
Local Communication Protocols for Learning
Complex Swarm Behaviors with Deep

Reinforcement Learning

Maximilian Hüttenrauch1, Adrian Šošić2, and Gerhard Neumann1

1 School of Computer Science, University of Lincoln, Lincoln, UK
{mhuettenrauch,gneumann}@lincoln.ac.uk

2 Department of Electrical Engineering, Technische Universität Darmstadt,
Darmstadt, Germany adrian.sosic@spg.tu-darmstadt.de

Abstract. Swarm systems constitute a challenging problem for rein-
forcement learning (RL) as the algorithm needs to learn decentralized
control policies that can cope with limited local sensing and communica-
tion abilities of the agents. While it is often difficult to directly define the
behavior of the agents, simple communication protocols can be defined
more easily using prior knowledge about the given task. In this paper,
we propose a number of simple communication protocols that can be
exploited by deep reinforcement learning to find decentralized control
policies in a multi-robot swarm environment. The protocols are based on
histograms that encode the local neighborhood relations of the agents
and can also transmit task-specific information, such as the shortest dis-
tance and direction to a desired target. In our framework, we use an
adaptation of Trust Region Policy Optimization to learn complex collab-
orative tasks, such as formation building and building a communication
link. We evaluate our findings in a simulated 2D-physics environment,
and compare the implications of different communication protocols.

1 Introduction

Nature provides many examples where the performance of a collective of limited
beings exceeds the capabilities of one individual. Ants transport prey of the size
no single ant could carry, termites build nests of up to nine meters in height,
and bees are able to regulate the temperature of a hive. Common to all these
phenomena is the fact that each individual has only basic and local sensing of
its environment and limited communication capabilities to its neighbors.

Inspired by these biological processes, swarm robotics [4,1,5] tries to emulate
such complex behavior with a collective of rather simple entities. Typically, these
robots have limited movement and communication capabilities and can sense
only a local neighborhood of their environment, such as distances and bearings
to neighbored agents. Moreover, these agents have limited memory systems,
such that the agents can only access a short horizon of their perception. As a
consequence, the design of control policies that are capable of solving complex
cooperative tasks becomes a non-trivial problem.

ar
X

iv
:1

70
9.

07
22

4v
2

 [
cs

.M
A

]
 1

8
Ju

l 2
01

8
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/163028018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Hüttenrauch et al.

In this paper, we want to learn swarm behavior using deep reinforcement
learning [21,17,22,23,10] based on the locally sensed information of the agents
such that the desired behavior can be defined by a reward function instead of
hand-tuning controllers of the agents. Swarm systems constitute a challenging
problem for reinforcement learning as the algorithm needs to learn decentralized
control policies that can cope with limited local sensing and communication
abilities of the agents.

Most collective tasks require some form of active cooperation between the
agents. For efficient cooperation, the agents need to implement basic communi-
cation protocols such that they can transmit their local sensory information to
neighbored agents. Using prior knowledge about the given task, simple commu-
nication protocols can be defined much more easily than directly defining the
behavior. In this paper, we propose and evaluate several communication proto-
cols that can be exploited by deep reinforcement learning to find decentralized
control policies in a multi robot swarm environment.

Our communication protocols are based on local histograms that encode the
neighborhood relation of an agent to other agents and can also transmit task-
specific information such as the shortest distance and direction to a desired
target. The histograms can deal with the varying number of neighbors that can
be sensed by a single agent depending on its current neighborhood configura-
tion. These protocols are used to generate high dimensional observations for the
individual agents that is in turn exploited by deep reinforcement learning to ef-
ficiently learn complex swarm behavior. In particular, we choose an adaptation
of Trust Region Policy Optimization [21] to learn decentralized policies.

In summary, our method addresses the emerging challenges of decentralized
swarm control in the following way:

1. Homogeneity: explicit sharing of policy parameters between the agents
2. Partial observability: efficient processing of action-observation histories

through windowing and parameter sharing
3. Communication: usage of histogram-based communication protocols over

simple features

To demonstrate our approach, we formulate two cooperative learning tasks in a
simulated swarm environment. The environment is inspired by the Colias robot
[2], a modular platform with two wheel motor-driven movement and various
sensing systems.

Paper Outline In Section 2, we review the concepts of Trust Region Policy Opti-
mization and describe our problem domain. In Section 3, we show in detail how
we tackle the challenges of modeling observations and the policy in the partially
observable swarm context, and how to adapt Trust Region Policy Optimization
to our setup. In Section 4, we present the model and parameters of our agents
and introduce two tasks on which we evaluate our proposed observation models
and policies.

Local Communication Protocols 3

2 Background

In this section, we provide a short summary of Trust Region Policy Optimization
and formalize our learning problem domain.

2.1 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) is an algorithm to optimize control
policies in single-agent reinforcement learning problems [21]. These problems are
formulated as Markov decision processes (MDP) which are compactly written
as a tuple 〈S,A, P,R, γ〉. In an MDP, an agent chooses an action a ∈ A via
some policy π(a | s), based on its current state s ∈ S, and progresses to state
s′ ∈ S according to a transition function P (s′ | s, a). After each step, the agent is
assigned a reward r = R(s, a), provided by a reward function R which judges the
quality of its decision. The goal of the agent is to find a policy which maximizes
the expected cumulative reward E[

∑∞
k=t γ

k−tR(sk, ak)], discounted by factor γ,
achieved over a certain period of time.

In TRPO, the policy is parametrized by a parameter vector θ containing
weights and biases of a neural network. In the following, we denote this parame-
terized policy as πθ. The reinforcement learning objective is expressed as finding
a new policy that maximizes the expected advantage function of the current pol-
icy, i.e., JTRPO = E

[
πθ

πθold
Â(s, a)

]
, where Â is an estimate of the advantage func-

tion of the current policy πold which is defined as Â(s, a) = Qπold(s, a)−V πold(s).
Herein, state-action value function Qπold(s, a) is typically estimated by a single
trajectory rollout while for the value function V πold(s) rather simple baselines
are used that are fitted to the monte-carlo returns. The objective is to be maxi-
mized subject to a fixed constraint on the Kullback-Leibler (KL) divergence of
the policy before and after the parameter update, which ensures the updates to
the new policy’s parameters θ are bounded, in order to avoid divergence of the
learning process. The overall optimization problem is summarized as

maximize
θ

E
[
πθ
πθold

Â(s, a)

]
subject to E[DKL(πθold ||πθ)] ≤ δ.

The problem is approximately solved using the conjugate gradient optimizer
after linearizing the objective and quadratizing the constraint.

2.2 Problem Domain

Building upon the theory of single-agent reinforcement learning, we can now
formulate the problem domain for our swarm environments. Because of their
limited sensory input, each agent can only obtain a local observation o from the
vicinity of its environment. We formulate the swarm system as a swarmMDP (see
[24] for a similar definition) which can be seen as a special case of a decentralized

4 Hüttenrauch et al.

partially observed Markov decision process (Dec-POMDP) [20]. An agent in the
swarm MDP is defined as a tuple A = 〈S,O,A, O〉, where, S is a set of local
states, O is the space of local observations, and A is a set of local actions for
each agent. The observation model O(o|s, i) defines the observation probabilities
for agent i given the global state s. Note that the system is invariant to the
order of the agents, i.e., given the same local state of two agents, the observation
probabilities will be the same. The swarm MDP is then defined as 〈N, E ,A, P,R〉,
where N is the number of agents, E is the global environment state consisting
of all local states SN of the agents and possibly of additional states of the
environment, and P : SN ×SN ×AN → [0,∞) is the transition density function.
Each agent maintains a truncated history hit = (ait−η, o

i
t−η+1, . . . , a

i
t−1, o

i
t) of

the current and past observations oi ∈ O and actions ai ∈ A of length η. All
swarm agents are assumed to be identical and therefore use the same distributed
policy π (now defined as π(a | h)) which yields a sample for the action of each
agent given its current history of actions and observations. The reward function
R of the swarm MDP depends on the global state and, optionally, all actions of
the swarm agents, i.e., R : SN ×AN → R. Instead of considering only one single
agent, we consider multiple agents of the same type, which interact in the same
environment. The global system state is in this case comprised of the local states
of all agents and additional attributes of the environment. The global task of the
agents is encoded in the reward function R(s,a), where we from now on write
a to denote the joint action vector of the whole swarm.

2.3 Related Work

A common approach to program swarm robotic systems is by extracting rules
from the observed behavior of their natural counterparts. Kube et al [13], for
example, investigate the cooperative prey retrieval of ants to infer rules on how a
swarm of robots can fulfill the task of cooperative box-pushing. Similar work can
be found e.g. in [16], [12], [19]. However, extracting these rules can be tedious
and the complexity of the tasks that we can solve via explicit programming is
limited. More examples of rule based behavior are found in [5] where a group of
swarming robots transports an object to a goal. Further comparable work can
be found in [6] for aggregation, [18] for flocking, or [9] for foraging.

In deep RL, currently, there are only few approaches tackling the multi-agent
problem. One of these approaches can be found in [15], where the authors use
a variation of the deep deterministic policy gradient algorithm [14] to learn a
centralized Q-function for each policy, which, as a downside, leads to a linear
increase in dimensionality of the joint observation and action spaces therefore
scales poorly. Another algorithm, tackling the credit assignment problem, can
be found in [8]. Here, a baseline of other agents’ behavior is subtracted from
a centralized critic to reason about the quality of a single agent’s behavior.
However, this approach is only possible in scenarios with discrete action spaces
since it requires marginalization over the agents’ action space. Finally, a different
line of work concerning the learning of communication models between agents
can be found in [7].

Local Communication Protocols 5

(a) local agent config-
uration

d
(b) range histogram

φ

(c) bearing his-
togram

d

φ

(d) joint histogram

Fig. 1: This Figure shows an illustration of the histogram-based observation
model. Figure 1a shows an agent in the center of a circle whose neighborhood
relations are to be captured by the histogram representation. The shaded green
area is highlighted as a reference for Figures 1c and 1d. Figure 1b hereby shows
the one dimensional histogram of agents over the neighborhood range d into four
bins, whereas Figure 1c shows the histogram over the bearing angles φ into eight
bins. Figure 1d finally shows the two dimensional joint histogram over range and
bearing.

3 Multi-Agent Learning with Local Communication
Protocols

In this section, we introduce different communication protocols based on neigh-
borhood histograms that can be used in combination to solve complex swarm
behaviors. Our algorithm relies on deep neural network policies of special ar-
chitecture that can exploit the structure of the high-dimensional observation
histories. We present this network model and subsequently discuss small adap-
tations we had to make to the TRPO algorithm in order to apply it to this
cooperative multi-agent setting.

3.1 Communication Protocols

Our communication protocols are based on histograms that can either encode
neighborhood relations or distance relations to different points of interest.

Neighborhood Histograms

The individual agents can observe distance and bearing to neighbored agents if
they communicate with this agent. We assume that the agents are constantly
sending a signal, such that neighbored agents can localize the sources. The arising
neighborhood configuration is an important source of information and can be
used as observations of the individual agents. One of the arising difficulties in
this case is to handle changing number of neighbors which would result in a
variable length of the observation vector. Most policy representations, such as
neural networks, expect a fixed input dimension.

One possible solution to this problem is to allocate a fixed number of neighbor
relations for each agent. If an agent experiences fewer neighborhood relations,

6 Hüttenrauch et al.

standard values could be used such as a very high distance and 0 bearing. How-
ever, such an approach comes with several drawbacks. First of all, the size of the
resulting representation scales linearly with the number of agents in the system
and so does the number of parameters to be learned. Second, the execution of the
learned policy will be limited to scenarios with the exact same number of agents
as present during training. Third, a fixed allocation of the neighbor relation in-
evitably destroys the homogeneity of the swarm, since the agents are no longer
treated interchangeably. In particular, using a fixed allocation rule requires that
the agents must be able to discriminate between their neighbors, which might
not even be possible in the first place.

To solve these problems, we propose to use histograms over observed neigh-
borhood relations, e.g., distances and bearing angles. Such a representation in-
herently respects the agent homogeneity and naturally comes with a fixed di-
mensionality. Hence, it is the canonical choice for the swarm setting. For our
experiments, we consider two different types of representations: 1) concatenated
one-dimensional histograms of distance and bearing and 2) multidimensional
histograms. Both types are illustrated in Figure 1. The one-dimensional repre-
sentation has the advantage of scalability, as it grows linearly with the number
of features. The downside is that potential dependencies between the features
are completely ignored.

Shortest Path Partitions

In many applications, it is important to transmit the location of a point of
interest to neighbored agents that can currently not observe this point due to
their limited sensing ability.

We assume that an agent can observe bearing and distance to a point of
interest if it is within its communication radius. The agent then transmits the
observed distance to other agents. Agents that can not see the point of interest
might in this case observe a message from another agent containing the distance
to the point of interest. The distance of the sending agent is added to the received
distance to obtain the distance to the point of interest if we would use the sending
agent as a via point. Each agent might now compute several of such distances
and transmits the minimum distance it has computed to indicate the length of
the shortest path it has seen.

The location of neighbored agents including their distance of the shortest
path information is important knowledge for the policy, e.g. for navigating to the
point of interest. Hence, we adapt the histogram representation. Each partition
now contains the minimum received shortest path distance of an agent that is
located in this position.

3.2 Weight Sharing for Policy Networks

The policy maps sequences of past actions and observations to a new action. We
use histories of a fixed length as input to our policy and a feed-forward deep
neural network as architecture. To cope with such high input dimensionality, we

Local Communication Protocols 7

propose a weight sharing approach. Each action-observation pair in an agent’s
history is first processed independently with a network using the same weights.
After this initial reduction in dimensionality, the hidden states are concatenated
in a subsequent layer and finally mapped to an output. The homogeneity of
agents is achieved by using the same set of parameters for all policies. A diagram
of the architecture is shown in Figure 2.

128

at−η, ot−η+1

16

128

at−η+1, ot−η+2

16

128

at−1, ot

16

. . .

. . .

16 × η

2

action

l0,1

l1,1

l2,1

l0,2

l1,2

l2,2

l0,η

l1,η

l2,η

m0

m1

m2

Fig. 2: This diagram shows a
model of our proposed policy
with three hidden layers. The
numbers inside the boxes denote
the dimensionalities of the hid-
den layers. The plus sign de-
notes concatenation of vectors.

3.3 Adaptations to TRPO

In order to apply TRPO to our multi-agent setup, some small changes to the
original algorithm have to be made, similar to the formulation of [11]. First,
since we assume homogeneous agents, we can have one set of parameters of the
policy shared by all agents. Since the agents cannot rely on the global state, the
advantage function is redefined as A(h, a). In order to estimate this function, each
agent is assigned the same global reward r in each time step and all transitions
are treated as if they were executed by a single agent.

4 Experimental Setup

In this section, we briefly discuss the used model and state representation of
a single agent. Subsequently, we describe our two experimental setups and the
policy architecture used for the experiments.

4.1 Agent Model

The local state of a single agent is modeled by its 2D position and orientation,
i.e., si = [xi, yi, φi] ∈ S = {[x, y, φ] ∈ R3 : 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, 0 ≤
φ ≤ 2π}. The robot can only control the speed of its wheels. Therefore, we
apply a force to the left and right side of the agent, similarly to the wheels
of the real robot. Our model of a single agent is inspired by the Colias robot

8 Hüttenrauch et al.

(a detailed description of the robot specifications can be found in [2]), but the
underlying principles can be straightforwardly applied to other swarm settings
with limited observations. Generally, our observation model is comprised of the
sensor readings of the short and long range IR sensors (later denoted as ’sensor’ in
the evaluations). Furthermore, we augment this observation representation with
the communication protocols developed in the following section. Our simulation
is using a 2D physics engine (Box2D), allowing for correct physical interaction
of the bodies of the agents.

4.2 Tasks

The focus of our experiments is on tasks where agents need to collaborate to
achieve a common goal. For this purpose, we designed the following two scenarios:

Task 1: Building a Graph

In the first task, the goal of the agents is to find and maintain a certain distance
to each other. This kind of behavior is required, for example, in surveillance
tasks, where a group of autonomous agents needs to maximize the coverage of a
target area while maintaining their communication links. We formulate the task
as a graph problem, where the agents (i.e. the nodes) try to maximize the number
of active edges in the graph. Herein, an edge is considered active whenever the
distance between the corresponding agent lies in certain range. The setting is
visualized in Figure 3a. In our experiment, we provide a positive reward for each
edge in a range between 10 cm and 16 cm, and further give negative feedback for
distances smaller than 7 cm. Accordingly, the reward function is

R(s,a) =

M∑
i=1

M∑
m>i

1[0.1m, 0.16m](d
i
m)− 5

M∑
i=1

M∑
m>i

1[0m, 0.07m](d
i
m), (1)

where dim =
√

(xi − xm)2 + (yi − ym)2 denotes the Euclidean distance between
the centers of agent i and agent m and

1[a,b](x) =

{
1 if x ∈ [a, b],

0 else

is an indicator function. Note that we omit the dependence of dim on the system
state s to keep the notion simple.

Task 2: Establishing a Communication Link

The second task adds another layer of difficulty. While maintaining a network,
the agents have to locate and connect two randomly placed points in the state
space. A link is only established successfully if there are communicating agents
connecting the two points. Figure 3b shows an example with an active link

Local Communication Protocols 9

spanned by three agents between the two points. The task resembles the problem
of establishing a connection between two nodes in a wireless ad hoc network
[3,25]. In our experiments, the distance of the two points is chosen to be larger
than 75 cm, requiring at least three agents to bridge the gap in between. The
reward is determined by the length of the shortest distance between the two
points dopt (i.e. a straight line) and the length of the shortest active link dsp
spanned by the agents,

R(s,a) =

{
dopt
dsp

if link is established
0 otherwise.

In this task, we use the shortest path partitions as communication protocol.
Each agent communicates the shortest path it knows to both points of interests,
resulting in two 2-D partitions that are used as observation input for a single
time step.

4.3 Policy Architecture

We decided for a policy model with three hidden layers. The first two layers
process the observation-action pairs (ak−1, ok) of each timestep in a history in-
dividually and map it into hidden layers of size 128 and 16. The output of the
second layer is then concatenated to form the input of the third hidden layer
which eventually maps to the two actions for the left and right motor.

(a) edge task (b) link task

Fig. 3: Illustration of the two cooperative tasks used in this paper. The green dots
represent the agents, where the green ring segments located next to the agents
indicate the short range IR front sensors. The outer green circles illustrate the
maximum range in which distances / bearings to other agents can be observed,
depending on the used observation model. (a) Edge task: The red rings show
the penalty zones where the agents are punished, the outer green rings indicate
the zones where legal edges are formed. (b) Link task: The red dots correspond
to the two points that need to be connected by the agents.

10 Hüttenrauch et al.

5 Results

We evaluate each task in a standardized environment of size 1m × 1m where
we initialize ten agents randomly in the scene. Of special interest is how the
amount of information provided to the agents affects the overall system per-
formance. Herein, we have to keep in mind the general information-complexity
trade-off, i.e., high-dimensional local observations generally provide more infor-
mation about the global system state but, at the same time, result in a more
complex learning task. Recall that the information content is mostly influenced
by two factors: 1) the length of the history, and 2) the composition of the obser-
vation.

5.1 Edge Task

First, we evaluate how the history length η affects the system performance.
Figure 4a shows an evaluation for η = {2, 4, 8} and a weight sharing policy
using a two-dimensional histogram over distances and bearings. Interestingly,
we observe that longer observation histories do not show an increase in the
performance. Either the increase in information could not counter the effect of
increased learning complexity, or a history length of η = 2 is already sufficient
to solve the task. We use these findings and set the history length to η = 2 for
the remainder of the experiments.

Next, we analyze the impact of the observation model. Figure 4b shows the
results of the learning process for different observation modalities. The first ob-
servation is that, irrespective of the used mode, the agents are able to establish
a certain number of edges. Naturally, a complete information of distances and
bearing yields the best performance. However, the independent histogram rep-
resentation yields comparable results to the two dimensional histogram. Again,
this is due to the aforementioned complexity trade-off where a higher amount of
information makes the learning process more difficult.

5.2 Link Task

We evaluate the link task with raw sensor measurements, count based histograms
over distance and bearing, and the more advanced shortest path histograms over
distance and bearing. Based on the findings of the edge task we keep the history
length at η = 2. Figure 4c shows the results of the learning process where each
observation model was again tested and averaged over 8 trials. Since at least
three agents are necessary to establish a link between the two points, the models
without shortest path information struggle to reliably establish the connection.
Their only chance is to spread as wide as possible and, thus, cover the area
between both points. Again, it is interesting to see that independent histograms
over counts seem to be favorable over the 2D histogram. However, both versions
are surpassed by the 2D histogram over shortest paths which yields information
about the current state of the whole network of agents, currently connected to
each of the points.

Local Communication Protocols 11

0 200 400 600 800 1000

0

2,000

4,000

6,000

8,000

TRPO Iterations

A
ve
ra
g
e
R
et
u
rn

η=2.0
η=4.0
η=8.0

(a) Comparison of differ-
ent history lengths η. (2D
histogram)

0 200 400 600 800 1000

0

2,000

4,000

6,000

8,000

TRPO Iterations

A
ve
ra
g
e
R
et
u
rn
s

2D
1D
d
b
sensor

(b) Edge task: Compari-
son of different observa-
tion models. (η = 2)

0 200 400 600 800 1000
0

100

200

300

400

TRPO Iterations

A
ve
ra
g
e
R
et
u
rn
s

2DSP
2D
1D
sensor

(c) Link task: Compari-
son of different observa-
tion models. (η = 2)

Fig. 4: Learning curves for (a), (b) the edge task and (c) the link task. The
curves show the mean values of the average undiscounted return of an episode
(i.e. the sum of rewards of one episode, averaged over the number of episodes
for one learning iteration) over the learning process plus /minus one standard
deviation, computed from eight learning trials. Intuitively, the return in the edge
task corresponds to the number of edges formed during an episode of length 500
steps. In the link task, it is a measure for the quality of the link. Legend: 2DSP:
two dimensional histogram over shortest paths, 2D: two-dimensional histogram
over distances and bearings, 1D: two independent histograms over distances
and bearing, d: distance only histogram, b: bearing only histogram, sensor: no
histogram.

6 Conclusions and Future Work

In this paper, we demonstrated that histograms over simple local features can be
an effective way for processing information in robot swarms. The central aspect
of this new model is its ability to handle arbitrary system sizes without discrim-
inating between agents, which makes it perfectly suitable to the swarm setting
where all agents are identical and the number of agents in the neighborhood
varies with time. We use these protocols and an adaptation of TRPO for the
swarm setup to learn cooperative decentralized control policies for a number of
challenging cooperative task. The evaluation of our approach showed that this
histogram-based model leads the agents to reliably fulfill the tasks.

Interesting future directions include, for example, the learning of an explicit
communication protocol. Furthermore, we expect that assigning credit to agents
taking useful actions should speedup our learning algorithm.

Acknowledgments. The research leading to these results has received funding
from EPSRC under grant agreement EP/R02572X/1 (National Center for Nu-
clear Robotics). Calculations for this research were conducted on the Lichtenberg
high performance computer of the TU Darmstadt.

12 Hüttenrauch et al.

References

1. Alonso-Mora, J., Montijano, E., Schwager, M., Rus, D.: Distributed multi-robot
formation control among obstacles: A geometric and optimization approach with
consensus. In: Proceedings of the IEEE International Conference on Robotics and
Automation. pp. 5356–5363 (2016)

2. Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: An autonomous micro robot for
swarm robotic applications. International Journal of Advanced Robotic Systems
11(7), 113 (2014)

3. Basu, P., Redi, J.: Movement control algorithms for realization of fault-tolerant ad
hoc robot networks. IEEE Network 18(4), 36–44 (2004)

4. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172(C), 292 –
321 (2016)

5. Chen, J., Gauci, M., Groß, R.: A strategy for transporting tall objects with a swarm
of miniature mobile robots. In: Proceedings of the IEEE International Conference
on Robotics and Automation. pp. 863–869 (2013)

6. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a
swarm of miniature robots. The International Journal of Robotics Research 30(5),
615–626 (2011)

7. Foerster, J., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate
with deep multi-agent reinforcement learning. In: Advances in Neural Information
Processing Systems 29, pp. 2137–2145 (2016)

8. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual
multi-agent policy gradients. arXiv:1705.08926 (2017)

9. Goldberg, D., Mataric, M.J.: Robust behavior-based control for distributed multi-
robot collection tasks (2000)

10. Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R.E., Levine, S.: Q-prop: Sample-
efficient policy gradient with an off-policy critic. In: Proceedings of the 5th Inter-
national Conference on Learning Representations (2017)

11. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using
deep reinforcement learning. In: Proceedings of the Adaptive and Learning Agents
Workshop (2017)

12. Hoff, N.R., Sagoff, A., Wood, R.J., Nagpal, R.: Two foraging algorithms for robot
swarms using only local communication. In: Proceedings of the IEEE International
Conference on Robotics and Biomimetics. pp. 123–130 (2010)

13. Kube, C., Bonabeau, E.: Cooperative transport by ants and robots. Robotics and
Autonomous Systems 30(1), 85 – 101 (2000)

14. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., Wierstra, D.: Continuous control with deep reinforcement learning.
arXiv:1509.02971 (2015)

15. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-
critic for mixed cooperative-competitive environments. arXiv:1706.02275 (2017)

16. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a
case study in collaborative distributed manipulation. The International Journal of
Robotics Research 23(4-5), 415–436 (2004)

17. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

18. Moeslinger, C., Schmickl, T., Crailsheim, K.: Emergent flocking with low-end
swarm robots, pp. 424–431 (2010)

Local Communication Protocols 13

19. Nouyan, S., Gross, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-
organized robot colonies. IEEE Transactions on Evolutionary Computation 13(4),
695–711 (2009)

20. Oliehoek, F.A.: Decentralized POMDPs, pp. 471–503. Springer Berlin Heidelberg
(2012)

21. Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P.: Trust region policy
optimization. In: Proceedings of the 32nd International Conference on Machine
Learning. pp. 1889–1897 (2015)

22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv:1707.06347 (2017)

23. Teh, Y.W., Bapst, V., Czarnecki, W.M., Quan, J., Kirkpatrick, J., Hadsell,
R., Heess, N., Pascanu, R.: Distral: robust multitask reinforcement learning.
arXiv:1707.04175 (2017)

24. ŠoŠić, A., KhudaBukhsh, W.R., Zoubir, A.M., Koeppl, H.: Inverse reinforcement
learning in swarm systems. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems. pp. 1413–1421 (2017)

25. Witkowski, U., El Habbal, M.A.M., Herbrechtsmeier, S., Tanoto, A., Penders, J.,
Alboul, L., Gazi, V.: Ad-hoc network communication infrastructure for multi-robot
systems in disaster scenarios. In: Proceedings of the IARP/EURON Workshop on
Robotics for Risky Interventions and Environmental Surveillance (2008)

	Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning

