experimental water tank volume control
testbed. A particular highlight of this paper is the implementation of the
fractional-order controller on Programmable Logic Controller (PLC) for the
experiment. As part of the latter, effects of the discrete-time approximation
via trapezoidal (Tustin) rule and Backward (Euler) rule are appraised.

Advantages of fractional-order PID closed-loop feedback in comparison
to integer-order PID control are illustrated via use of with quadratic cost
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functions and analysis in the frequency domain. Integer-order PID control
is designed based on the same specifications. To show the effectiveness of
fractional-order PID in improving stability margins, dynamic performance
and reference tracking, both simulation-based and experimental tests on a
water tank volume system (testbed) are performed.

2. Fractional order integral-differential operators

This section presents a brief introduction to fractional order methods
and in particular integro-differential operators. In the general case a frac-
tional order operator of a complex order a, can be defined as [7]:

4 Re(a)) >0
whit =4 1 Re(a) =0 (2.1)
S, (dT)™%  Re(a) <0

We assume that @ € Ry. In particular cases operator ;,Df can be
defined in several ways, see [I3]. From the control application point of view
the most popular are definitions of the Riemann—Louville’s and Caputo’s
fractional order integro-differential operators. Here we concentrate on the
first one and its discretization. The Riemann-Louville (RL) fractional order
a, a € [n—1,n), n € N, integro-differential operator is defined as [3], [7],
[15]

RL pa ._ 1 [t f(7)
to D f(t) == T(n— o) din /to = T)a_anT (2.2)
where I is the Euler function, i.e. T'(z) = [;~ e "7 'dr with Re(z) > 0.
The Laplace transform of this operator is given as

1
LIFEDRf(t)] = s*F(s) = Y s" [ DR 1 f (1))
0

3
|

(2.3)

B
Il

t=0
where F'(s) = L[f(t)] with variable s = jw and s € C, denotes the Laplace
transform of the function f(t).

In order to realize fractional order (FO) controllers perfectly, all the
past input should be memorized. In practice this is not possible, hence ap-
proximation or discretization method should be used. The most commonly
used discretization approach in fractional case is termed as short memory
principle [11]. It is based on the fractional order Griinwald-Letnikov (GL)
operator of order o € (n — 1,n) [1], [3], [15]:

GLDEf(t) = lim = 3 (~1)] (Of)f(t—jm (2.4)
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where h > 0 and

<a>= oleslnf0it) - ror 21,23,
7 1 for 7=0

denotes the binomial coefficient. Since values of the binomial coefficient
near “starting point” ty = 0 are small enough to be neglected, see [I1].
It is easy to note also that FLDgf(t) =51 D f(t) for any continuously
differentiable function f. In the following, if it is just not misleading, we are
going to skip symbols RL or GL in fractional order differential operators.

The discrete equivalent of the fractional-order differential operator ;, Df*
is given by [11]

2D f(0] = >_(-17 (%)) (25)

where F(z) = Z[f(t)], m = [£] where L is the number of past values
taken into account (so called memory of the system), and z is the complex
variable or shift operator z~!.

For the purpose of carrying out numerical computation, formula
leads to Griinwald—Letnikov operator of the real function f(t), the revised

version of (2.4)) is rewritten as

wDe () =Y dl f(t - jh) (2.6)
j=0

ga) (1)’ (O.‘), and h is the step-size in computation [14].

he \j
3. System modelling and identification

Figure [1] illustrates the schematic diagram of the experimental setup
that represents the process model with input delay characteristic, it consists
the MPS water Compact Workstation developed by Festo, PLC Simatic
controller developed by Siemens and PC computer with TTAportal + WinCC
and Matlab/Simulink software. In addition, the considered water volume
control loop includes ultrasonic fluid level sensor and controller with ana-
log and digital terminals. The major electrical signal connections, both
for measurement and control, are presented by red-colored lines; the PC
communication is shown via black-colored lines with serial port: RS-232.

During the open-loop identification, measurements were performed by
the EasyportDA signal interface and FluidLab-PA. The water volume or
water level is the sum of all water flowing into the system, while the outflow
flow rate equals the inflow flow-rate. In our case the outflow is set to a
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constant value of 15%. In particular, the greater the inflow the faster the
level in the container increases per unit time. When the water tank is
filling under a constant flow rate (inflow), the pressure of the water column
at the bottom of the container is proportional to the level. The pressure
at the bottom increases with level, which results to an increase in outflow
until equilibrium (with the inflow) is reached (hence results to a constant
level, i.e. no more increase reached “steady-state end value”). The step
command signal of 10 voltage increases the speed of the pump from 0% up
to 100%, where the voltage control signal can change from 0 to 10 V.

ultrasonic fluid I $ | analog terminal output |
[ AN . Z0

- level sensor . x|
59 < i measuring 5

= = transformer |

i‘
T C 81 >
water | S
container, . ¢

- U |
| . -
i : .
centrifugal . A circuit : = :
pump - i ! input |
|
MPS® PA Compact Workstation | Measurement System Connections _!

FiGURE 1. Diagram of the fluid volume controlled system

A discrete-time model of the open-loop system was identified based on
the time-raw measured water volume data. The water tank experimental
response for the step input signal of the pump is given in Figure[2] The sam-
pling time used, and appropriate for such a slow dynamics system, is 0.15 s.
The model fit to estimation data was approximately 93.5%. The identified

. . o ! -
continuous time model is given by Go(s) = u((?) = %e 8:544s " and

(in continuous time). While the discrete-time version can be seen in (3.7)),
with the input delay evident from the relevant delay operator part.

I(2) _579.6e — 06(z + 24)
G = 7 = 3.7
Note that the time delay based on the system measurement in Figure
is approxmiately 3s, then after taking into account the power start-up pump
delay and the A/D terminal delay, the total time delay of the system (3.7))

is equal to 8.544s. The state [ represents water volume and u characterised
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FIGURE 2. Model dynamics identification

the controller output (pump effort) in the range 0%-100%. The identified
model represents a good approximation of the process under investigation,
however we expect a level of robustness to be enabled by the designed
controller.

4. Fractional order controller design

A continuous time linear input-output system can be described as linear
fractional differential equation of order d,d > 0, of one (time) variable:

Z aioniy(t) = Z katﬁlu(t) (4.8)
=0 k=0

where o, > a1 > - > a1 >a01 >0, B > Bme1 > > 01> 6 >0
are real numbers, a;, by € R ¢ =0,1,...,n,k =0,1,...,m. The transfer
function of the considerate system is of the form:

bm Bm bm_ Bm—1 . b Bo
G(S) _ sPm 4 18 + + 0ps (4.9)

ansan + anflsanfl —+ .+ aosao

We assume that the system (4.8) is of the commensurate order, that is all
orders of derivation in (4.8)) are integer multiplies of a base order a,, v € R..
Then, substituting A = s, the transfer function (4.9)) of the system (4.9)

with respect to zero initial conditions can be written in the form:

GOy = DA b AT b+ by
N a/n)\n + an—lAn_l + et + a/lA + a[)

(4.10)
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Hence, taking into account again that A = s we obtain:

G(s)=K E Y (4.11)
i=1 v

with constant coefficients K, A;,i =1,2,...,n.

4.1. Conventional vs Fractional order controller.
ki
Ke—pia(s) = kp + — + kas (4.12)

with frequency response, (s = jw), Kpiq(jw) = kp — j% + kqjw. The
frequency response yields the following magnitude (linear) and phase,

. ki\?
| Ke—pia(jw)| = \/k?% + <k3dw — w) 7 (4.13)

kow — Fi
/Ko pia(jw) = tan™ (dka) (4.14)
P

Contrary to the conventional PID controller, the fractional equivalent, i.e.
by PI*D*, is given by

k‘pS)‘ + k; + kds()‘+“)
8)‘

Cr_pid(s) = kp + % + kgst = (4.15)
where A and pu € Ry, are either integer or non-integer, thus the FO con-
troller has five parameters to tune and this is a more challenging
design exercise to perform compared to the conventional integer-order PID
controller [12], [I5], [I7]. Note that gains kp,ki,kq in the FO PID do not
necessarily have the same values as in the conventional PID controller (and
this is made clear by use of “integer” and “fractional” prefixes).

The model for control design presented earlier in continuous-time
is in the typical form of a first-order plus time delay transfer function, i.e.

k
G(s) = ~Tos 4.16
(5) = oy (4.16)
where k denotes a static gain, T is a time constant, and 7j is the input
time delay. The modulus and phase are |G(jw)| = ﬁ, arg{G(jw)} =

— arctan (%) — w1y, respectively.
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The open-loop transfer function is listed for the integer-order PID, i.e.
Le_pia(s) = G(s)Kc—pia(s), with modulus and argument as follows

2 — y—1)2
|LC an(jw” m\/kp + (kdw kzw )
Achpid(jw) = 4G(]w) + LKC,pid(jw)
&4k (—hgw + kiw™?) }

= —wTp — arctan —— .
— Tkp (—kdw + kiw_ )

While in the fractional-order case, with open loop L¢_piqa(s) = G(5)Ct—pia(s),
the modulus and phase are given by

. k k
|Lf—p7,d(]w)| = \/ﬁ\/ exprla = ﬁ\/ exprlb (417)

where,
I\ AT W 2
exprla = ( k, + kjw™ " cos 5 + kqw! cos ( 5 )
- AT . U 2
+ [ —k;w " sin - + kgqw" sin (7)

A
exprlb = k§+k§w72)‘+k3w2“+2kp <kdw“ cos <H2 > + kjw™ " cos <27r>>

+ 2kik‘dw(_>\+u) cos <(M+/\)7T)
2

LLy pia(jw) = LG (jw) + LK _pia(jw)

—K; AT o s
= —wTp — arctan (E> — tan kiw™ sm( 2 ) + kqw sm( 5 )
' by + ko= cos (3F) + b cos ()

(4.18)

Clearly, the introduced degree of freedom in loop shaping by the fractional-
order equivalent can be seen from the above relationships. Now, it is well
known that selecting Bode’s ideal transfer function for the desired loop
transfer function

(03
Lp(s) = (ﬁ) (4.19)
s
facilitates closed-loop insensitivity to gain changes [21]. In (4.19), w, is
the desired gain crossover frequency (i.e.where |L(jwy)| = 1) (in linear

magnitude terms) and « € R4, the latter parameter being of paramount
importance regarding the loop transfer function magnitude response slope
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properties near crossover The modulus and phase of the aforementioned
ideal loop transfer function are (%)a and —a7, respectively.
The actual loop transfer function for this system with the FOPID is
koo kps* + ki 4 kgsOHw)
Ly—pia(s) = ps” Rt R e~ Tos
Ts+1 s

Assuming complementary integrator/differentiator orders, i.e. p=1— A,

k kps* + ki + kas _
Ly-puals) = <Ts + 1) ’ 3; e
Hence enabling only fractional integrator contribution. One can clearly see
the constraint introduced by the input delay portion (essentially in phase
margin achievement normally and in closed-loop bandwidth, i.e. speed of
response, aspects). In order to obtain the open-loop transfer function as
Bode’s ideal transfer function expect time delay the controller must obey:

K(s) = K, ((Ts + 1)/9) =K, (1/5A + Ts(l_)‘)> (4.22)

We can observe that controller (4.22)) is the ideal form of (4.15)). Moreover,
in the special case of: kg = TK,, k; = K, and k, < K, one gets

K, (1/S>\ + Ts(l_)‘)) > k4 kst + kgst =) (4.23)

(4.20)

(4.21)

Hence, the following considerations are based on this assumption, with the
actual open-loop transfer function simplifying to:

La(s) = ((kEy) s7) e = (YRE fs) (™) (420

Note that equation is a “delayed” form of . In addition, recall
that the phase margin for the ideal transfer function in is ¢ =
(1—\/2)7. Referring to the actual loop transfer function from (4.24),
fractional-order A can be further investigated in the framework of loop
shape design. Given that (jw)* = |w|*e/*™/2, the gain and phase of
are:

[La(jw)| = (kEp)w ™, ¢1,(w) = arg(La(jw)) = ~Tow — Ar/2  (4.25)
Also, crossover frequencies wy (i.e. gain) and w, (i.e. phase) are given by:
[La(jwg)| =1, ¢(wp) = arg(La(jwp)) = —7 (4.26)

Now, assuming A,, a given gain margin (GM) and ¢,, a given phase margin
(PM) one can get:

(kKp)wy* = 1/Am, ¢m =m(1 = A/2) — Tow, (4.27)

Whereby w, = 7T, '(1 — A\/2). The above equations enable flexibility in
selecting the order A based on loop shaping characteristics (although major
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ones can be chosen and the design to be based on in the sequence). Major
aspects here are GM and PM, while note that the two crossover frequencies
are interlinked via the above equations (once a PM is chosen). Typical
engineering based choices for the margins are normally GM of 4-6 dB and
PM of 45-85 degrees.

5. Discrete fractional order controller realization

In reference [8] authors based on the classical forward difference op-
erator (Apz)(t) = w introduced discrete Riemann—Liouville-type
fractional operator. In order to define this operator, firstly note that:

n

(A)(t) == (Apz o Apzo---0o Apz)(t) =h™" Z(—l)”_k <7;>$(t + jh)

j=0
(5.28)
Then, the fractional h-sum of order a;, « > 0, is defined by
_ “n—jt+a-1 .
JATYT)(E) = h” h 2
0=y ("I e 69

=0
for any n € Ng. The Riemann-Liouville-type fractional difference operator
«Af for a function x : (hN), — R is given by [§]

(D) (1) = (Ao, ")) (1) (5.30)
where t € (AN )q1(1—a)p- In [2] was shown that if a = (o — 1)h then
(a=0AfY)(t + a) = (oAf2) (1) (5.31)

where z(t) = y(t — a) for any t € (hIN),. The discrete-time control law
of the controller (4.15) need to express by the difference operator from
equation (5.28)). Then, the obtained control laws can be written as [14]:

u(t) = (kp + ki 1oD; + kg 1o D1)e(t) (5.32)

where e(t) is control error and 4 D} is the fractional order differential.

Approximation of this operator by Grunvald-Letnikov-type operator s Aj
leads to transformation [9]:

N-1
wDfe(t) = Afe(t) == Y aje(t - jh) (5.33)
j=0
where h = (t;\fo) is a step width, ¢ denotes an interval for fractional order

discretization computations, ty is an initial time and N is an amount of
function’s discretized point. In our considerations we assume that tg = 0.
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5.1. Discrete PSE approximation and PLC implementation. In or-
der to implement the operator in the PLC, the discrete approximation
method is required. The most known method of PSE (Power Series Expan-
sion) and CFE (Continuous Fractional Expansions) can be applied. These
methods allow us to estimate a fractional order terms with the use of digital
FIR or IIR filter. Major advantage of the PSE is that this approximant
bases directly on discrete version of the GL operator , and approxima-
tion has the form of polynomials, that is, the discretized fractional operator
has the form of a FIR filter containing only zeros. Its numerical realiza-
tion of the discrete implementation requires a relative long memory buffer
in order to obtain a good control quality. The CFE approximation has
the form of n-th order IIR filter containing both zeros and poles, cause
uses the trapezoidal integration rule. Thus its realization is easier since
obtained approximation order is relatively low. However, the CFE-based
method can cause numerical problems ending up with a low upper limit of
implementation length for CFE approximator.

The most straightforward method to discrete-time approximation of
fractional order function is the direct discretization using finite memory
length based on definition . In this method, the discretization of
fractional order differentiator/integrator s™ is expressed by the discrete
equivalent s = w(z~!) with the shift operator z=!. In case of the backward
fractional difference rule, w(z=!) = (1 —z7!), and applying the PSE to the
(1— 2712, we obtain formula ([2.1)) for the fractional derivative of order a.

Using PSE, the discrete equivalent of the fractional order operator, for

the transfer function G(z) = )1;8’ is given by
D*(2) = G(2) = hT*PSE{(1 — 2~ )T} >~ pFop, (271 (5.34)

where Y (z) and F(z) are the Z transforms of the output y(jh) and in-
put f(jh) sequences. Based on the short memory principle [?], the dis-
crete approximation of the fractional order integral/differential operator
(w(z™1))*?, is given by

L/
D**(z) = (w(z™ 1))t = AT MY " (—1)7 (@‘) AEM=T(5.35)
A J
Jj=0

where L is the memory length, and (—1)/ (i]a) are the binomial coefficients
according to relation . Second discrete-time approximation, of the
PSE scheme, is the use of the trapezoidal rule, called the Tustin method,
in which, discretization of the differentiator/integrator is expressed by the
generating function

11—zt

w(z™) = 24 g (5.36)
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The PSE both Euler and Tustin methods are used with approximation or-
der of 5 to obtain discrete fractional order PID controller (DFOPID) [14].
Table |1| presents different gain/phase margins and fractional orders for the
fractional order discrete representation of the DFOPID controllers used in
the simulations and experimental investigations. The FOPID controller

TABLE 1. Various GM and PM specifications for the
DFOPID (Tg = 0.15s)

Approx. method | GM PM FO FO DFOPID
(DT integration) | A,  ¢m (deg) A 1 id

65 1.02 -0.02 niPID1
75 0.92 0.08 niPID2
85 0.87 0.13 niPID3
85 0.90 0.10 niPID4

PSE of Euler rule or
PSE of Tustin rule

S U

constant gains were tuned, by solving equations for the gain and phase
crossover frequency and GM/PM specifications given in Section [4| Then,
these parameters are recalculated according to the FOPID discrete approx-
imation, PLC implementation and the Festo MPS specification. Particu-
larly, the inherent gains of the PLC A/C and C/A converters equal to 1/10
V. In the Festo MPS system the ultrasonic sensor level /voltage gain is 1/22
(10 V for 220 mm). The measurement noise is about 0.1 V peak to peak.
Additionally, the constant gains are finally tuned during the experiments,
thus, many sets of the values are tested. The optimized gains of the FOPID
controller , which also meet the relation are: kg = TK, = 7.5,
k; = K, = 50, and k, = 0.68, where the sampling time Ty = 0.15s. The
total feedback gain, including A/C and C/A converters and sensor level
gains, is equal to 220k,. The FOPID gains are constant for all simulations
and experiments in this paper.

PLC implementation of the DFOPID algorithm is performed via guide-
lines formulated in the IEC 61131 standards. The program structure of
the PLC controller S7-300 (Simatic of Siemens) contains the organization
blocks (OB1) which determine and call the function blocks (FB) and the
control functions (FC). These have access to the function process data
collected in the data blocks (DB). The fractional-order controller code is
represented by the FB which have access to the inherent memory of the
DB. The FB with DFOPID controller is called in an OB35 block (a cyclic
interrupt activated periodically each desired sampling time 6 ms or 150
ms). Other parts of the PLC program (communication between the PC
and the PLC, management, sensors, etc.) are gathered into the OB1 block.
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The FOPID controller algorithm is implemented in the structural con-
trol language (SCL), which is a high-level textual programming language
based on PLCs standard. SCL conforms to the IEC 113-3 standard and is
sufficient for numerical calculations with exponential operators, times/counter
functions and control structures, i.e. loops (FOR/WHILE/REPEAT) and
alternatives (IF THEN/CASE/GOTO). See Figure|3|for the sample of SCL
algorithm including the FOPID terms with the PSE approximation. During

kd) - (0.0 * #nD_states m[0]);
derivative
term
TSamp - (#k[#numIdx] * #nD_states m[#j + 1]):

discrete
states
n:| updating

cycling
code

saturation and anti-
windup

F1GurE 3. DFOPID code on the S7-300 PLC controller

PLC implementation of the control system, physical limits of the process
control should be considered. The DFOPID controller output is processed
via saturation block in the range 0-10 V. Also, in order to prevent inte-
gration wind-up in the controller when the pump is saturated, anti-windup
filter is used (see code in Figure [3). The anti-windup scheme comprises
back-calculation and clamping as well as a tracking mode to handle com-
plex scenaria.

6. Matlab simulation (Simulink) runs

This section presents Matlab (Simulink) results for the water tank vol-
ume system controlled with DFOPID feedback loop prior to the experimen-
tal tests. Non integer terms are approximated via CRONH formula [I8].
Both PSE (Euler and Tustin) discrete-time approximations are applied.
The control system setup in Simulink is seen on Figure In numerical
calculations, given in Figure the water tank volume system repre-
sentation includes control model and discrete representations of the

(fr. Commande Robuste dOrdre Non Entier)
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FiGURE 4. Fluid volume control system setup in Simulink

FOPID controllers (given in Table[l). In results of the computer simulation
the step responses of the closed-loop systems with different parameters of
the fractional-order controller are obtained. The rise time is increasing with
PM increasing from 75deg to 85deg, respectively. The poles distributions
of the water volume closed-loop DFOPID system for different PM, and two
discrete approximation methods, are given in Figure 6.

A number of system poles presented in Figure [6] are collected in Table
Particularly, only the dominant poles are presented in the map shown
in Figure [l The system with ¢, = 65deg has poles located on the unit
circle border (1, jO), and cause the system output being not robust to input
variations. Note that poles distribution and stability margin, itself, depends
on the approximation method for discrete integration.

TABLE 2. No. of poles for different DT approximation order

Approx. method | OL sys. FO integr. FO deriv. CL sys.
(DT integration) | poles no. poles no. poles no. poles no.

PSE of Euler rule or 4 5 5 14
PSE of Tustin 4 3 3 10

7. Experimental testbed results

In this section a series of experiments that appraise performance of the
integer-order discrete PID controller to a set of the DFOPID controllers
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FIGURE 5. Simulation algorithm and step responses of the
fractional order system (Ts = 0.15s)

obtained for the different fractional-orders are given. The experimental set-
up and PLC-based control configuration are presented in Figure [7, while
the closed-loop system configuration is depicted on Figure |8 The relative
optimal DFOPID controller is achieved to ensure desired system stability
margin and obtain tracking to set-point changes. It is noted that the tuned
controller parameters, satisfying the requirements given in Section {4| are
the same for both the discrete PID and DFOPID controllers. The DFOPID
closed-loop control system maintains desired dynamic performance, i.e.
small oscillation and settling time, and the overshoot of 5% whereas the
set-point change equals 100%. Figure |§| presents the transient responses
of the optimized process output variable and integer-order discrete PID
controller output to the step set-point. Next, dynamic performance and
stability of the integer-order discrete PID controller are compared with the
DFOPID controller obtained for different A and u.
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FIGURE 6. Pole locations for different approximation order
of discrete controllers realization

Figure[J| presents the set-point responses of the process outputs, integer-
and non-integer-order discrete PID controllers outputs when the different
sampling time is used for discrete controllers realizations, respectively. Fig-
ures show the closed-loop systems responses for the step reference, and
controllers outputs, when the sampling time 75 is 0.15s and 0.006s, respec-
tively. The controller output is scaled to 0%-100%, hence when the error
between the set-point and the process output is negative the controller out-
put is zero. In this situation, the proportional action is negative and the
integral action takes negative values. In order to revert the integrator out-
put to zero, the control error must be positive for a certain period. Also,
the integration action takes additional values in case of controller output
saturation in the anti-windup filter. Figures and illustrate clearly
that in case of niPID1 (with the smallest GM and PM and discretisation
setup scenario) for Ty = 0.006s, the system output is unstable. Therefore,
in this case the system is not robust to gain variations.
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FiGURE 8. Closed-loop configuration setup

In addition, we appraise system outputs (for the stable version of niPID1)
for different approximation methods for discrete-time (DT) fractional-order
realization of the differentiator/integrator using mixed scheme of the back-
ward difference (Euler) rule and the trapezoidal (Tustin) rule in Figure [10]
One may observe that, the calculations given at every step-size are shifted,
which is a result of the difference in the numerical integration scheme used
in the Euler and Tustin method respectively.

8. Performance comparison of integer- and fractional-order
setup

As a final technical section we appraise both integer- and fractional-
order PID discrete control systems via quadratic cost functions of controller
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FIGURE 9. System response for DT controllers PSE (Euler
rule) Ty = 0.15s (top set); Tx = 0.006s (bottom set)

outputs u, and of control error e(t) = r(t) —I(t), where r(t) is the set-point,
ie.:

Ji= /0 S dydt gy = /0 ()t (8.37)

The cost functions are performed using cumulative numerical inte-
gration method and the comparison results are shown in Figure The
niPID3 associated system shows the better control performance. As ex-
pected, with reduced system stability margins the total energy of the con-
troller output is higher compared to that for controllers referring to more
stable margins.

Next, comparison of the integer- and non-integer PID discrete control
closed-loop systems is given in the frequency domain. The discrete-time
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version of the identified true model (7) together with the feedback con-
troller niPID1,... niPID4 is compared with the integer-order PID closed-
loop system. Figureshows the closed-loop system frequency response.
Particularly, the singular value plot is calculated for Gcl(e(j‘”TS)), where, in
the case of the fractional-order system, G(2) = (K(y_prp)(2)Go(2))/(1+
K(;_pip)(2)Go(z)) is the discrete transfer function of the closed-loop sys-
tem, Tj is the sampling time, and w is frequencies between 0 and the Nyquist
frequency of 7/Ts. Robustness of the integer- and fractional-order feed-
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praisal (Ty = 0.15s)

back loop systems is further investigated via sensitivity magnitude (singular
value) plot seen on Figure In the case of the non-integer-order setup,
the sensitivity function is referred to as Syqc = (I + L f_pz-d))(_l), and the
complementary sensitivity function, Tt.qc = I — Sfpqc and are calculated
for the open loop function with the fractional controllers Ls_;q)-

The sensitivity (S) function address robust performance of the closed-
loop system. As expected, the non-integer-order systems with the highest
PM ¢,, = 75deg and 85deg has sensitivity plots with flatter peaks in the
frequency range of interest compared to the integer-order PID system. Flat-
ter peaks of S with the non-integer-order controllers indicate better robust
performance [22] to input disturbances compared to the integer-order one.
The fractional order controllers maintain the good noise attenuation profile
as well (seen via the complementary sensitivity plot).

9. Conclusion

A rigorous study on discrete PLC-based FOPID control design, relevant
approximation aspects prior to implementation, for a process characterised
by input delay was presented. In particular, an experimental testbed of a
water tank volume system was used for control validation and to support
the real-time design implementation. Stability of the proposed controllers
was illustrated. The fractional-order discrete water volume control system
designs ensure sufficient control performance despite the set-point change
and system delay. The benefits of using fractional-order controllers, ob-
tained for different approximation methods and approximation order were
shown both via numerical simulation (including robustness analysis) and
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experimental results. The paper should be of considerable interest to pro-
cess control engineers who have to provide practical solutions but may be
put off by the non-conventional nature of fractional control techniques (in
particular its practical PLC implementation approach). The authors are
currently investigating MIMO water tank control operation.
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