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Sleep-dependent memory consolidation has been extensively
studied. Neutral declarative memories and serial reaction
time task (SRTT) performance can benefit from slow-wave
activity, characterized by less than 1Hz frequency cortical
slow oscillations (SO). Emotional memories can benefit from
theta activity, characterized by 4-8Hz frequency cortical
oscillations. Applying transcranial direct current stimulation
(tDCS) during sleep entrains specific frequencies to alter sleep
architecture. When applying cathodal tDCS (CtDCS), neural
inhibition or excitation may depend on the waveform at
the applied frequency. A double dissociation was predicted,
with CtDCS at SO frequency improving neutral declarative
memory and SRTT performance, and theta frequency CtDCS
inhibiting negative emotional memory. Participants completed
three CtDCS conditions (Theta: 5Hz, SO: 0.75Hz and control:
Sham) and completed an SRTT and word recognition task
pre- and post-sleep, comprising emotional and neutral words
to assess memory. In line with predictions, CtDCS improved
neutral declarative memory when applied at SO frequency.
When applied at theta frequency, no negative emotional word
memory impairment was found but a positive association was
found between post-stimulation theta power and emotional
word recognition. SRTT performance was also not altered
by either CtDCS frequency. Future studies should investigate
overnight theta CtDCS and examine the effects of CtDCS
during and after stimulation.

© 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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1. Introduction

Sleep facilitates memory consolidation [1-4], however, the mechanisms of this facilitation are debated
[5-7]. The synaptic homeostasis hypothesis suggests that global synaptic downscaling occurs due
to slow-wave activity (SWA) mainly during slow-wave sleep (SWS), restoring balance after synaptic
potentiation during wake [8]. This downscaling can eliminate weaker memory traces [5]. The active
systems consolidation hypothesis [7] suggests that SWA orchestrates the reactivation and reintegration
of newly encoded information through interplay between the hippocampus and neocortex [6]. This
dialogue involves slow-oscillatory (SO) neuronal activity which oscillates between hyperpolarizing
‘down-states’” and depolarizing ‘up-states’ [3]. During rapid eye-movement (REM) sleep, the created
memory representation may be stabilized within pre-existing knowledge networks through synaptic
consolidation [7]. Both hypotheses support a crucial role of SWA in memory consolidation.

High amplitude slow oscillations, typically less than 1Hz frequency, dominate slow-wave sleep
(SWS) [9] and play an important role in memory consolidation, reducing the amount of forgetting [1].
Performance benefits have been found for hippocampal-dependent tasks ranging from word list
learning [10,11] to the serial reaction time task (SRTT) which contains declarative elements [12,13].

While SWS seems to benefit emotionally neutral memories, REM sleep is involved in consolidating
emotional memory [14,15] with a greater benefit for negative than neutral items [16]. Theta band
oscillations (4-7Hz), which are characteristic of REM EEG, potentially modulate the relationship
between REM sleep and preference for emotional memory consolidation [17].

Emotional memory is typically stronger than memory for neutral items [18,19], reflecting the co-
activation of the hippocampus and amygdala when exposed to emotional stimuli [20]. The processing
of emotional information is also influenced by the dorsolateral prefrontal cortex (DLPFC) [21-23]. A
hemispheric asymmetry has been found in the DLPFC, with positive information being influenced by the
left hemisphere and negative by the right hemisphere, known as the valence-specific hypothesis [24,25].
In line with this hypothesis, depressed individuals show a hypoactivity of the left with a concordant
hyperactivity of the right hemisphere [26]. Attempts to restore the balance using electrical stimulation
have yielded some positive results, suggesting a fruitful avenue of research [27].

It has also been established that Transcranial Direct Current Stimulation (tDCS) can influence
memory [28]. tDCS is a non-invasive brain stimulation technique involving an anodal electrode to
increase cortical excitability and a cathodal electrode to decrease/inhibit cortical excitability [29,30].
More recent research suggests that cortical changes could depend on the specific EEG waveform [31]
and cortical folding in the brain, with either stimulation type resulting in mixed-field potentials [32].
Specifically, cathodal tDCS (CtDCS) electrically binds to SO down-states to hyperpolarize neurons
while anodal binds to the up-states to depolarize neurons, but as SO down-states are already fully
hyperpolarized tDCS can effectively only increase excitability even when cathodal [32]. However, as the
theta waveform is not characterized by fully hyperpolarized down-states, instead acting as a ‘travelling
wave’ [33], in principle, CtDCS can inhibit cortical excitability by further decreasing theta down-
states, which may have a concomitant effect on emotional memory consolidation. tDCS may, therefore,
influence memory differently depending on more factors than simply the form of the stimulation
(cathodal or anodal).

A hemispheric lateralization effect has been observed when stimulating at theta frequencies, in
keeping with the valence-specific hypothesis, such that the right hemisphere has preferentially improved
negative memories [25]. However, bilateral stimulation has meant that the respective roles of anodal
and CtDCS for memory alterations remain unclear [34]. The form of emotional stimuli used may also
influence the effectiveness of applying tDCS to the DLPFC to alter emotional memory or valence, with
some studies finding significant results for emotional images/faces [23]; Balzarotti & Colombo [34]
and others find no significant results for emotion regulation [25]. No previous studies, however, have
explored the influence of tDCS on emotional word stimuli, despite theta activity benefiting both memory
for emotional images and emotional text [35,36]. Additionally, all studies to date have used tDCS
during the encoding phase when examining emotional memory differences [25,37,38]. It may instead
be beneficial to implement tDCS during memory consolidation, which could be more likely to influence
later retention [7].

In recent times, tDCS has been applied during sleep to modulate memory consolidation, with
differing levels of success [39,40]. It is currently debated whether or not emotional memory could be
sufficiently altered during REM sleep, as no previous studies have examined this [28]. Previously, tDCS
has been applied during REM sleep, with no apparent consolidation benefit for neutral declarative
memories [41]. This may be a direct consequence of SWS preferentially consolidating neutral declarative
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memory [3]. In line with this, neutral declarative memory improved after the application of anodal
SO (0.75Hz) tDCS stimulation during SWS specifically to the prefrontal cortex (PFC) [42,43]. This
improvement was attributed to enhanced spindle activity and an increased duration of SWS caused by
tDCS entraining SO [44,45] potentially influencing the transfer and distribution of encoded information
to the neocortex [28]. As SWS may also alter memory in the SRTT due to the presence of explicit
learning [13], including a modulation of the PFC on task performance [46], entraining SOs through tDCS
could, in principle, also influence consolidation of the SRTT. However, consolidation of the SRTT has
also been shown to relate to REM sleep [47], so enhancement of theta power through tDCS could also
potentially benefit the SRTT.

Applying tDCS during sleep entrains specific frequencies to alter sleep architecture [41,45], with a
concomitant memory alteration [28] in some cases. This phenomenon has not been extensively studied
when applying CtDCS at the SO and theta frequencies because it was seen as typically inhibitory [29]
until the more recent theoretical developments which showed that excitation or inhibition can depend
on the waveform of the applied frequency [32]. This study therefore aims to examine whether the effects
of CtDCS on memory may depend on differences in waveform for each frequency. Applying CtDCS
during REM at SO and theta frequencies is predicted to entrain the respective frequencies, subsequently
enhancing and inhibiting memory, respectively, due to specific differences in the waveforms for
each frequency.

Memory for neutral words is predicted to benefit due to the association between SOs and neutral
declarative memory consolidation [6] and the fact that entraining SO with anodal tDCS applied at 0.75 Hz
frequency improves hippocampal-dependent neutral declarative memory [41]. Memory for emotional
words, and especially negative words, is predicted to be inhibited due to the cathodal stimulation at
theta frequencies having the potential to inhibit neural activity [32,33] in the right hemisphere which
can influence specifically negative emotional memories [25]. However, these hypotheses have yet to
be tested, because no study has previously examined tDCS for emotional word stimuli, no study has
previously attempted to inhibit emotional memory using tDCS during sleep, and no study has directly
compared the effects of stimulation at different frequencies during REM sleep on both neutral and
emotional memory tasks. The SRTT could benefit from 0.75 Hz stimulation as performance improvement
has been associated with the increased SWA seen in younger adults (compared with older adults) during
SWS [48]. However, it has also been associated with changes in REM sleep [47], and seems to involve
recruit declarative and procedural memory systems [46], so it may also benefit from 5 Hz stimulation.

This study will therefore test the hypothesis that CtDCS applied during REM sleep will enhance
neutral hippocampal-dependent memory in both a word recognition task when applied at 0.75Hz
(boosting SOs), and inhibit emotional (and especially negative) memory in a word recognition task
while having no impact on the SRTT when applied at 5Hz (boosting theta oscillations). It will also
examine whether or not stimulation at either frequency will affect performance in the SRTT. We chose
to stimulate at theta frequency (5Hz) during REM sleep, as suggested by Barham et al. [28], because
theta oscillations during REM sleep have been implicated in emotional memory consolidation [17]. In
order to evaluate the specificity of stimulation at the theta frequency, we also stimulated at SO frequency
(0.75Hz), as well as having a Sham stimulation condition. The 0.75 Hz stimulation was also during REM
sleep rather than non-rapid eye-movement sleep (NREM) sleep in which SOs usually occur in order to
avoid confounding stimulation frequency and sleep stage and ensure that the comparison was specific
to frequency differences. This is similar to the approach adopted by Marshall et al. [44], who stimulated
at two different frequencies during NREM sleep.

2. Material and methods
2.1. Participants

Eighteen participants were recruited in total, of whom three had to be excluded due to equipment failure,
leaving data for 15 participants (5M, 10F), aged 18-22 (20.73 +0.3; M £ s.e.m.). Strict exclusion criteria
included no history of sleep, neurological or psychological disorders and no current pregnancy, assessed
by a self-report questionnaire. All participants were right-handed native English speakers. The study
was approved by the School of Psychology Research Ethics Committee and the University of Lincoln,
which is accredited by the British Psychological Society, and all participants gave informed consent
and were free to withdraw at any time without penalty. Participants were offered course credit for
their participation.
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186 The stimuli were presented on an Acer Aspire F15 laptop with a 15.4” screen, with responses given using : =

187 numbers on the keyboard numeric keypad. §

188 Matlab™ R2016b (The Mathworks Inc., 2016) and the Psychophysics Toolbox-3 extension [49] : -8

189 was used for memory task presentation and to record/extract responses. Superlab™ 5.04 (Cedrus §

13(1) Corporation, 2014) was used for SRTT stimulus presentation, with responses recorded into a text file. a

192 Matlab R2013b was used for triggering stimulation. S
. W

193 _ 3

194  2.3. Emotional memory task

195 A word recognition task assessed memory for emotional and neutral words. Eight hundred and sixty

196 four words were selected from the Norms of Valence, Arousal and Dominance for 13 915 English Lemmas

197 database [50]. Words were placed into one of three emotion categories: positive, neutral and negative,

198 based on their standardized assessed mean valence and arousal scores. The words were rated on

199 emotional valence and arousal scales, respectively, with scores ranging from 1 to 9: 1 =highly negative,

200 5=neutral, 9 =highly positive for valence and 1= calming, 5=neutral, 9 = exciting for arousal. Words

201 in the positive, neutral and negative categories significantly differed in valence and arousal (p < 0.01 for

202 all pairwise emotion combinations; table 1).

203 The words selected were divided into three sets of 288, with 96 positive, 96 negative and 96 neutral

204 words, one set for each session. From each set of words, 192 were used during the encoding phase (64

205 positive, 64 neutral and 64 negative) and 96 (32 positive, 32 neutral and 32 negative) were used in the

206 retrieval phase as foils. The order of the word sets presented to participants during the encoding and

207 retrieval phases were counterbalanced across tDCS conditions.

208 In the encoding session, participants were shown onscreen instructions informing them that the

209 experiment is about to begin. A blank screen was then shown for 500 ms, followed by a central white

210 fixation cross on a black background for 500 ms. The first word (text size 40 in Arial font) then appeared

211 onscreen for 200 ms, followed by another blank screen for 500 ms and then a screen asking participants

212 to rate word valence and word arousal on a nine-point scale ranging from very negative to very positive

213 valence and very low to very high arousal using keyboard keys 1-9. This pattern then continued for each

214 word, beginning with a central white fixation cross until all words were rated.

215 In the retrieval session, a similar protocol to the encoding session was used with the addition of

216 a memory rating for each word presented (figure 1). This involved making a memory judgement

217 using the ‘RKN” paradigm [51]. ‘R’ represented ‘Remember’ judgements, suggesting that the participant

218 consciously remembered seeing the word in the encoding session, ‘K’ represented ‘Know’ that some

219 memory of the contextual details of the word were known but not consciously remembered and ‘N’

220 represented ‘Never seen’ suggesting that the participant believed that the word was not presented in the

221 encoding session.

222

;;Z 2.4. Procedural learning task

225 A four-choice serial reaction time task (SRTT) assessed procedural learning ability. Like the emotional

226 memory task, the SRTT task involved sessions before and after sleep on each night of the study. Three

227 SRTT sequences were created and counterbalanced between tDCS conditions and participants. The pre-

228 sleep session consisted of an initial practice block of 12 trials (a trial being a single element within the

229 sequence, hence a single repetition of the practice sequence), five control blocks with 96 trials each, one

230 transfer block of 96 trials and finally two further control blocks of 96 trials each (figure 2). The post-sleep

231 session consisted of an initial practice of 12 trials, followed by one control block of 96 trials, one transfer

232 block of 96 trials and a final control block of 96 trials.
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Figure 1. Example of a retrieval trial. Participants rated valence and arousal of the presented word on a nine-point scale as well as an
‘RKN" memory judgement, with reaction times and accuracy being recorded.

The control blocks contained a single, repeating, 12-element sequence; the transfer block contained
a different 12-element sequence not previously learned by participants. The sequences consisted of
the second-order conditional transitions (SOC); the target position on each trial depends on the
target positions during the two previous trials [52]. The 12-element sequences were as follows based
on previous sequences adopted in SRTT research; 342312143241 (SOC1), 341243142132 (SOC2) and
121342314324 (SOC3) [53].

Participants were instructed to press the key corresponding to the number shown on-screen during
all blocks. If an incorrect response was made, a feedback beep was heard and the sequence would
only continue upon pressing the correct key. On-screen instructions explained that the participant must
respond quickly and accurately. Participants were not told about the presence of the sequences.

2.5. Equipment

2.5.1. Transcranial direct current stimulation

A BrainSTIM™ battery-driven direct current stimulator induced 0.4 mA cathodal pulse stimulation, the
maximal current density achieved was 0.16 mA cm~2, which is in the middle of the 0.04 and 0.5 mA cm 2
range established by previous studies [41,54]. The tDCS stimulation frequencies used were 5 Hz (theta)
and 0.75 Hz (slow oscillatory), during the Sham session the tDCS electrode was set up as usual but no
stimulation was presented. During the stimulation period, a square-wave electrical pulse stimulation
was turned on and off at the stimulation frequency, continually. A trigger box started the stimulation at
the desired time using a custom-made Matlab script.
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Figure 2. Example of a pre-sleep SRTT session. Participants pressed the key corresponding to the filled square onscreen, with accuracy
and reaction times being recorded.

Stimulation was applied 4 min into REM sleep, lasting 25 min. As the second and third REM episodes
are more stable [55], stimulation always occurred during the second or third REM periods [56]; the second
REM period was used for all but one night, and the third used for just one night when the second REM
period ended within the first 4 min. The use of a continuous stimulation period, similar to that used by
Nitsche et al. [56], was chosen to ensure a stable block of stimulation which did not vary by structure or
duration across participants. This is predicated on the assumption, however, that REM sleep continues
through the stimulation period. This assumption by the continued presence of REM sleep after the end
of stimulation on 37 out of the 45 experimental nights; the eight nights in which REM ended during
the stimulation were evenly split across the 5 Hz, 0.75 Hz and Sham conditions (3-2-3) and exclusively in
four participants. As all participants started stimulation during REM and ended at least one night during
REM (and most all three nights), and as the pattern of results did not vary at all when the analysis
was restricted to just the 11 participants who remained in REM throughout stimulation, data from all
15 participants is presented throughout.

Saline-soaked sponge electrodes covered in EC2™ electrode cream to stabilize conductivity over
time were used. Electrode resistance was always below 2kQ. The active stimulation cathodal electrode
(2.5cm?) was placed on F4 and the reference anodal (24 cm?) was placed on the contralateral upper
forearm, making this CtDCS. The small cathodal electrode was placed on F4 in order to create focal
stimulation in the right hemisphere. However, the anodal electrode was consequently too large (in order
to maintain a safe current level [54]) to be placed near the EEG reference electrodes at the mastoids or
the EOG electrodes in frontal orbital locations, without undue interference. Instead, as suggested by
Reinhart et al. [57], we used an arm electrode in order to avoid unknown effects of stimulation from
a large reference elsewhere on the scalp. This needed to be placed contralaterally in order to provide
sufficient stimulation to grey matter which would not be achieved with safe levels of stimulation with the
relative locations of our front lateral cathodal electrode and ipsilateral arm electrode. It should be noted,
however, that this is likely to have decreased asymmetry in activation in comparison to an ipsilateral
electrode.

€5g7/1.°6 ‘Psuado 205y BaoBuysiigndiaposeforsos:



349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

wake
REM

N1
N2

SWS

+ time >

21.00 22.00 23.00 24.00 lam 2am 3am 4am Sam 6am 7am 8am 9am

wire-up learning retrieval
procedural and procedural and
declarative declarative
memory tasks memory tasks

Figure 3. Depiction of experimental protocol. W, wake; REM, rapid eye-movement sleep; N1, N2: stages of non-rapid eye-movement
sleep (NREM); SWS, slow-wave sleep.

2.5.2. Polysomnography

Sleep monitoring involved an Embla™ N7000 polysomnography system with scalp electrodes attached
at international 10-20 system locations C3, C4, F3, O1 and O2 [58], in keeping with the recommended
procedure from the American Academy of Sleep Medicine (AASM) [59]; the back-up electrode at F4 was
omitted due to the presence of the stimulation electrode at that site. Each electrode was referenced to the
contralateral mastoid (M1 and M2). Left and right electrooculogram (for eye movements) as well as left,
right and upper electromyogram (for muscle tone) were also used, and a ground electrode was attached.
Heart rate, respiration and movement were monitored through the attachment of the Patient Unit add-on
device. Silver silver-chloride (Ag-AgCl) disc electrodes were attached to the scalp using EC2™ electrode
cream after skin exfoliation using NuPrep™. Electrode impedance was below 5kQ for all electrodes in
every recording.

2.5.3. Procedure

The procedure is summarized in figure 3. All participants took part in the three CtDCS conditions
(6Hz, 0.75Hz and Sham), each session was separated by at least 48 h to resist potential CtDCS carry-
over effects. Participants volunteered to take part in the study after briefing. The first session of the
study began at 8:45 pm, with participants giving informed consent and taking an opportunity to ask any
questions. Participants then prepared for the overnight sleep before the wire-up and polysomnographic
recording began.

After the wire-up, participants completed the Stanford Sleepiness Scale [60] to record current alertness
on a seven-point scale ranging from 1 (alert) to 7 (fighting sleep). At 22.00, this was followed by the pre-
sleep session of the SRTT, lasting approximately 20 min and the encoding session of the word recognition
task lasting approximately 40 min. At 23.30, lights were turned out and participants went to sleep. During
the night, CtDCS stimulation was applied 4 min into either the second (mostly) or third (on one night
only when the second period of REM was unstable in the first 4 min) stages of REM sleep in the night.
Participants were awoken at 7.00 and given 20 min to recover from sleep inertia. Inmediately after this,
the SSS was administered again followed by the post-sleep session of the SRTT and word recognition
tasks taking 20 min and 1h, respectively. Finally participants were debriefed and left the laboratory at
around 8.45.

2.6. Design and data analysis

2.6.1. Recognition task

In order to focus on the strongest emotional memories, data analysis focused on the ‘Remember” (R)
responses. R-response rates were converted to d’ scores (d’ = Z(hit rate) — Z(FA rate)), this signal detection
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method accounts for possible response bias and is widely used in memory studies [61]. d” scores were
created for each emotion category. The relationship among emotion, CtDCS stimulation and memory
was analysed using a 3 (emotion; positive, negative and neutral) x 3 (CtDCS condition; 5Hz (theta),
0.75Hz (slow-oscillatory) and Sham (no stimulation)) within-subjects ANOVA and Bonferroni-corrected
post-hoc f-tests where appropriate.

2.6.2. Serial reaction time task

SRTT measurements included accuracy (number of correct responses), response time (RT) and amount of
learning (AoL) which is quantified as the mean RT in the transfer blocks—mean RT in the control blocks;
hence a larger AoL represents a greater difference between learned and unlearned RTs. All RTs above
and below 3 standard deviations from the mean were removed as outliers.

All analyses focused exclusively on blocks of interest, which were the transfer blocks (block 6 for pre-
sleep sessions and block 2 for post-sleep sessions) and the control blocks immediately adjacent to the
transfer blocks (blocks 5 and 7 for pre-sleep sessions and blocks 1 and 3 for post-sleep sessions). No other
blocks were involved in the analysis. Transfer accuracy and RT measures were averaged across trials
within the single transfer block while control accuracy and RT measures were averaged across trials
from both control blocks of interest within a session. All measures were evaluated using a 3 (CtDCS
condition; 5Hz, 0.75 Hz and Sham) x 2 (session; pre-sleep and post-sleep) within-subjects ANOVA with
Bonferroni-corrected post-hoc t-tests where appropriate.

2.6.3. Sleep data analysis

Sleep data were divided into 30-s epochs and scored independently by two experienced sleep scorers
using REMLogic™ 1.1 (Embla, 2010). Using standardized scoring criteria from the AASM, a level of
agreement of just under 85% was achieved, which is line with other studies [59]. Total sleep time (TST),
overall sleep efficiency (SE) and individual measures of duration and proportion were measured for
each sleep stage (N1, N2, SWS and REM). The stimulation periods were marked as unscored because the
stimulation frequency dominated the EEG during stimulation making reliable sleep scoring impossible;
an equivalent period was also marked as unscored in the Sham stimulation condition to allow valid
comparison between the conditions. All sleep-related analyses have therefore been presented without
the inclusion of the stimulation or Sham-equivalent epochs. Planned Pearson’s parametric correlation
tests were conducted between the duration of each sleep stage and behavioural performance, for each
CtDCS condition.

2.6.4. Spectral analysis

The EEGLAB toolbox for Matlab [62] was used to manually remove artefacts in the EEG channels before
spectral power was estimated using Welch’s method with a 50% overlapping Hamming window using
30s segments to match the scoring epoch length and a frequency resolution of 0.2 Hz [63]. Signals were
high-pass filtered at just 0.1 Hz to remove the DC component without affecting SWA and total power
from 0.5 to 90 Hz was estimated for all sleep epochs after the period of stimulation (or equivalent period
for the Sham condition). Activation was aggregated across all available electrodes and two bands of
interest—SWA (0.5-2Hz) and theta (4-8 Hz)—were defined in line with the stimulation frequencies
using standard AASM definitions [59]. Relative power (as a % of total power) was calculated for each
band separately for both REM and SWS; power estimation was limited to the post-stimulation sleep
period in all cases in order to focus exclusively on the part of sleep that could have been influenced
by CtDCS.

Four one-way within-subjects ANOVAs, for SWS SWA power, SWA theta power, REM SWA power
and REM theta power, respectively, were used to analyse spectral power as a function of CtDCS
condition. The relationship between spectral power and behavioural performance was evaluated
using planned Pearson’s correlations on specific variables of interest, separately for each CtDCS
condition, based on theoretical predictions: SWA in SWS with neutral word recognition, theta power
in REM with emotional word recognition, and both SWA in SWA and theta power in REM with
AoL at retrieval. All other combinations were also tested as unplanned correlations with Bonferroni
correction.
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Figure 4. Alertness, measured by the SSS, shown before and after sleep in each CtDCS condition.
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Figure 5. Performance on the word recognition task separately for each (tDCS condition and emotion category. (a) The number of correct
trials; (b) remember recognition performance measured by d". (**p < 0.01).

3. Results

3.1. Alertness

Alertness was measured pre-sleep and post-sleep in each CtDCS condition using the SSS to ensure that
task performance was not impacted by differences in alertness; these results are shown in figure 4.
Pre-sleep (2.96 £0.17) and post-sleep (3.31 +0.19) alertness did not differ overall (Fq,14 =3.47, p=0.08,
77;2; =0.20) and alertness was also similar across the 0.75Hz (2.90£0.21), 5Hz (3.07£0.17) and Sham
(3.43+0.21) conditions (Fp28=3.05, p=0.06, 17,2, =0.18). In addition, pre- and post-sleep alertness
differences did not significantly vary across CtDCS conditions (Fp28 =2.36, p=0.11, 77,2; =0.14). It is
therefore unlikely that alertness played a major role in any of our findings here.

3.2. Word recognition task

The mean number of correct trials per session (figure 51) was strongly above chance (214.98 +5.77),
indicating a mean accuracy score of 74.6% when results were collapsed across CtDCS and emotion
conditions. The number of correct trials did not differ significantly (F»56=1.26, p=0.30, 77;% =0.08)
between positive (71.67+1.77), neutral (72.58 £2.49) and negative (70.73+£1.77) words, or differ
significantly (Fp 56 =2.22, p=0.13, n% =0.14) between 0.75Hz (73.22 £ 1.98), 5Hz (69.87 £ 2.29) and Sham
(71.89 £ 2.12) conditions.

When comparing different CtDCS and emotion conditions for the ‘Remember’ response d’ (figure 5b),
there was a non-significant main effect of CtDCS condition (Fj32,1851=1.70, p=0.21, 17%:0.11),
although Bonferroni-corrected post-hoc analyses suggested that the 0.75Hz condition (2.30 & 0.20) was
significantly greater (p=0.02) than the Sham condition (2.0440.18), but not the 5Hz (2.084+0.24)
conditions. No other significant pairwise differences were seen (all p > 0.1). A significant main effect
of emotion was found (Fp8=7.35, p=0.03, 77%:0.34), indicating differences across the positive
(2.10+0.21), neutral (2.37+0.22) and negative (1.95+0.16) words. Post-hoc analyses revealed a
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Figure 6. Valence and arousal ratings for encoding and retrieval separately for each CtDCS condition and emotion category. (a) Valence
ratings during encoding; (b) valence ratings during retrieval; (c) arousal ratings during encoding and (d) arousal ratings during retrieval.
(**p < 0.01).

significantly greater d’ score for neutral than negative words (p = 0.004); no other pairwise comparison
was significant (all p > 0.1).

It was predicted that 0.75Hz CtDCS would improve memory most strongly for neutral words,
while the 5 Hz CtDCS condition would decrease memory for negative words. A marginally significant
interaction between CtDCS condition and emotion was indeed found (F456 =2.47, p =0.06, n% =0.15).
Planned comparisons showed that in the 0.75Hz stimulation condition, memory for neutral words
(2.78 £0.25) was significantly stronger than positive words (2.19 & 0.24; t14 = 3.45, p = 0.004) and negative
words (1.93 +0.15; t14 = 5.68, p < 0.001), in line with predictions. Notably, memory for neutral words was
also significantly stronger for the 0.75Hz condition (2.78 £0.25) than the Sham condition (2.08 4-0.22;
t14 =3.81, p=0.002), confirming a specific effect of stimulation.

However, planned comparisons in the 5Hz condition showed no significant difference between
negative words (1.98+£0.22) and either positive words (2.01 £0.23; t14 =—0.218, p=0.83) or neutral
words (2.234+0.33; t14=—1.14, p=0.27), contrary to predictions. There was no significant difference
in negative word memory between the 5Hz (1.98 +0.22) and Sham conditions (1.95£0.16; t14 =0.204,
p < 0.84). Collectively, these results show a clear benefit of stimulation at 0.75 Hz for neutral memory, but
no effect of 5Hz stimulation on negative memory.

Several quality control measures were taken to ensure the validity of the results. A comparison of
word accuracy across the three different word lists used showed no significant differences (Fz25 =0.28,
p=0.76, 77;% =0.02) between word list 1 (216.33 £6.70), word list 2 (215.80+7.85) or word list 3
(212.80+4.43). Similarly, the word list order made no difference in the 0.75Hz (F59=0.78, p=0.59),
5Hz (F59=1.93, p=0.19) and Sham (F513=0.98, p=0.48) conditions. Finally, the order of the CtDCS
conditions made no difference in the 0.75Hz (F59 =0.48, p=0.79), 5Hz (F59 =0.28, p =0.91) and Sham
(F5,13 =1.65, p=0.24) conditions.

3.3. Valence and arousal

For valence ratings (figure 6a,b), positive valence was significantly stronger than neutral valence, which
was significantly stronger than negative valence, in each session and across all conditions (all p < 0.001).
For arousal ratings (figure 6c,d), positive and negative items created significantly stronger arousal than
neutral items in each session and across all conditions (all p < 0.001); positive and negative items showed
no difference in arousal to each in any session or condition (all p > 0.1)
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601 The change in mean valence and arousal ratings from pre- to post-sleep was examined using

602 difference scores [post-sleep valence/arousal — pre-sleep valence/arousal] as a function of CtDCS and

603 emotion condition, in order to see if emotional reactivity was affected by stimulation ( table 2). Positive

604 difference scores indicate a more positive valence or a higher level of arousal after sleep.

282 A significant main effect of emotion was found (F1.16 162 =5.02, p =0.04, 77,% = 0.26), with positive items
(—0.23+0.09) seen as marginally less positive relative to neutral items (0.01 4 0.03; p =0.07), and non-

607 significantly less positive than negative items (0.15 £ 0.10; p =0.2). There was no significant main effect

608 of CtDCS condition (Fp28 =2.55, p=0.10, 17;2, =0.15) and no significant CtDCS x Emotion interaction

2(1)(9) (F23633.0=0.44, p=0.68, 77; =0.03), suggesting that any change in emotional valence rating across the

611 sleep interval was unrelated to the stimulation.

612 For arousal ratings, no main effect of emotion was found (F;8=1.50, p=0.24, > =0.10), with
positive (—0.19 +0.06), negative (—0.05+£0.09) and neutral (—0.08+0.04) items all showing a small

613 ) . . .

614 decrease in arousal after sleep, with no differences between them (all p > 0.1). As with valence, there was

615 no main effect of CtDCS condition (F28 =1.00, p=0.38, n% =0.07) and no CtDCS x Emotion interaction

616 (F456=0.50, p=0.74, 17;2, =0.03), so neither CtDCS condition nor word emotion affected any change in
617 arousal ratings across sleep.

618

619

620 3.4. Serial reaction time task

621

622 Accuracy (figure 7a,b) was assessed for the control blocks of interest as a function of each session (blocks

623 5 and 7 pre-sleep and blocks 1 and 3 post-sleep) and CtDCS condition, with no significant main effect of
session (F1,14 =2.64,p=0.13, ng =0.16) or CtDCS condition (F,8 =0.51, p =0.61, ’7;% =0.04) or significant

Z;: interaction (F1.40,195 =0.23, p=0.72, 77;2; =0.02). A similar analysis on the transfer blocks of interest (block
626 6 pre-sleep and block 2 post-sleep) also revealed no significant main effect of session (F714 =0.60,
627 p=0.45, n’% =0.04), no significant main effect of CtDCS condition (F»2g =0.70, p=0.51, nf, =0.05) and no
628 significant interaction (Fp,08 =0.91, p =0.41, nfj = 0.06) Together these results suggest that any differences
629 in reaction times (see next section) were unlikely to be due to differences in accuracy.

630 Reaction Times (RTs, shown in milliseconds; figure 7c,d) were also examined as a function of session
631 and CtDCS condition. For control blocks, a significant main effect of session (Fj14=4.99, p=0.04,

632 n% =0.26) revealed a slight slowing from pre-sleep (394.67 +12.15) to post-sleep (418.53 £12.49). A
633 marginally significant effect of CtDCS condition showed a marginally faster RT for the 0.75Hz condition
634 (385.27 +£7.59) compared to the 5Hz condition (426.38 +17.90; p =0.098), with no significant difference
635 from either compared to the Sham condition (408.14 £17.63; both p >0.1). The change in RT from
636 pre-sleep to post-sleep did not vary by CtDCS condition (Fp28 =0.13, p=0.88, ’75 =0.01). The slight
637 slowing from pre-sleep (430.11 £ 11.27) to post-sleep (457.83 4= 12.40) was also seen in the transfer blocks
638 (F1,14=16.65,p=0.02, n;% = 0.32). However, there was no difference across CtDCS conditions (Fy,14 =1.44,
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Figure 7. SRTT accuracy, response times and amount of learning separately for each (tDCS condition before and after sleep. (a) Accuracy
in control trials; (b) accuracy in transfer trials; (c) response times in control trials; (d) response times in transfer trials and (¢) amount of
learning (*p < 0.05,+p < 0.01).

p=0.26, 77,[2; =0.09) and the change from pre-sleep to post-sleep again did not vary by CtDCS condition
(F1.41,1978 =0.18, p=0.76, n% =0.01).

The amount of learning (AoL, the RT difference between transfer blocks and control blocks within a
session; figure 7e) was also examined as a function of session and CtDCS condition. In all three CtDCS
conditions within both sessions (six conditions in total) significant learning was demonstrated by faster
RTs in control blocks in comparison to transfer blocks (all p <0.05). AoL did not significantly vary
(F1,14=0.46, p=0.51, nf, = 0.03) from pre-sleep (39.30 £ 6.02) to post-sleep (35.45 £ 6.56); however, it did
vary marginally (F 28 =2.66, p=0.09, 77% =0.16) across CtDCS conditions, with the greatest learning seen
in the Sham (48.04 £11.66) and 0.75Hz (40.72 & 6.41) conditions, and notably less in the 5 Hz condition
(23.36 +6.20), though no pairwise differences were significant (all p > 0.1). The difference across CtDCS
conditions did not vary significantly from pre- to post-sleep (F2,28 =0.04, p =0.96, n% =0.003) (figure 8).

To ensure that none of the RT responses were due to the order in which the SRTT sequences were
presented, we compared the effect of sequence order across all CtDCS conditions in both sessions, for
both control and transfer blocks. No order effect was found (p> 0.1 for all 12 conditions), so SRTT
sequence order is unlikely to be a major factor in our results.

3.5. Sleep parameters

Sleep parameter data separated by CtDCS condition are summarized in table 3. With standardized sleep
scoring, and excluding the unscored stimulation period from all analyses, no differences were seen across
CtDCS conditions for total sleep time, duration of N1 sleep, duration of N2 sleep, duration of SWS or
duration of REM sleep (all p > 0.1), confirming that sleep structure was broadly equivalent across all
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Figure 8. Relative spectral power during SWS and REM sleep separately for each (tDCS condition. (a) Relative power in the SWA (0.5
2 Hz) band; (b) relative power in the theta (4—8 Hz) band (**p < 0.01).

Table 3. Sleep parameters per (tDCS condition. All values shown are mean =+ s.e.m. Higher scores equate to greater mean valence or
arousal rating differences.

(tDCS condition
5Hz
TST (min) 372.84 £15.28 375.93 4 8.85 377.63 +9.21 0.88
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three stimulation conditions. This suggests that the effect of stimulation did not significantly alter global
sleep parameters outside of the stimulation period.

In order to evaluate a role for different stages of sleep in the processing of emotional and procedural
memory under specific stimulation conditions, we examined associations between the duration of
different sleep stages and measures of behavioural performance. Planned correlation analyses between
the duration of REM sleep in the 0.75Hz, 5Hz and Sham conditions and the Remember d’ scores in
the word recognition task in those conditions revealed no significant associations (all p > 0.1). Similar
planned correlation analyses for SWS revealed a marginally significant relationship (r=0.47, p=0.08)
between Remember d” scores for positive words in the 0.75 Hz stimulation condition and the amount of
SWS obtained in that condition. All other associations with SWS were not significant (all p > 0.1). Planned
correlation analyses between the duration of REM and SWS in the 0.75 Hz, 5 Hz and Sham conditions and
AoL in the procedural learning task revealed no significant associations (all p > 0.1). Taken together, these
results suggest that the benefit of 0.75 Hz stimulation for neutral words seen in the earlier analysis may
be the result of the global increase in SWS for all participants as a result of the stimulation, and not related
to the amount of SWS obtained outside of the stimulation period.

3.6. Spectral analysis

Relative spectral power was estimated for SWS and REM sleep during the post-stimulation period for
both SWA and theta bands, as these are the sleep stages in which those bands are particularly important
and the bands reflect the CtDCS stimulation frequencies used. Of the 45 experimental nights, SWS
occurred at some point after stimulation on 42 nights (so three participants have no data on one night for
this measure), and REM sleep occurred at some point after stimulation on all 45 nights as expected. The
data are shown in table 4.

Relative power in the SWA band during SWS was much higher than during REM across all conditions
as expected (all p <0.01). Similarly, relative power in the theta band was greater during REM sleep
compared with SWS across all conditions as expected (all p < 0.01). However, there was no difference
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Table 4. Relative spectral power per CtDCS condition. All values shown are % = s.e.m. Higher scores indicate a stronger proportion of
spectral power in a given band of interest.

(tDCS condition
5Hz 0.75Hz Sham p
SWS SWA 75.62 +2.28 76.30 = 2.38 74.21 £ 2.55 0.81

in relative SWA power across CtDCS conditions during SWS (F;2, =0.21, p=0.81, 77;% =0.02), or during
REM sleep (F1.30,14.30 =2.38, p=0.14, 77% =0.18). A similar analysis of relative theta power across CtDCS

conditions revealed no difference during SWS (F130,1430 =2.38, p=0.14, 77,% =0.18) or during REM
sleep (F1.30,14.30 =2.38, p=0.14, ;7,2, =0.18). Collectively, these results suggest that stimulation at different
frequencies did not have a major lasting impact on sleep EEG beyond the period of stimulation itself.

The association between theta power in post-stimulation REM and emotional memory was examined
with planned correlation analyses. During in the 5 Hz (theta) stimulation condition, a positive correlation
with theta power was found for both positive (r=0.55, p=0.04) and negative (r=0.53, p=0.04)
emotional memory. No such correlation was seen in the 0.75 Hz stimulation condition (both p > 0.1) while
in the Sham condition, a trend was seen for negative emotional memory (r=0.47, p = 0.08). These results
suggest that the relationship between post-stimulation REM theta power and emotional memory may
have been tightened as a result of the theta stimulation. By contrast, no relationship was seen between
neutral memory and SWA power during SWS in any condition (all p > 0.1).

The AoL in the SRTT task could be governed by SWA during SWS or theta activity during REM sleep
based on the literature, so planned analyses examined both of these possibilities. In the theta stimulation
condition, the association between theta power during REM sleep and the AoL after sleep showed a
trend (r=0.46, p=0.09). No relationship was found with SWA during SWS, or for either sleep stage in
regard to the AoL before sleep.

Finally, all other possible relationships between behavioural measures and SWA power and theta
power in either SWS or REM sleep, which were without theoretical predictions, were tested using
Bonferroni-corrected Pearson correlation analyses. No significant effects were found (all p > 0.1).

4. Discussion

This study investigated the role of CtDCS applied during REM sleep at 0.75Hz (SO) and 5Hz (theta)
frequencies in the consolidation of neutral and emotional memory in a word recognition task, and
performance on the SRTT. CtDCS was applied during REM to entrain SO and theta oscillations—with
SO as the hallmark of EEG activity during SWS being associated with neutral declarative memory
especially [64] and theta oscillations as the hallmark of EEG activity during REM being associated with
emotional memory [17]. Specifically, this study aimed to test a possible double dissociation by using
CtDCS to impair negative memory consolidation when entraining theta oscillations while reducing
forgetting of neutral declarative memory when entraining SO. It also aimed to examine the effect of
stimulation at both frequencies on the SRTT which has been associated with both SWS and REM.

In line with predictions, after applying 0.75 Hz (SO) frequency CtDCS during REM sleep, a significant
improvement in neutral declarative memory was seen relative to the Sham and 5Hz conditions.
However, 5Hz (theta) stimulation during REM sleep did not appear to significantly reduce consolidation
of negative emotional memories. No effects of CtDCS were seen on the valence and arousal ratings before
and after sleep. Significant learning was seen in the SRTT, but this was unrelated to the stimulation
condition or the consolidation interval.

One possible explanation for the absence of a reduction in emotional memory recognition after sleep
is that theta power during REM sleep actually showed an enhanced relationship with emotional memory
after 5 Hz stimulation, while there was no reduction in recognition in this condition. It could be that two
opposite effects cancelled out each other out: a reduction in emotional memory consolidation during the
stimulation period itself, but a subsequent enhancement in the post-stimulation period. This fits with
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the SWS results, where the absence of a post-stimulation relationship did not interfere with the 0.75Hz
stimulation-related enhancement of neutral memory. If this account is true, it suggests that CtDCS
stimulation during sleep may have more complex effects than previously thought, and in particular may
have an effect on memory during the stimulation period, and a subsequent effect on neural oscillations
during sleep which may themselves have a quite different effect. This is a preliminary finding, however,
and requires future research and additional supporting evidence to confirm its significance.

After examining previous research, this is to our knowledge the first study to have applied CtDCS
over the PFC during REM sleep to entrain both SO and theta rhythms to subsequently alter memory.
Previous research has generally used anodal tDCS, for example, over the PFC during SWS to entrain SO,
improving neutral declarative memory performance [65]. The results from the current study show that
entrainment is also possible during REM sleep, with the application of tDCS at 0.75 Hz entraining SO and
modulating neuronal dynamics [45] by replacing existing oscillatory activity [66] to selectively improve
neutral declarative memory [41]. Increasing SO would explain the increase in neutral declarative
memory seen in the current study.

Owing to cortical folding in the brain, both anodal and CtDCS result in mixed-field potentials,
with a unidirectional neural firing rate increase, suggesting that CtDCS could either inhibit or improve
memory [32]. The extent of this increased firing rate may also depend on the differing SWA and
theta waveforms, which may explain the differences in performance benefits for the 0.75Hz and 5Hz
conditions seen in the current study.

SWA is uniquely characterized by up-states involving neural depolarization in which neurons actively
fire, as well as down-states involving hyperpolarizing neural silence [5,67]. For CtDCS, there is an
alignment of the on-period of stimulation with the down-state (hyperpolarization) of neural firing,
the stimulation then attempts to reduce/inhibit hyperpolarizing down-states but as the neurons in
the down-state of SWA are already fully hyperpolarized, no further inhibition can occur. As CtDCS
cannot inhibit the varied cortical orientation of the CtDCS due to cortical folding, it may improve
memory by also aligning with the up-state of neural firing, further depolarizing these [32] and partially
explaining the improvement in neutral declarative memory after 0.75 Hz stimulation. This finding has so
far been limited to monophasic pulse stimulation as used in the current study, in which hyperpolarizing
down-states of the stimulation have been equal to zero [41].

Long-term potentiation is sensitive to theta phase, with theta peaks increasing potentiation and
troughs creating large-scale depression [68]. A key difference between the SO and theta, however, is the
lack of completely hyperpolarized down-state in theta oscillations [33]. The on-period of the cathodal
stimulation, when aligning with the down-state as found within theta troughs may be able to increase
this hyperpolarization further, thereby creating an inhibitory effect. However, simultaneous inhibition
during theta troughs and improvements during theta peaks may effectively cancel each other out
resulting no memory alteration [32]. This fits with the findings of our current study, where the absence
of memory alteration after theta stimulation during REM sleep, in contrast to the clear effect seen for SO
stimulation, could be partly due to the simultaneous memory inhibition of theta troughs not found in SO
down-states [33]. However, this hypothesis requires further empirical validation.

The alignment of stimulation with up and down-states and subsequent unidirectional neural
firing increase could alter homeostatic plasticity resulting in accelerated homeostatic regulation
typically shown during sleep [5,8]. According to the synaptic homeostasis hypothesis, global neuronal
downscaling occurs during sleep due to a decrease in synaptic strength [69], ensuring that space
and energy resources in the brain are not exceeded [70] as during wake synaptic potentiation occurs
involving an upscaling of synaptic strength and increased energy costs gained through stimulus
learning [8]. Greater downscaling then improves memory consolidation through an enhanced signal-to-
noise ratio [71] improving memories more strongly potentiated during wake and eliminating memories
weakly potentiated during wake [72]. The process of downscaling can explain why the benefits of SOs
for memory consolidation may also occur after artificial stimulation at the SO frequency.

The active systems consolidation hypothesis can potentially explain why neutral declarative memory
was preferentially improved during the 0.75 Hz stimulation. SWA during SWS, including SO, aids with
system consolidation involving memory reactivations to mediate the transfer of memory representation
binding from the hippocampus to the neocortex [6,7]. Owing to a greater reliance on the hippocampus for
neutral declarative memories [73], these memories could have been selectively improved through greater
reactivation after 0.75Hz stimulation. Reactivations also protect the synapses from downscaling [74]
as reactivation also increases the strength of the memories [5,67]. Performance improvements for
neutral declarative memory may therefore have been caused by increased SWA improving system
consolidation [6]. The absence of a significant correlation between the duration of SWS is compatible
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with this explanation, as SWA is driven by homeostatic sleep pressure and not perfectly correlated with
SWS [75]. We also use Remember responses for our behavioural measurement as we wanted to focus on
the clearest responses which retained contextual information associated with the hippocampus, while
SWS may be more strongly related to decontextualization [76]. Together with the absence of a significant
correlation with spectral power measures (which excluded the stimulation period), our results strongly
suggest that the benefit to neutral declarative memory seen in the 0.75Hz condition was the result of
the increase in SO as a result of the stimulation, and unrelated to existing periods of SWS. This finding
is potentially significant, as it confirms that entrainment does not have to take place in the most closely
related sleep stage in order to be effective. Based on this, future studies could explore the benefits of
increasing SWA using tDCS for insomniacs [77] and explore the potential memory benefits for clinical
groups with impaired neutral declarative memory, including Down’s Syndrome [78].

No significant post-sleep AoL improvement for the SRTT was found after applying either 0.75 or 5Hz
stimulation when compared to the Sham condition. This finding is consistent with previous findings
examining SRTT performance after applying 5Hz tDCS to the premotor cortex [56]. The SRTT contains
both declarative and procedural elements [46]. The declarative element would suggest a potential benefit
of stimulation at 0.75 Hz; however, no such benefit was seen in our study. There are two explanations
for this. First, it has been shown that the hippocampal-dependent declarative memory aspects of the
SRIT are linked directly with explicit knowledge of the sequence [79,80]. In line with this finding, a
previous study found no sleep-dependent consolidation of SRTT sequences unless the task was encoded
explicitly, or contextual elements existed within the task [48], and that awareness modifies the sleep-
related benefit [81]. Second, it has been shown that inclusion of a declarative memory task immediately
after the SRTT disrupts the declarative representation and consolidation of the sequence [82], and in
our study the SRTT was followed by a word recognition declarative learning task. Corroboration of this
comes from the reaction times in our SRTT task, which stayed fairly consistent between the pre- and post-
sleep sessions and did not decrease significantly over time to indicate learning had taken place when
previously reaction times of 300 ms were found to decrease to 200 ms when the sequences are explicitly
learned [48], it can be reasonably suggested that the sequence remained largely implicit [83]. Our results,
therefore, fit with the existing literature in this area and confirm that the SRTT does not benefit from
increased SO power in the absence of an explicit component.

The SRTT also contains procedural elements and is often treated as an implicit procedural task [48,56].
This suggest 5Hz tDCS could also have been beneficial, in the sense that theta-rich REM sleep can
improve implicit procedural memories [84], and indeed a positive trend was seen between theta power
during REM sleep and the AoL after sleep, but no overall benefit to performance was seen. Procedural
memory improvements after REM sleep have been related to synaptic consolidation occurring during
this sleep stage, involving an integration of memories with previous knowledge for long-term storage [6].
Consolidation of locally encoded information in the cortico-striatal network [7] has been linked with
procedural memory [85], specifically for implicit motor skills [86,87] such as those that may be present
in the SRTT. There are two explanations for the absence of an effect seen in our study. First, previous
research has suggested that tDCS can alter declarative, but not procedural memories [28]; our findings
fit with this suggestion. Various reasons have been proposed for this, including a low current density
producing only short-term tDCS effects on memory [56] and stimulation of the PFC instead of the
premotor cortex for procedural memories [41]. A systematic investigation of CtDCS stimulation at
different scalp locations during sleep is also currently absent from the literature and would make an
important future study. The second explanation is the same reason that 5Hz stimulation did not inhibit
negative emotional memory, which is that CtDCS 5 Hz stimulation during REM sleep is not inherently
targeting the peaks or troughs of existing theta waves and is likely to be getting a mixture of the two,
which largely cancels out the potential benefits [32]. Future studies using advanced real-time feedback
technology, as seen in auditory stimulation during sleep [88], could test this hypothesis by presenting
electrical stimulation at precise points in the EEG waveform.

5. Conclusion

This study is, to our knowledge, the first to demonstrate that CtDCS can enhance memory when applied
to specific waveforms at specific frequencies, contrary to the prevailing view that CtDCS exclusively
inhibits neural activity [29]. Stimulation at 0.75Hz during REM sleep, boosting activity in the SO band
during the stimulation period, resulted in an improvement for neutral word recognition, probably due
to greater SO activity mediating the transfer of memory representations from the hippocampus to the
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neocortex [6] resulting in improved hippocampal-dependent non-declarative memory specifically [71].
By contrast the hypothesized inhibitory effect of 5Hz stimulation during REM sleep on negative
emotional memory failed to materialize. One reason for this could be that a reduction in consolidation
of negative emotional memory during 5Hz stimulation was offset by a subsequent stronger positive
coupling between theta power during REM and emotional memory, leading to two conflicting effects. A
second possible reason is that different ways in which the stimulation interacts with existing waveforms.
Specifically, the inability to further depolarize SO during troughs means that temporally non-targeted
stimulation will result in a net increase in excitation. However, theta waves can be depolarized as well as
hyperpolarized, so non-targeted stimulation is likely to cancel out and have relatively little net effect [32].
Both of these reasons may also explain the absence of an effect on the procedural elements of the SRTT
which we saw. The SRTT was also not enhanced by 0.75 Hz stimulation, largely because the standard
implicit version of that task does not seem to benefit from SO during sleep. Future studies should focus
on three areas. First, further investigation of the effect of CtDCS during sleep on neural oscillations
during stimulation and after stimulation, to consider the possibility that these effects may be different.
Second, an exploration of the CtDCS stimulation at different frequencies using advanced technology
to control the precise temporal location of the stimulation to test the peaks/troughs hypothesis. Third,
studies to test the potential benefits of boosting SO using CtDCS in clinical populations in need of greater
SWA or neutral declarative memory.
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