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Abstract
Unit tests are a tenant of agile programming methodologies,
and are widely used to improve code quality and prevent
code regression. A passing (green) test is usually taken as a
robust sign that the code under test is valid. However, we
have noticed that some green tests contain assertions that
are never executed; these tests pass not because they assert
properties that are true, but because they assert nothing at
all. We call such tests Rotten Green Tests.
Rotten Green Tests represent a worst case: they report

that the code under test is valid, but in fact do nothing to test
that validity, beyond checking that the code does not crash.
We describe an approach to identify rotten green tests by
combining simple static and dynamic analyses. Our approach
takes into account test helper methods, inherited helpers,
and trait compositions, and has been implemented in a tool
called DrTest. We have applied DrTest to several test suites in
Pharo 7.0, and identified many rotten tests, including some
that have been “sleeping” in Pharo for at least 5 years.

Keywords rotten green tests, unit tests, testing

1 Introduction
Agile methodologies such as Extreme Programming [4–6]
promote Unit Testing [22] as a key tenant of the software
development process. Executing a test suite after each change
to the software helps to ensure that new functionality works,
and that the old functionality remains working, that is, it
helps avoid software regressions [1].
Tests are based on the execution of assertions that check

that the system under test satisfies some property, for ex-
ample, that a method returns a certain value, or that certain
data is written to a stream. Developers value “green tests”,
i.e., tests that are passing, because they provide assurance
that the software is working as expected.
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Our concern in this work is with tests that were intended
by their designer to execute some assertions, but do not
actually do so—we call them rotten green tests. Such tests
are insidious because they pass, and they contain assertions;
they therefore give the impression that some useful property
is being validated. In fact, a rotten green test guarantees
nothing: it is worse than having no test at all!

Our approach is based on a combination of static analysis
and dynamic monitoring of method execution. We identify
whether or not a test is rotten, even in the presence of helper
methods and trait compositions. A limitation of our current
implementation is that a test with multiple assertions will
be considered as rotten only when none of the assertions is
executed. Future work will ensure that all the assertions are
executed.

The contributions of the paper are:
• the recognition of rotten “green” unit tests that contain
assertions that are not executed, and which therefore
give the developers false confidence (Section 2);

• a simple combination of static and dynamic analyses
that identifies such rotten green tests, (Section 3); and

• a report on our experience applying this approach to
several large systems (Section 4).

2 The Problem of Rotten Green Tests
Before defining rotten green tests, we first describe the basics
of unit testing, and then briefly explain “Smoke Tests”, to
help distinguish them from the topic of this article.

2.1 Unit tests
Unit tests are commonly composed of a test fixture (which
sets up the system to be tested), one or more stimuli (which
exercise the component under test), and one or more asser-
tions that verify some expected property [8, 21]. The follow-
ing trivial example shows an SUnit test that checks that a
set should not contain the same object twice.
SetTest >> testAddTheSameElementTwiceResultOneOccurrence

| s |
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"Fixture"
s := Set new.
s add: 1.

"Stimulus"
s add: 1.

"Assertions"
self assert: s size equals: 1.
self assert: (s includes: 1).

In the example, the fixture is the code that declares and
initializes s to contain 1; here the fixture is inline, but it can
also be factored-out into a setUp method. The stimulus is
the second addition of 1 to s; the assertions then verify the
property that s contains 1 just once.
Provided that all of the assertions are true, this test will

pass; we say that it is “green”. If a false assertion is executed,
for example, if the set does not detect the duplicate and its
size is 2, the test will fail: it will be “yellow”. If an error occurs
during the running of the test, for example, if Set new signals
an exception, then the test will be “red”.

2.2 Smoke Tests
It is common practice to use unit testing frameworks to
execute so-called “smoke tests” whose purpose is to check
that the feature under test can be run without emitting “blue
smoke”— that is, the test ran without raising an unexpected
exception [25]. Here is an example of such a test.
SetTest >> testSetAddSmokeTest

| s |
"Fixture"
s := Set new.
s add: 1.

"Stimulus"
s add: 1

In its simplest form, a smoke test may contain no asser-
tions at all, as in this illustration. This is the way that we use
the term smoke test in the remainder of this article.
Smoke tests are useful because, if they are green, they

provide a fast but cursory check that the feature concerned
can be considered for further testing. Conversely, if a smoke
test is red, there is a serious issue that should be addressed
rapidly. Smoke tests are not the concern of this article; noth-
ing that follows should be construed as advocating either
for or against the use of smoke tests. Nevertheless, we do
need to distinguish a smoke test that by design contains
no assertions, from a rotten green test, which by accident
executes no assertions.

2.3 Rotten Green Tests
Consider an empty test — a test method that contains no code
at all: no fixture, no stimulus, and no assertion. If it is treated
as a passing test, it will increase the number of green tests

TPrintOnSequencedTest >> testPrintOnDelimiter
| aStream result allElementsAsString |
result := ''.
aStream := ReadWriteStream on: result.
self nonEmpty printOn: aStream delimiter: ', '.
allElementsAsString := (result findBetweenSubstrings: ', ' ).
allElementsAsString withIndexDo: [:el :i |

self assert: el equals: ((self nonEmpty at:i)asString)]

Figure 1. A rotten green test

without providing any value. Empty tests are bad because
they may help to convince a developer that the software is
working correctly, when in fact they guarantee nothing.

Empty tests do occur—perhaps as the remains of a test-
writing session that was never finished. Fortunately, they
are easy to spot and eliminate.
A much more insidious problem is caused by a test that

does contain a valid fixture, stimulus and assertion, but which
nevertheless does not execute any assertions. How can this
happen? Let’s look at a real example, taken from Pharo issue
7478, and shown in Figure 1.

At first glance, this looks like a fine test of the collec-
tion printOn:delimiter: method. The first three lines of the test
method create a fixture— in this case they set up aStream.
Then comes the stimulus: the collection self nonEmpty is sent
the printOn: aStream delimiter: ’,’ message, causing it (we hope)
to write its elements to aStream separated by commas. The
remainder of the test is intended to make assertions. The
code looks as though it is parsing the contents of aStream
and asserting that the elements it finds written there are the
same as those in the original collection.
This test is green, so we know that everything is OK,

right? Wrong! The programmer who wrote this test misun-
derstood the way that streams work. The string result can
never be modified by writing to aStream; indeed, the very
name result is misleading, because result is initialized to the
empty string and never changes. Consequently, result find-
BetweenSubstrings: will answer an empty collection, and the
withIndexDo: block—which contains the only assertion—will
never be executed. We could put any assertion into this block,
and the test would still run green.
We believe that such a test is worse than no test at all.

First, the rotten test assures us of no property of the method
under test. Second, it wastes time— remember that we want
our tests to run quickly. Third, in the case of “no test at all”,
test coverage statistics might reveal that the printOn:delimiter:
method is not being exercised, and the developers would
at least be aware that their testing is inadequate. Instead,
with a rotten test in place coverage will tell us that the
printOn:delimiter: method is being executed —and we will be
unaware that it is not actually being tested.

Rotten green tests give developers a false sense of security:
coverage may be good, and the tests may be green, but in
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fact no properties are being checked (other than the property
that the code runs without signaling an error). Moreover,
when developers look at such a test superficially, they will
probably not spot that there is a problem.
The example in Figure 1 was first reported as a bug in

February 2013. However, because the test was green, the bug
was easy to overlook, and the bug report was closed without
any action being taken. As of the end of 2017, this rotten
green test was still present in Pharo.

3 Identifying Rotten Green Tests
Once we accept that rotten green tests are bad, it is natural
to ask how we can detect them. One might think that all
that is necessary is to detect tests that makes no assertions,
but this won’t let us distinguish smoke tests from rotten
green tests. Can’t we identify smoke tests as those tests
that contain no assertions? No, because many tests make
assertions indirectly through the use of helper methods (as
explained in Section 3.1); tests that use assertions in helper
methods are not smoke tests, even though they contain no
assertions directly.

To clarify the discussion, we will use the following terms.
• an assertion primitive is a method of the unit-testing
framework that performs the actual check. In Pharo,
assert: and assert:description: are the only assertion
primitives.

• a test method is a method identified as such by the unit-
testing framework. In Pharo, test methods are zero-
argument methods defined in a subclass of TestCase
whose names start with “test”.

• a helper method is a method that makes an assertion
directly (by invoking an assertion primitive) or indi-
rectly (by invoking another helper method), but that
is not a test method. In Pharo, SUnit provides helper
methods like assert:shouldRaise:; in addition, develop-
ers frequently write their own application-specific test
helper methods, as we will discuss in Section 3.1.

In Figure 2, testABC is a test method, and helper and sec-
ondHelper are helper methods, because helper invokes sec-
ondHelper, and secondHelper invokes an assertion primitive.

3.1 Helper methods
It is common practice for developers to factor-out assertions
into helper methods. This affects our analysis in two ways:
we need to know which messages invoke helper methods
when we identify smoke tests, and wemust take into account
the possibility that helper methods, as well as tests, might
be rotten.

What is a helpermethod? In our context, it is amethod that
makes an assertion, either using another helper method, or
by using one of the assertion primitives. As a simple example,
a test suite for approximate numerical methods, might define
and use the helper method assert:isRoughly:within:

RottenTest >> testABC
"Test method"
false ifTrue: [self helper]

RottenTest >> helper
"Indirect helper"
self secondHelper

RottenTest >> secondHelper
"Direct helper"
self assert: x

Figure 2. A rotten test that uses a helper method.

NumericalTests >> assert: actual isRoughly: desired within: tolerance
self

assert: (actual - desired) abs <= tolerance
description: [ 'actual result ' , actual ,

' is not even roughly equal to ' , desired ]

For a more realistic example, we turn to the Pillar editing
platform [11]. Pillar’s test suites use helper methods such as
assertWriting:includesText:; which is defined in the superclass
of Pillar’s test classes, PRDocumentWriterTest. This method
factors out the creation of a PRAnchor and its verification.
Here is its definition and a sample of its use:

PRDocumentWriterTest >> assertWriting: anItem includesText: aString
| result |
result := self write: anItem.
self assert: result includesSubstring: aString

PRHTMLWriterTest >> testAnchor
| item |
item := PRAnchor new name: 'foo'.
self assertWriting: item includesText: 'id="foo"'

Like a rotten test, a helper method might fail to make an
assertion in some or all situations; in other words, helper
methods might be rotten too. Any approach to detecting
rotten green tests should also detect rotten helper methods.
Moreover, since the action of a helper method may depend
on the context (e.g., the test fixture, and the arguments to the
helper method), a helper might work fine in one context, but
be rotten in another. So, when detecting the rotten helper,
we need to record the specific test that exposes the rot.

In Pharo, traits enable developers to reuse tests across
several sub-hierarchies; the Collection tests are a good ex-
ample [15, 16]. The situation with traits is the same as with
helper methods: a trait method may show up as being rotten
only for a certain trait use. This can happen because trait
composition and inheritance can change the test fixture.

3.2 Classifying Tests
There are three situations that a rotten test analysis should
identify.
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Good tests. A test passes, contains some assertions (either
directly, or indirectly though helper methods), and
some assertions are executed: the test is good.

Rotten tests. A test passes, and contains assertions (either
directly, or indirectly), but no assertion is executed:
the test, or the helper method, is rotten.

Smoke tests. A test contains no assertions (either directly,
or indirectly); it is a smoke test.

Note that distinguishing between good and rotten requires
some dynamic analysis, becausewe need to ascertainwhether
an assertion is executed. In contrast, distinguishing between
rotten and smoke requires some static analysis, because
we need to ascertain whether the test contains assertions.

3.3 Combining Static and Dynamic Analyses
Our analysis performs the following steps:
Step 1: identification of assertion primitives. We build

the set of assertion primitives by identifying all the
methods of the unit test framework that make as-
sertions directly. This set depends only on the test
framework.

Step 2: identification of helper methods. To build the set
of helper methods, we start with a set S containing
all the methods in the test class that are not test meth-
ods but which self-send one of the assertion primi-
tives. (“All themethods” includesmethods introduced
through inheritance or trait use.) We identify such
methods using a simple static analysis of self- and
super-sends. We then add to S any method in the
test class that is not a test case but which self- or
super-sends one of the methods in S . We repeat this
step until no new methods are added to S ; the set S
now contains all the helper methods.

Step 3: test execution. We execute each test method (in-
cluding inherited test methods) one at at time, while
monitoring the following pieces of information:
a. the outcome of the test (pass, fail, or error),
b. whether or not one of the helper methods is exe-

cuted, and
c. whether or not one of the assertion primitives is

executed.
Because we are looking for rotten green tests, we
consider only passing tests.

Step 4: classification. We combine the test execution in-
formation from Step 3 with the static information
collected in Steps 1 and 2. Table 1 shows how this in-
formation is used to classify test methods. We discuss
the classification in Section 3.4.

Step 5: report generation. DrTest’s final report has to take
into account the way that methods are reused in
the test hierarchy. A test method may be defined
in a superclass and executed in a subclass. A test
method may also be defined in a trait [15], and reused

by several classes. In general, the test fixture, and
thus the meaning of the test, will be different in each
place in which it is used, so we must report the class
of the test as well as the method. Helper methods
are designed to be used by many test methods; if a
helper method is rotten, the test invoking it should
be reported, so that we can understand the scenario
in which the helper fails to make an assertion.

Our current dynamic analysis has a coarse granularity: we
monitor the execution of primitive assertions for the com-
plete run of the test method under analysis. This means that
we cannot attribute an executed assertion to a specific call
site. So, if one primitive assertion in the test method was
executed, the test will not be classified as rotten, even though
there might be another primitive assertion that was not exe-
cuted. We discuss this shortcoming further in Section 6.

3.4 Classification Discussion
We now discuss the reasoning behind the classification in
Table 1. In the first four rows, the test contains (statically)
sends of both assertion primitives and helper methods. If the
test is good, we will see both helper and assertion executed,
as in row 1. If no helper, or no assertion primitive, or neither,
is executed, then the test is rotten.

In rows 5–8, there is no send to a helper method in the test,
but there is a send of an assertion primitive. If an assertion
is executed (rows 5 and 6), the test is good; if no assertion is
executed (rows 7 and 8), we can say that the test is rotten.
On rows 5 and 7, a helper method is executed even though
there is no send of a helper message in the test! How can
this happen? One possibility is that the test constructs the
selector of the helper method dynamically, and then uses
perform: to send it. Another possibility is that the test invokes
a helper method with a message send that is not a self- or
super-send, either because the message is actually sent to
an object outside its class hierarchy, or because the receiver
of the message is not the pseudo-variable self. We flag these
entries with “dynamic helper invocation”; test like this are
unlikely to occur in practice, but if they do, they are worth a
second look.
Rows 9–12 are similar to rows 1–4, except that in rows

9–12 all of the assertions are made using helper methods. If
both helper and assertion are executed (row 9), the test is
good; if either is not executed, something is rotten. In row
11, the helper is executed, but the assertion is not, so it is the
helper method that is rotten. In rows 10 and 12, no helper is
executed, even though the test relies on helper methods, so
we know that the test is rotten. This reasoning applies even
in row 10 where, somehow, an assertion is executed even
though no assertion message is sent!
In rows 13–16, no helpers and no assertions are used in

the test. Such tests look like smoke tests — in which case we
would expect that no helpers and no assertions are executed,
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Dynamic Analysis Static Analysis
Row Helper Assertion Test contains Test contains
№ Executed Executed helper assertion Classification
1 ✓ ✓ ✓ ✓ ✓Good test
2 ✗ ✓ ✓ ✓ ✗ Rotten test
3 ✓ ✗ ✓ ✓ ✗ Rotten test & rotten helper
4 ✗ ✗ ✓ ✓ ✗ Rotten test
5 ✓ ✓ ✗ ✓ ✓Good test (dynamic helper invocation)
6 ✗ ✓ ✗ ✓ ✓Good test
7 ✓ ✗ ✗ ✓ ✗ Rotten test & rotten helper (dynamic helper invocation)
8 ✗ ✗ ✗ ✓ ✗ Rotten test
9 ✓ ✓ ✓ ✗ ✓Good test
10 ✗ ✓ ✓ ✗ ✗ Rotten test (dynamic assertion invocation)
11 ✓ ✗ ✓ ✗ ✗ Rotten helper
12 ✗ ✗ ✓ ✗ ✗ Rotten test
13 ✓ ✓ ✗ ✗ ✓Good test (dynamic assertion & helper)
14 ✗ ✓ ✗ ✗ ✓Good test (dynamic assertion invocation)
15 ✓ ✗ ✗ ✗ ✓Good test (dynamic helper invocation)
16 ✗ ✗ ✗ ✗ ✓Smoke test

Table 1. Classifying tests using the results of our analyses. In all cases, the test passes. “Executed” means that the (helper or
assertion) method was executed. “Contains” means that the test method contains (statically) a message send to a helper or to
an assertion.

as occurs on row 16. If a helper or assertion is executed, it is
likely to be because of a dynamic invocation.
Let us see how this classification works on the example

in Figure 2. The dynamic analysis will report that neither a
helper method nor an assertion primitive is executed. The
static analysis will identify secondHelper as a helper method
(because it makes a primitive assertion), and helper as a helper
method (because it uses secondHelper). Hence, we look for
✗✗✓✗ in Table 1, which we find on row 12. As expected, this
tells us that we have found a rotten test.

4 Results
Pharo is an open-source languagewith a growing community
and a large number of mature projects. We have run DrTest
on eight Pharo subsystems; we found that all subsystems
except Iceberg have at least 1 rotten test. The results are
shown in Table 2.

Subsystem Packages Classes Test classes Tests Rotten tests

Calypso 58 705 128 2671 4
Collections 16 224 59 5858 7
Glamour 19 463 65 449 3
Iceberg 16 565 44 555 0
Opal Compiler 7 227 49 854 15
Pillar 33 358 112 3188 1
System 48 330 44 552 1
Zinc 9 184 43 412 3

Table 2. Rotten tests in Pharo subsytems.

ClyCompositeScopeTests>>#testEmptySubscopesAreForbidden
[ClyCompositeScope on: #().

self assert: false description: 'empty subscopes should be forbid-
den'] ifError: [].

Figure 3. Rotten test in Calypso. The assertion is not reached
on purpose, this is a false positive.

Calypso is the new system browser for Pharo. It allows
developers to view and edit packages, classes, and meth-
ods. DrTest found four rotten tests; two of them contained
conditionally-executed sends of TestAsserter » assert:description:
with false as the first argument, as shown in Figure 3. These
two tests are false positives: the developer intends that the
assertion will not be executed if the code under test behaves
correctly, that is, if it signals an exception. This test would
be clearer if it simply asserted that ClyCompositeScope on: #()
should raise an error.

The two other rotten tests in Calypso contain helper meth-
ods that are never executed. These tests are tagged with
the <expectedFailure> pragma which indicates that they are
expected to fail by SUnit. Again, those are false positives.
Andrew ▶I don’t see why, but then, I can’t find the tests.◀

Collections are the basic data structures of Pharo [8]. The
collections tests contain seven rotten tests. Two of them
are tests that contain a guard clause checking which of the
collection classes is being tested. This guard clause is present
because the test is implemented in a superclass common
to multiple test cases, but the test should be run only on
certain subclasses. One rotten test contains a guard clause
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TPrintTest >> testPrintElementsOn
| aStream result allElementsAsString tmp |
result:=''.
aStream:= ReadWriteStream on: result.
tmp:= OrderedCollection new.
self nonEmpty do: [:each | tmp add: each asString].

self nonEmpty printElementsOn: aStream .
allElementsAsString:=(result findBetweenSubstrings: ' ' ).
1 to: allElementsAsString size do: [:i |

self assert: (tmp occurrencesOf:(allElementsAsString at:i))
= (allElementsAsString occurrencesOf:(allElementsAsString at:i)).

].

Figure 4. A Rotten test of Pharo Collections. The stream
API is used incorrectly.

that deliberately skips the test when the Dictionary subclass
under test does not support nil keys.
The remaining four rotten tests are true positives that

use the Stream API incorrectly. These methods test the se-
rialization of a collection on a stream, using the following
process: (1) create a stream, (2) write a collection on the
stream and (3) compare what was written on the stream to
the original collection. As discussed in Section 2.3, the prob-
lem here is that the comparison should be with the contents
of the stream, aStream contents, and not with the variable
result, which remains bound to the empty string. Because of
this, the assertion inside the loop is never executed. Figure 4
illustrates another such rotten test.

Glamour provides a high-level API for creating user in-
terfaces. It has three rotten tests. After an investigation, we
realised that two of them are expected failures. Andrew ▶So

what? If the tests fail, then they can’t be rotten, so I assume that they

pass. Are they rotten?◀ The last one is because a block con-
taining an assertion is never executed Andrew ▶Is this a true

positive? Lets say so◀.

Iceberg is a tool to manage Git project within Pharo. It was
found to contain no rotten tests.

OpalCompiler is the default compiler used in Pharo im-
ages. It has 15 rotten tests; 10 of them are due to a guard
clause that was incorrect. As shown in Figure 5, the comment
above the guard clause specifies that the test should not be
run unless the method’s source code is available. But the
implementation of the condition in the guard clause ensures
that the test is skipped if the source code is available.
The other five rotten tests of the OpalCompiler were in-

tended to identify a bug related to dynamic bytecode rewrit-
ing of boolean expressions. In Smalltalk, it is normally im-
possible to make a non-Boolean object act as a Boolean in a
condition, even if the object implements the Boolean inter-
face. The reason is that common Booleanmessage like #ifTrue:
and #and: are compiled to optimized bytecode that raises an

OCContextTempMappingTest >>
testAccessingArgOfOuterBlockFromAnotherDeepBlock
| actual |
"Check the source code availability to do not fail on images with-

out sources"
thisContext method hasSourceCode ifTrue: [ ^ self ].

actual := [:outerArg |
outerArg asString.
[ :innerArg | innerArg asString.

thisContext tempNamed: #outerArg ]
value: #innerValue.

] value: #outerValue.

self assert: actual equals: #outerValue

Figure 5. Rotten test in OpalCompiler. The guard clause im-
plements the negation of what is described in the comment.

MustBeBooleanTests >> testAnd
| myBooleanObject |

myBooleanObject := MyBooleanObject new.
self deny: (myBooleanObject and: [true])

MustBeBooleanTests >> testAnd (rewritten)
| myBooleanObject |

myBooleanObject := MyBooleanObject new.
^ (myBooleanObject) and: [ 1 halt ]

Figure 6. Rotten test in OpalCompiler: as written (top) as
decompiled after rewriting (bottom).

exception when they are sent to non-Booleans. However,
Pharo dynamically catches this exception and rewrites the
bytecode to a de-optimized version. This allows one to use a
non-Boolean receiver as a Boolean (provided that it imple-
ments the methods of Boolean).

The five rotten OpalCompiler tests are intended to validate
this feature. A bug in the bytecode rewrite process introduced
an early return into the test methods. The return appears
before the assertion can be executed. Thus, it leads to five
tests passing but not executing any assertion. Figure 6 shows
the source code of one of these five methods, both as it
appears, and as it is dynamically rewritten. These rotten tests
teach us that it can be extremely difficult to see whether or
not an assertion is executed.

Pillar is a markup syntax and associated tools for writ-
ing and generating documentation, books, and slides. This
project contains 1 rotten test which is tagged as an expected
failure. Andrew ▶again, what has expected failure to do with things?◀

System packages are also provided with test suites. These
test suites contain one rotten test, which is tagged as an
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expected failure. Andrew ▶again, what has expected failure to do

with things?◀

Zinc is a library for interacting with the network. It con-
tains three rotten tests. One of them is a test that sends #skip,
a method of TestAsserter whose specification says “Don’t
run this test, and don’t mark it as failure”. Thus, we can
be confident that the assertions in this test are skipped on
purpose.
Another Zinc test is guarded by a check that a certain

class exists in the system; if it does not, the test returns. By
default, the class does not exist, so the test returns and no
assertion is executed.
The last rotten test of Zinc performs a network HTTP

operation. If the result is a redirection, the test returns im-
mediately. The URL requested by the test does lead to a
redirection, so the test returns and no assertion is executed.

5 Implementation
The implementation of DrTest has two points of interest: the
detection of helper methods and the detection of method ex-
ecution. Helper methods are detected through static analysis:
we traverse the class hierarchy starting from the subclass of
TestCase that interests us, and classify as helper methods all
non-test methods that make a direct or indirect send of an
assertion primitive. For the dynamic analysis, the detection
of method execution is done by instrumenting the assertion
primitives and helper methods. We replace those methods
by method spies that record that they were called, and then
forward execution to the original method.

5.1 The Algorithm in Outline
To identify the rotten tests of a test class, DrTest starts by
determining which methods are helpers (Section 5.2) and
marking them with spy objects containing a flag called (Sec-
tion 5.3). Then, DrTest executes each test case by:

1. reseting all spies so that called = false,
2. running the test, which will mark executed method by

setting called = true, and
3. classifying the outcome of the test using the marked

spies according to Table 1.
The code that classifies a test outcome is as follows.
• Table Rows 1–4.

(containsAssertionPrimitive and: [
containsHelper and: [

(assertionPrimitiveExecuted and: [
helperExecuted ]) not ] ])

ifTrue: [ self addRottenTest: compiledMethod ].

• Table Rows 7–8.
(containsAssertionPrimitive and: [

(containsHelper not) and: [
assertionPrimitiveExecuted not ] ])

ifTrue: [ self addRottenTest: compiledMethod ].

• Table Row 11.
(containsAssertionPrimitive not and: [

containsHelper and: [
assertionPrimitiveExecuted not and: [

helperExecuted ] ] ])
ifTrue: [ self addRottenHelper: compiledMethod ].

• Table Rows 10 and 12.
(containsAssertionPrimitive not and: [

containsHelper and: [
helperExecuted not ] ])

ifTrue: [ self addRottenTest: compiledMethod ].

5.2 Detecting Helper Methods
DrTest detects helper methods through static analysis. The
analysis first collects all the test methods Andrew ▶do we

mean the non-test methods?◀ in the test class under analysis,
and all of its superclasses up to TestAsserter (which is the
superclass of TestCase). All of these methods may be relevant
to the execution of the test class under analysis. We then
use an AST visitor to visit the entire AST of each of these
methods; every time the visitation encounters a self-send, it
notes the method corresponding to the self-send. This gives
us an enumeration of the relation “executes directly via a
self-send”. We then compute the transitive closure of this
relation, and note the methods that directly or indirectly
self-send an assertion primitive. The noted methods are the
helper methods.

5.3 Detecting Method Execution
The method spy mechanism uses the method wrapper vir-
tual machine (VM) hook described by Martinez Peck et al.
[19], which works as follows. When a message is sent to
an object, the VM looks in the method dictionary of the re-
ceiver’s class for an entry keyed by the method selector. In
most cases, this entry will be a compiled method, that is, an
instance of the class CompiledMethod, in which case the VM
executes the method with the arguments from the message.
However, when the object found in the method dictionary is
not a compiled method, the VM instead sends the message
run:with:in: to the found object, giving it a chance to execute
some behaviour. This hook is commonly used by profilers
and other dynamic analysis tools.
In our case, the object in the method dictionary is an in-

stance of MethodTracer, a class that implements a run:with:in:
method that contains a called flag, which is initialized to
false, and a reference to the original method. When a Method-
Tracer is sent a run:with:in: it first “marks” itself by setting
the called flag to true, and then forwards execution to the
original compiled method. Here is the relevant code from
MethodTracer:
MethodTracer >> run: aSelector with: someArguments in: aReceiver

self mark.
^ aReceiver withArgs: someArguments executeMethod: method
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Distinct instances of MethodTracer are used to spy on the
assertion primitives and on the helper methods. This allows
us to keep a separate record of whether or not assertion
primitives and helper methods have been executed.

6 Discussion and Future Work
As currently implemented, DrTest has two significant limita-
tions.

6.1 Tests containing multiple assertions
When a test method uses multiple assertion primitives or
helper methods, our approach does not currently distinguish
between the case in which just one assertion primitive or
helper methods is executed, and the case where they are all
executed. In both cases, we report that the test is good.

For example, the test in Figure 1 is rotten, and is detected
as such. However, if the developer had added

self assert: (self nonEmpty isNotEmpty) description: 'test fixture broken'

at the top of the test, it would not be detected as rotten, even
though this assertion does nothing to solve the problem. In-
deed, because it is based onmethod-level monitoring, the cur-
rent implementation cannot distinguish between assertions
made at different call sites. This can result in false-negatives,
that is, not all rotten tests will be detected. It will not cause
false-positives: a test that is identified as rotten will always
be rotten.

We cannot yet evaluate the number of false negatives due
to multiple assertions, because doing so would require that
we enhance our solution to eliminate them.

For the future, we can see several ways of dealing test
that contain with multiple assertions. One possibility is to
create, from each test method that contains multiple asser-
tions, multiple tests, each with a single assertion, and then
to apply our process to these new methods. Another possi-
bility is to record, not just when an assertion is executed,
but which send of the assertion message is being executed.
These enhancements are the subject of ongoing work.

6.2 Location of Helper Methods
Another limitation of our approach is that our static analysis
discovers only those helper methods that are in the hierarchy
of the analysed test case. If the helper methods are located
in a utility class, then they will not be detected. We can
estimate how frequently this problem arises because some
instances will manifest themselves as a test method executing
an assertion even though it does not contain any assertions or
helper methods— the cases classified as involving a dynamic
invocation in Table 1. (Tests that contain self-sends that
execute helper methods, and sends of helper messages to a
utility object, will not be detected.) Our preliminary results
indicate that these cases do not occur frequently.

7 Related Work
Software testing is an active area of research;many researchers
have looked at improving the quality of tests, but we are not
aware of any prior work that identifies rotten green tests.

Mutation testing is one of the earliest approaches used to
improve test quality and robustness [13]. Mutation testing
generates “mutant” programs from the program under test,
and then selects tests that differentiate the mutants from the
original program. Tests that detect few or no mutants are
candidates for removal.

Several researchers have used mutation testing to improve
branch coverage [18]. Tillmann and Schulte [23] use sym-
bolic execution to find inputs for parameterized unit tests
that achieve high code coverage. They turn existing unit
tests into parameterized unit tests and generate entirely new
parameterized unit tests that describe the behaviour of an
existing implementation.
Baudry et al. [2] present a bacteriological approach to

mutation testing.
Other approaches focused on other attributes of test qual-

ity. Baudry et al. [3] addresses improving the value of tests
for diagnosis. They propose a new attribute called the Dy-
namic Basic Block, to assist in the task of locating faults in
a program. For fault localization, the usual assumption is
that test cases satisfying a chosen test-adequacy criterion are
sufficient to perform diagnosis. This assumption is verified
neither by specific experiments nor by intuitive considera-
tions.

Often, unit test frameworks present failed unit tests in an
arbitrary order, but developers want to focus on the most spe-
cific ones first. Gaelli et al. [17] propose a partial order of unit
tests corresponding to the containment hierarchy of their
sets of covered method signatures. When several unit tests
fail in the same hierarchy, the tool can guide the developer
to the test involving the smallest number of methods.

Other work focuses on the selection of the tests to be run.
For example, when a change is made to some software, it
is desirable to rerun those tests that are most likely to be
invalidated by the change. Beszedes et al. [7] propose to
use code coverage for test selection testing to maximize the
test surface. Blondeau et al. [9] analyse the problem of test
selection surfaces in an industrial context. Verhaeghe et al.
[24] examined the practices of developers when writing code,
and the way they execute (or choose not to execute) tests.
SmartTest [12, 24] is a tool that automatically selects the
tests to be run.
Deursen et al. [14] present a list of “bad test smells” and

their associated cures. They do not mention rotten green
tests as a smell.

The term “smoke test” is used in various ways by different
authors. Waletzky [25] says that the terms Smoke Test and
Build Verification Test are sometimes used interchangeably,
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but prefers to treat Smoke Tests as the subset of Build Ver-
ification Tests that are extremely fast to run, and are the
prelude to more thorough testing. Other authors use the
term “smoke test” to include tests that make assertions. For
example, Memon and Xie [20] discuss generating thousands
of tests that contain sequences of simulated GUI events, and
using various test oracles to check that the state of the GUI
is as expected—which they still call smoke tests.

The implementation ofDrTest uses a form of method wrap-
per to count executions of helper methods and assertions.
Brant et al. [10] discuss many techniques for implementing
wrappers. Our approach relies on a Pharo VM hook that was
not available to Brant et al., who instead subclassed compiled
method. Martinez Peck et al. [19] describe the VM hook used
by DrTest; they use it to implement Ghost proxies.

8 Conclusion
Wehave identified the existence of Rotten Green Tests, that is,
tests that pass and contain assertions, but whose assertions
are not executed. Such tests are worse than no tests at all,
because they give developers false confidence in the system
under tests. We have described an algorithm that identifies
Rotten Green Tests, based on a combination of static and
dynamic analysis, and a tool, DrTest, that implements the
proposed approach. DrTest distinguishes rotten green tests
from smoke tests (which also execute no assertions, but do
so by design). We report on the tests found in eight large
open-source projects.
DrTest is publicly available on github and can be loaded

from github://juliendelplanque/RottenTestsFinder/src.
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