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1. Abstract 

This review is part of a suite of integrated projects (Soil Biology and Soil Health Partnership) 

specifically aimed at addressing the AHDB and BBRO Soils Programme call – “Management for Soil 

Biology and Soil Health”.  This project is designated Project 3 within WP 1 (Benchmarking and 

Baselining; see Figure 1).  

 

This review specifically aimed to: 

 Summarise available knowledge on procedures to sample field soils to undertake DNA 

analysis of the presence and composition of microbial communities and their functions to 

provide indicators of soil health.  

 Evaluate standard tools for use in routine sampling and molecular analysis of soil quality so 

that their value can be demonstrated to growers and agronomists during and beyond the 

current Soil Biology and Soil Health Research Partnership.  

 Establish full lists of molecular markers that can be used to quantify: 

(a) Soil-borne pathogens for use in prediction of crop disease; 

(b) Indicators of good soil health which can influence crop yield and value. 

Procedures for sampling soil and extracting DNA from the sample have been reviewed. There are 

no standardised sampling methods, but it is general practice to take composite samples by mixing 

multiple cores from the surface to 10-30 cm depth. Corers should be cleaned and flamed between 

collection of each separate set of composite samples. A sample size of at least 200-500g is 

recommended. The number and spatial arrangement of samples and sub-samples required depends 

on the expected distribution of the target. For unknown target distributions, it has been suggested 

that the area is divided into evenly-sized grids with at least 2 composite samples per grid.  An 

internationally recognised standard (ISO 11063:2012) describes a procedure for direct isolation of 

DNA from soil, suitable for further analysis using qPCR and high throughput sequencing methods, 

but this does not include procedures for subsequent DNA purification and is only suitable for small 

soil samples. Procedures more suitable for direct extraction and purification of total DNA from 

composite soil samples of 200-500g are described in the Appendices to this report. 

Various molecular techniques have been used for analysis of soil quality, including methods based 

on polymerase chain reaction (PCR), microarrays, DNA fingerprinting (DGGE and T-RFLP) and DNA 

sequencing. Two approaches are considered most suitable for routine analysis of taxonomic or 

functional markers; quantitative PCR (qPCR) for detection and quantification of specific markers and 

next generation high throughput sequencing for analysis of whole soil communities.  The range of 

molecular markers that have been used to investigate the taxonomy and function of individual target 

organisms and communities of organisms in soil are described in full. These include taxon-specific 

markers, mainly based on selected DNA sequences from within ribosomal (rDNA) or mitochondrial 

(cytochrome oxidase) DNA loci. Functional markers in genes expressing key enzymes involved in 
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carbon, nitrogen, phosphorus and sulphur cycling are also described. Markers are also listed that 

have been used to assess soils for presence and activity of other key bioindicators of soil health, 

including mycorrhizal fungi, nitrogen-fixing microorganisms, plant growth promoting bacteria, 

biocontrol agents, nematode assemblages and plant pathogens. 

Some technical challenges remain to be fully overcome in the application of these technologies to 

ensure a representative and unbiased analysis of soil microbiological communities and their function. 

These include further standardisation of procedures for sampling, extracting and purifying DNA from 

soils, improved consistency in the choice of markers to be used in the analyses and the use of 

appropriate internal controls that ensure accuracy of data interpretation. The high cost of molecular 

analysis also remains a constraint to its routine application.   

 

 

 

Figure 1. Diagram to show how Project 3 (in black) fits into the organisation of the Soil Biology and 

Soil Health Partnership. 
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2. Review of molecular approaches to biological soil health assessment 

2.1. Introduction  

In the last decade several useful biological indicators for soil health assessment have been 

proposed (Ritz et al., 2009). There have also been advances in knowledge of the functional roles 

of below-ground biodiversity (Bardgett & van der Putten, 2014) and major advances in 

technology and a reduction in the cost of using molecular tools (Orgiazzi et al., 2015). The 

following review of a rapidly developing literature aims to describe those molecular procedures 

that currently offer the most potential for detection and quantification of individual target 

organisms or functions, or that allow analysis of the diversity of whole communities of organisms 

or their functional groups.  The current range of DNA markers available for analysis of the 

biological component of soil health is also reviewed.  Whilst most approaches have so far been 

used in a research context, their suitability for application in affordable routine soil health 

analyses has yet to be established.   

Appropriate procedures for sampling soil and extracting DNA from the sample are also reviewed.  

Sampling methods capable of recognising in-field variation and methods to extract high quality 

DNA from statistically representative soil samples are required. Extraction methods need to be 

efficient across all soil types and farming practices.  They also need to be geared towards the 

type of molecular analysis to be performed, since some methods require higher levels of 

purification or longer DNA fragments than others.  Methods also need to be suitable for direct 

extraction and analysis of total soil DNA, of DNA indirectly extracted from isolated soil organisms 

or for extraction of e-DNA (DNA remaining in the environment after release by organisms into 

the soil). 

2.2. Sampling 

To ensure that soil samples are representative of the area being sampled, and to account for 

heterogeneous distribution of soil micro- and macro-fauna, the sample is usually prepared as a 

composite of several small cores (20-50g each).  Cores are typically 100 mm long and 10 mm 

diameter. The standard practice is to collect sub-samples randomly across the area to be 

sampled and to include material from different depths, usually topsoil only and down to 10-30 

cm, depending on the expected range of distribution of the target organisms.  The size of the 

study area should also represent the expected distribution of targets.  To monitor variability in 

nematode distribution introduced by the sampling strategy, Taberlet et al. (2012) recommend 

sampling across a regular grid pattern across the study area with at least 2 randomly collected 

composite samples collected per grid.  Corers should be suitably cleaned to remove soil remains 

followed by alcohol flaming between the set of soil cores that will together form one composite 

sample.   
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The size of each composite soil sample has been optimised for molecular test methods (Wiesel 

et al., 2015). Soil samples for nematode extraction have traditionally been standardised at 200g 

(Flegg and Hooper, 1970).  Although a wide range of sample sizes between 1-200g have been 

employed in molecular studies (e.g. Waite et al., 2003; Porazinska et al., 2010; Griffiths et al., 

2012; Morise et al., 2012), it was recently concluded that a sample of at least 200g is required 

for accurate measure of nematode abundance and at least 100g is needed to truly represent 

community composition (Wiesel et al., 2015). Similarly, for molecular study of soil-borne fungal 

and bacterial populations, Ophel-Keller et al. (2008) collected 3 samples per field (40-300 ha) 

with 15 cores per sample on a ‘W’ transect. They suggested that DNA should be extracted from 

samples of at least 200-500g for ‘biologically relevant analysis’.  For molecular analysis of 

earthworm DNA in soil (Bienert et al., 2012), 2 layers (0-20cm and 20-40cm) have been sampled 

by randomly collecting subsamples to make a 500g sample per area of 10m radius. 

2.3. DNA extraction and purification 

Numerous procedures are described for direct extraction of total soil DNA or eDNA or indirect 

extraction of DNA from isolated soil organisms. The yield of extracted DNA varies with the 

chemical and physical properties of different soils (Feinstein et al., 2009), including the contents 

of negatively charged clay, silicates and organic matter which bind to DNA.  The yield also varies 

according to the direct extraction process used and the relative efficiency of cell lysis of the 

different target organisms (Petric et al., 2011). The quality of extracted DNA can also vary with 

the method used; more intensive treatments may improve microbial cell breakdown resulting in 

higher DNA yields but may cause shearing of the DNA making it unsuitable for some types of 

molecular analyses. Different DNA extraction methods can therefore bias the results of molecular 

analyses in different ways. The choice of DNA extraction method therefore depends on the soil 

type, the target organism(s), the type and quality of DNA to be studied and the method being 

used for its analysis.  The preferred extraction method is always a compromise between the 

required yield and quality of the DNA. 

Significant efforts to optimize and standardize direct DNA extraction procedures have aimed to 

improve the reliability of quantitative and qualitative characterization of soil communities, 

especially bacteria, archaea, fungi and protists (Martin-Laurent et al., 2001; Petric et al., 2011; 

Plassart et al., 2012; Terrat et al., 2015; Santos et al., 2015; Dimitrov et al., 2017). This includes 

validation and improvement of a standard method for direct soil DNA extraction (ISO 

11063:2012) adopted by the International Organization for Standardization (Phillipot et al., 2010).  

The method involves three main stages: (1) target cell lysis using the surfactant sodium dodecyl 

sulphate (SDS) followed by physical disruption by bead beating, (2) protein precipitation by 

sodium acetate; and (3) nucleic acid precipitation in isopropanol followed by washing in 70% 

ethanol. This method and its modifications (Plassart et al., 2012; Santos et al., 2015) can be 
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used for reproducible extraction of DNA from different soil types, which is suitable for soil 

community analysis using qPCR (Petric et al., 2011) and metabarcoding (Terrat et al., 2015). 

Another source of bias in soil community analyses following direct DNA extraction is the effect 

of co-extraction of substances which inhibit DNA amplification, such as humic acids.  ISO 11063 

does not cover purification of the extracted DNA. There are several commercial kits available for 

extraction and purification of DNA from soils and their reliability has been compared (Fredericks 

et al., 2005; Dineen et al., 2010; Inceoğlu et al., 2010).  Extraction kits, which have been most 

widely used in recent research studies, include the PowerSoil DNA Isolation kit (MO BIO 

Laboratories, Inc., Carlsbad, CA, USA) and the FastDNA SPIN kit for Soil (MP Biomedicals, LLC, 

Solon, OH, USA).  Additional DNA purification is usually also required for elimination of PCR 

inhibitors, usually by treatment with polyvinylpolypyrrolidone (PVPP) (Frostegard et al., 1999; 

Zhou et al., 1995) and/or hexadecyltrimethylammonium bromide (CTAB) (Cho et al., 1996; Malik 

et al., 1994; Zhou et al., 1995).  Braid et al., (2003) also showed that addition of AlNH4(SO4)2 

during extraction significantly reduced the co-purification of PCR inhibitors with minimal loss of 

DNA yield. 

Whilst commercial extraction and purification kits are useful for small-scale research, they are 

usually only suitable for small samples of soil (<10g) and their use in routine soil analyses is 

further limited by their slow speed of sample throughput and relatively high cost.  Ophel-Keller et 

al. (2008) developed a method capable of extracting DNA from soil samples of 500g with a 

throughput of 160 samples per day and at a cost of less than 20% of the cost using commercial 

kits. However, the full details of this method remain unpublished. In the meantime, additional 

methods suitable for larger scale direct extractions of bacterial and fungal DNA for qPCR analysis 

of soil-borne fungi and bacteria have been developed (Brierley et al., 2009; Woodhall et al., 

2012).  Methods suitable for extraction of extracellular eDNA from larger soil volumes have also 

been described (Taberlet et al., 2012).  In this case, a gentler extraction protocol is used to 

ensure DNA quality is suitable for metabarcoding analysis, which requires higher quality DNA 

(more purified and fragments longer than 500 bp) than for qPCR analysis.  In this case, DNA 

from 4 kg composite soil samples is extracted by thorough mixing in saturated 0.12M phosphate 

buffer (pH 8) followed by centrifugation to remove suspended material.  DNA is then extracted 

from aliquots of the supernatant using a commercial kit.  Suggested protocols for sampling and 

extraction of total DNA for qPCR analysis and eDNA for metabarcoding are presented in 

Appendices 1 and 2. 

2.4. Targeted analyses using quantitative polymerase chain reaction (qPCR) 

The development of PCR has facilitated major advances in the assessment of the presence of 

specific target organisms or their functional genes in complex environmental samples, including 

water, sediments, soils, composts and manures. Real-time quantitative PCR (qPCR) is a safer 
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technology than conventional PCR since it does not require the use of mutagenic intercalating 

dyes to stain the DNA. It is also more sensitive, more reproducible, quicker and more cost-

effective and is therefore now the most used molecular technique to quantify target sequences.  

Numerous qPCR approaches have been developed for the detection and enumeration of 

different organisms in various systems and the subject has been extensively reviewed (Schena 

et al. 2004; Okubara et al. 2005; Mumford et al. 2006; Cooke et al. 2007; Vincelli and Tisserat 

2008; O’Brien et al. 2009; von Felten et al., 2010; Bilodeau 2011; Schena et al., 2013; Sanzani 

et al., 2014).   

The main advantages of qPCR are its sensitivity, ease of use and capacity to run large sample 

numbers in high-throughput automated testing for quantitative estimation of DNA targets. Its 

limitations include the variability of the distribution of soil organisms and microorganisms, the 

efficiency of extraction and purification of DNA from environmental samples and the amount and 

variation of PCR inhibitors that can be co-extracted from environmental samples. Furthermore, 

the heterogeneity of PCR templates amplified from different target organisms can create 

artefacts and biases when attempting to compare populations of different target organisms in the 

same sample or of the same organism in different samples (Goyer and Dandie, 2012). The 

accuracy of quantification is also influenced by the number of copies of the target gene in the 

genome of each organism.  Furthermore, since qPCR assays usually target total DNA, there is 

not always a relationship between DNA quantification and the viability of the detected target. 

Care is therefore needed when interpreting results in terms of the potential risks or benefits 

associated with the detection of target organisms or functional genes, which may not be viable 

or actively expressed.  This problem can be tackled by using reverse transcriptase qPCR to 

detect mRNA targets that are short lived outside of the viable cell, or by using intercalating dyes 

such as propidium monoazide (PMA) or ethidium monoazide (EMA) which penetrate dead cells 

and intercalate with the DNA, preventing amplification by PCR (Fittipaldi et al., 2011).  The extent 

to which these methods can be used on DNA extracted from soil and the cost implications for 

routine analysis have yet to be determined.  

A variety of markers have been used to develop specific qPCR assays, which are described in 

more detail below. Whilst these are often based on unique taxonomic or functional gene markers, 

sequenced characterised amplified regions (SCAR) have also frequently been used (Gobbin et 

al., 2007; Hermosa et al., 2001; Holmberg et al., 2009).   In these cases, unique DNA bands are 

generated from genomic DNA of the target organism using DNA fingerprinting techniques such 

as random amplified polymorphic DNA-PCR (RAPD-PCR), repetitive extragenic palindromic 

PCR (rep-PCR) or restriction fragment length polymorphism (RFLP).  Purification and 

sequencing of unique DNA fragments then allows soft-ware assisted selection of primers and 

probes for qPCR assay development and validation.  Increasingly, it is now possible to generate 

specific markers from whole genome comparisons using bioinformatic pipelines which terminate 
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in the generation of unique primer/probe combinations which are suitable for use in qPCR assays 

(Pritchard et al., 2013). 

2.5. Methods suitable for soil community analyses 

Molecular approaches for the analysis of the functions and diversity of whole soil communities 

have evolved rapidly in the last 10 years and have been widely reviewed and discussed (e.g. 

Sørensen et al., 2009; Orgiazzi et al., 2015; Drummond et al., 2015; Creer et al., 2016).  In 

addition to qPCR targeting taxon-specific barcode sequences (see above), various other 

molecular approaches have been used in soil community research, including the following:  

2.5.1. Microarrays 

The attachment of labelled DNA probes of known sequences to a solid slide or “DNA chip” 

enables probing with fragments obtained from soil communities.  Detection of hybridization 

between the immobilised DNA probes and the soil DNA, then indicates the array of genes 

associated with the soil community. For example, development of the microarray GeoChip, 

with up to 82000 probes covering 141 995 coding sequences from 410 functional gene 

families, has allowed investigation of the ecological functions of soil microbial communities 

involved in nitrogen, carbon, sulphur, and phosphorus cycles as well as energy metabolism, 

antibiotic resistance, metal resistance/reduction, organic remediation, stress responses, 

bacteriophage, and virulence (He et al., 2010; Tu et al., 2014). 

2.5.2. DNA fingerprinting methods 

These methods combine PCR amplification of conserved marker genes across a soil 

community and differentiation between the resulting PCR amplicons according to variation in 

their DNA sequences. For example, when applied to 16S rRNA gene markers, the method 

allows the dissection of microbial communities at the level of the phylogeny of their 

constituents (Smalla et al., 2007;).  Similar approaches have been used to estimate 

nematode diversity using the 18s rDNA gene (Waite et al., 2003; Foucher et al., 2004). Two 

fingerprinting approaches have been most widely used: 

 Density gradient gel electrophoresis (DGGE) separates the double stranded DNA 

PCR amplicons during electrophoresis in a polyacrylamide gel with an increasing density 

gradient of DNA denaturing agents (usually urea and formamide).  Fingerprint patterns 

are formed in the gel when amplicons varying in sequence are denatured at different 

gradients and their migration is slowed down or stops at different distances during their 

migration along the gel.   

 Terminal restriction fragment length polymorphism (T-RFLP) assesses variation in 

the sequence of PCR amplified DNA by treating with restriction enzymes that cleave the 
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amplicons into several fragments at specific points in the sequence.  The use of 

fluorescently labelled PCR primers enables the terminal fragments to be separated 

according to their size in a capillary sequencer.   

Chen et al. (2010) compared these methods to other molecular methods, including qPCR 

and DNA barcoding, for monitoring soil nematodes as biological indicators.  They concluded 

that T-RFLP was well suited for routine monitoring purposes based on the advantages of 

high-throughput, ease of comparison between samples and rapid data analysis. T-RFLP has 

also been used to survey the bacterial biogeography of British soils (Griffiths et al., 2011) 

However, it has been shown that such fingerprinting techniques sometimes only consider the 

most abundant phylotypes and so diversity estimates can be poorly correlated with true 

community diversity (Lalande et al., 2013).   

2.5.3. Next generation high throughput sequencing 

While PCR-based methods have been widely used to study community interactions at high 

taxonomic levels, the specificity of available primers and the labour and expense involved in 

sequencing or otherwise differentiating PCR amplicons has limited both sample throughput 

and the resolution to which individuals can be identified within the soil community.  With the 

development of the first true high throughput sequencing (HTS) 454 Life Sciences platform 

(Margulies et al. 2005), it became possible to pyrosequence millions of individual amplified 

molecules in parallel. Subsequent developments in sequencing technology have further 

increased the depth of sequencing and opportunities for high sample throughput (Loman et 

al. 2012). Three new next generation sequencing (NGS) platforms were released in 2011 

alone: Ion Torrent’s PGM, Pacific Bioscience’s RS and the Illumina MiSeq (Quail et al., 2012). 

Alongside these advances in technology are developments of bio-informatics tools that 

manage large data flows, compare data with specialised databases and extract relevant 

information, creating new perspectives for investigating the soil microbiome (Uroz et al., 

2013). Illumina sequencing-bysynthesis has particularly enabled greater sequencing depth 

and higher sample throughput alongside reduced costs. More recently, single molecule 

sequencing technologies, such as Pacific Biosystems and Oxford Nanopore, have allowed 

the generation of much longer reads from samples where DNA is only present at low 

concentrations.  However, higher costs, reduced throughput and increased error rates of the 

latest platforms mean that Illumina currently remains the platform of choice for community 

ecology research (Schmidt et al., 2013; Creer et al., 2016). 

High throughput sequencing technology is revolutionising the way in which the functions and 

diversities of soil communities are investigated through analysis of directly or indirectly 

extracted total DNA or of the eDNA.  Three main approaches are currently being followed: 
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 Metabarcoding involves PCR amplification of pre-selected barcode sequences in 

phylogenetically relevant marker genes followed by simultaneous high throughput 

sequencing of all amplicons generated and bioinformatic sequence comparisons using 

databases of verified specimen sequences. Several sequence databases have been 

employed, including RDP (Cole et al., 2014), Greengenes (DeSantis et al., 2006), SILVA 

(Pruesse et al., 2007), UNITE (Abarenkov et al., 2010), BOLD (Ratnasingham & Hebert, 

2007), & Genbank (Benson et al., 2012).  First used to describe meiofauna community 

structures by analysing eDNA in sediments (Creer et al., 2010), metabarcoding methods 

were also developed to analyse soil for DNA from fungi, bryophytes, enchytraeids, 

beetles and even birds (Epp et al., 2012).  High-throughput metabarcoding studies on 

fungi and other eukaryotic microorganisms are rapidly becoming more frequent and more 

complex, and several new bioinformatic pipelines have been described for 

metabarcoding bacteria (Gellie et al., 2017), fungi (Bálint et al., 2014) and fauna (Yang 

et al., 2013; de Groot et al., 2016) including protists (Geisen et al., 2015), nematodes 

(Posazinska et al., 2010 and 2010b; Sapkota and Nicolaisen, 2015) and earthworms 

(Bienert et al., 2012). 

 Metagenomics entails random (shotgun) sequencing of long strands of soil DNA to 

elucidate the taxonomic structure and potential functional genomic capability of a 

community. In contrast to metabarcoding, metagenomics does not require an initial PCR 

step, thus avoiding potential biases associated with the use of different primer sets with 

varying amplification efficiencies (Logares et al. 2013). Shotgun sequencing provides an 

amplification independent method for assessing community diversity, additionally 

allowing for the capture of information from groups that are otherwise difficult to survey 

(Narasingarao et al. 2012).  For example, Delmont et al. (2012) described the 

metagenome of a Rothamsted grassland soil using 454 pyrosequencing and showed that 

only 1% of the annotated sequences found corresponded to known sequenced genomes. 

Unexpectedly low seasonal and vertical soil metagenomic functional class variations 

were also observed.  Metagenomic analysis of soils across global ecosystems is 

indicating major differences in soil microbiomes in terms of both taxonomic and functional 

representation (Noronha et al., 2017). Differences in functional and/or taxonomic diversity 

are also shown to vary with agricultural land use (Manoharan et al., 2017), including 

tillage and crop management practices (Souza et al., 2015), pH and fertilizer adjustment 

(Fierer et al., 2012; Zhalnina et al., 2015) and the use of organic amendments (Jenkins 

et al., 2017). Significant investment is being targeted towards sequence-based 

approaches to understand the soil microbiome. For example, The Earth Microbiome 

Project (www.earthmicrobiome.org) alone is characterizing 200 000 samples from 

researchers all over the world.  Results of metagenomic analysis are known to vary with 

the DNA extraction method, database choice and the annotation procedure (Jacquiod et 

http://www.earthmicrobiome.org/
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al., 2016). In support of this, improved curated genomic databases, such as RefSoil (Choi 

et al., 2016) and FuSiON (Zhu et al., 2015), are being developed to provide a soil-specific 

framework with which to annotate and understand soil sequencing projects. 

 Metatranscriptomics allows study of the actual functional activity of the entire soil 

microbiome through shotgun sequencing of the messenger RNA (mRNA) (Carvalhais 

and Schenk, 2013; Myrold et al., 2014; Thies, 2015). Presence of mRNA reflects the 

portion of the soil microbial community that is active at the time of sampling 

(Blagodatskaya and Kuzyakov, 2013) and thus provides a robust means to examine 

biological responses to soil management. The process is challenging as mRNA typically 

represents less than 5% of the RNA extracted (Carvalhais et al., 2013) and is often 

extremely short-lived.  The mRNA in the extract must be enriched and the rRNA removed. 

Subtractive hybridization, treatment with endonucleases that preferentially degrade rRNA 

or duplex specific nuclease treatment are used to remove rRNA (Yi et al., 2011). 

Eukaryotic mRNA can be separated by binding the 3’-poly-A tails of the transcripts to 

surfaces coated with poly(dt)probes, thus enriching mRNA from bacteria and archaea in 

the extract. The mRNA is then reverse-transcribed (RT) into cDNA for high-throughput 

sequencing.   

2.6. Molecular markers for bio-indicators of soil health 

The size and diversity of the biological communities sustained within different soils can be 

determined according to the prevalence of molecular markers within their DNA, which have been 

selected to identify different taxonomic groups, functional groups or individuals within the 

community. Ritz et al. (2009) listed several bio-indicators that can be targeted in this way when 

assessing the overall health status of soils in relation to crop productivity and long-term 

sustainable land management: 

2.6.1. Biological communities contributing to soil biodiversity 

For taxonomic barcode markers within bacteria and archaea, highly conserved target 

sequences within the 16S ribosomal RNA gene have been most widely used (Fierer et al., 

2005; Sogin et al., 2006), although hypervariable regions within the gene and the 16-23S 

intergenic spacer have also been used for more taxa-specific analyses (e.g. Becker et al., 

2000; Suzuki et al., 2000; Takai & Horikoshi, 2000 and Blackwood et al., 2005).  Various 

housekeeping genes have also proven useful as taxonomic barcodes since they are essential 

and are therefore not lost from genome, but evolve more quickly than 16S rDNA. The most 

commonly used taxonomic markers used to identify soil-borne fungi and oomycetes also 

often include rDNA markers, including the intergenic transcribed regions ITS1 and ITS2, 

located between the small sub unit (SSU) 18S and the large sub unit (LSU) 28S genes and 

separated by the 5.8S gene (Schoch et al., 2012; Schena et al., 2013). For other taxonomic 
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groups, a diverse set of loci from the analogous eukaryotic rRNA gene array (e.g. ITS, 18S 

or 28S rRNA) (Bik et al., 2012a; McGuire et al., 2010; Epp et al. 2012) have been employed.  

Barcoding of nematodes has mainly relied on rDNA targets, including ITS1, ITS2, 18S, D2-

D3 expansion segments of the 28S rRNA gene, 5S and intergenic spacer (IGS) targets, 

although other targets also include the mitochondrial cytochrome oxidase gene (CO1) (Blok, 

2010).  Some 51 taxon-specific markers based mainly on the rDNA locus (Floyd et al., 2002; 

Griffiths et al., 2006; Holterman et al., 2006; Rybarczyk-Mydłowska et al., 2012; Vervoort et 

al., 2012) have been used for characterisation of nematode assemblages (Quist et al. 2016 

and 2017). Similarly, for protists, conserved sequences within the 18S, ITS and CO1 genes 

are often used (Pawlowski et al. 2012).  The 18S and CO1 genes are also widely used for 

barcoding meiofauna and macrofauna (Hebert et al., 2003; Deagle et al., 2014) together with 

additional sequence information from the 12S and 16S genes for macrofauna (Epp et al., 

2011).  Capra et al. (2016) also recently described a new set of markers based on 18S rRNA 

for metabarcoding of soil metazoa.  In general, markers based on rDNA often provide useful 

sequence barcodes with good resolution at genus or higher, although resolution to species 

level is not always possible. Furthermore, quantification based on total gene copies detected 

can be variable due to the different numbers of rRNA copies associated with different species 

(Klappenbach et al., 2000).      

2.6.2. Microbial activity affecting soil nutrient availability/retention  

Organisms involved with biogeochemical processes such as carbon, nitrogen, phosphate 

and sulphur cycling are important indicators of soil health.  Genes controlling these processes 

have been used as markers to quantify functional groups of these organisms in soils.  Recent 

examples describing the use of qPCR to monitor presence and quantify various functional 

microbial groups according to their expected activities in soils and sediments are shown in 

Table 1. 

For carbon cycling organisms, these include genes expressing enzymes involved in oxidation 

of organic matter to CO2 (soil respiration), which include ß-glucosidases, cellulases and 

phenol oxidases, as well as the consumption of methane by methanotropic bacteria (methane 

oxidases).  Functional groups of bacteria can also be quantified using marker genes for 

enzymes involved in nitrogen cycling, including: 

 Nitrogenases in nitrogen-fixing Rhizobium species and cyanobacteria (blue green 

algae), which assimilate atmospheric nitrogen into ammonia. 

 Ureases and amydases in nitrogen mineralising bacteria, which convert organic nitrogen 

to ammonium ions. 

 Ammonium oxidases in nitrifying bacteria, which produce nitrite and nitrate from 

ammonium. 
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 Nitrate reductases, nitrite reductases and nitrous oxide reductases in denitrifying 

bacteria, which release gaseous nitrous oxide and nitrogen from nitrates and nitrites. 

Similarly, functional groups of bacteria and fungi contributing to phosphate and sulphur cycles 

have been quantified according to marker genes expressing the key enzymes involved.  Acid 

and alkaline phosphatase enzymes produced by bacteria, fungi and plant roots serve to 

transform complex and sometime unavailable forms of organic P into assimilable phosphate.  

Population dynamics of sulphate-reducing bacteria have similarly been quantified by 

quantification of their functional genes responsible for dissimilatory reduction of sulphates to 

adenosine 5’-phosphosulfate (APS), sulphites and eventually to gaseous hydrogen sulphide 

under anaerobic conditions.   
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Table 1: Marker genes used to monitor microbial activity affecting soil nutrient cycling 

Biological 

function 

Targeted genes  References 

C-cycling Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) 

(cbbL) 

Methane mono-oxygenase (pmoA) 

Methyl coenzyme M reductase (mcrA) 

Cellulase (cel) 

Chitinase (chiA) 

Alkane mono-oxygenase (alkb) 

PAH ring hydroxylating dioxygenase (PAH-RHD) 

Powell et al., 2006 

Selesi et al., 2007 

Yergaeu et al., 2009 

Freitag et al., 2010 

Pereyra et al., 2010 

Yergeau et al., 2012 

N-cycling Ammonia mono-oxygenase (amoA)  

Nitrogenase reductase (nifH),  

Nitrous oxide reductase (nosZ),  

Nitrite reductase (nirS, and nirK), 

Nitrate reductase (narG and napA),  

Nitric oxide reductase (norB) 

Hai et al., 2009 

Hayden et al., 2010 

Bru et al., 2011  

Dose et al., 2015, 

Dandie et al., 2011 

 

S-cycling Dissimilatory sulfite reductase (dsrA) 

Adenosine 5′-phosphosulfate reductase (aprA, ApsA) 

Ben-Dov et al., 2007 

Blazejak & 

Schippers, 2011 

P-cycling acid phosphatase (phoC) 

alkaline (phoD) phosphatase 

Fraser et al., 2017 
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2.6.3. Microbial symbionts contributing to crop nutrition 

Arbuscular mycorrhizal fungi 

Primers and probes to quantify abundance of different arbuscular mycorrhizal fungal (AMF) 

taxa in roots and in soil have been selected from taxon-specific markers in the nuclear large 

ribosomal subunit RNA genes (nrDNA) and the mitochondrial ribosomal mtDNA (König et al., 

2010; Thonar et al., 2012; Voříšková et al., 2017). Interpretation of the qPCR results has 

been complicated by the multinuclear and multigenomic cellular organization of these fungi 

and the high DNA sequence diversity within the smallest biologically relevant units (i.e. 

single-spore isolates). Markers based on nrDNA, rather than mtDNA, are thought to be more 

suitable for the quantification of multiple AMF taxa as copy numbers of the former are better 

related to fungal biomass across taxa.  

Nitrogen-fixing bacteria  

Molecular markers used to quantify soil populations of nitrogen-fixing bacteria, such as 

Rhizobium, Bradyrhizobium and Sinorhizobium spp., include rpoE1, nodC, nodD and nodZ 

genes (Trabelsi et al., 2009; Boonen et al., 2010; Furseth et al., 2010; Macdonald et al., 

2011).  Nitrogen-fixing bacteria belonging to the genus Frankia have also been studied using 

markers within target genes nifH (Samant et al., 2012) and 23S rRNA (Samant et al., 2014; 

Ben Tekaya et al., 2017). Strain specific and general primer/probe sets are available for 

molecular qPCR analysis targeting these genes, offering a rapid and comparable alternative 

to the laborious procedure of most-probable number bioassays based on counting the 

number of nodules on the roots of test plants.  Nodulation potential can be overestimated by 

the molecular methods due to presence of dead cells and DNA, which can remain in soil for 

up to 5 months after inoculation.   

Plant growth promoting rhizobacteria (PGPR) 

Several molecular markers have been used to detect and quantify bacteria considered to 

have some activity, which is plant growth promoting in the rhizosphere of different crops 

(Table 2).  In most cases, strain-specific assays have been used to determine the fate of 

PGPR strains added to soils during assessment of their suitability for commercialisation. 

Functional genes of fluorescent Pseudomonas spp. have been used as markers for grouping 

strains with antibiotic or hydrogen cyanide activities which are dispersed across several 

different species (Kim et al., 2013). 
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Table 2: Marker genes used to monitor plant growth promoting bacteria (PGPR) in soils 

PGPR Marker Reference 

Azospirillum lipoferum CRT1 (RFLP product SCAR marker) Couillerot et al., 2010 

Azospirillum brasilense nifA (nitrogen fixation) Faleiro et al., 2013 

Bacillus    

Herbaspirillum seropedicae HERBASI1 (prophage sequence) Pereira et al., 2014 

Enterobacter radicincitans 16S rRNA Schreiner et al., 2009 

Paenibacillus polymyxa 16S rRNA Timmusk et al., 2009 

Fluorescent Pseudomonas spp. Multiple strain specific makers 

(RAPD product SCAR markers) 

phlD (2,4-diacetylphloroglucinol)  

phzCD (phenazine-1-carboxylic acid) 

hcnBC (hydrogen cyanide) 

Von Felten et al., 2010 

 

Kim et al., 2013 

Pseudomonas brassicacearum OPA2-73 (RAPD product SCAR 

marker) 

Holmberg et al., 

2009 

Pseudomonas sp. (DSMZ 13134) dnaX (housekeeping gene) Mosiman et al., 2016 

 

2.6.4. Biocontrol agents 

Molecular markers have been used for detection and quantification of commonly used fungal 

biocontrol agents to assess their establishment, distribution and longevity in different soils.  

General ITS markers have often been used for fungi such as the mycoparasitic Trichoderma 

harzianum (Lopez-Mondéjar et al., 2010). RNA detection using reverse transcriptase 

amplification of the same markers has enabled estimation of viable populations (Beaulieu et 

al., 2011). Strain specific markers within the housekeeping gene aox1 allow differentiation of 

commercial biocontrol agent strains of T. harzianum from other soil inhabiting strains (Horn 

et al., 2016). Other markers have been used for analysis of T. atroviride (Cordier et al, 2007; 

Savazzini et al., 2008). Vallance et al. (2009) used ITS markers to study the biocontrol agent 

Pythium oligandrum in the rhizosphere. ITS markers have also been used to study the 

nematophagous fungus Plectosphaerella cucumerina used for control of potato cyst 

nematodes (Atkins et al., 2003) and the entomopathogenic fungi Entomophaga maimaiga 

(Castrillo et al., 2007) and Beauveria bassiana (Bell et al., 2009; Garrido-Jurado et al., 2016).  

SSR (single sequence repeat) microsatellite markers have also been used to distinguish 

between biocontrol strains of Beauveria bassiana and B. brongniartii (Canfora et al., 2016). 

SCAR (sequence-characterised amplified region) markers, based on unique RAPD amplified 

sequences, have also been used to recognise the biocontrol agents B. bassiana (Castrillo et 

al., 2008) and Chaetomium globosum (Aggarwal et al., 2014). 
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Detection and identification of soilborne bacterial biocontrol agents, such as those belonging 

to the Bacillus subtilis group (including Bacillus subtilis and B. amyloliquefaciens), have also 

been based on SCAR markers, identified from unique PCR amplicons generated after RAPD 

or rep-PCR analysis. Strain specific differentiation has been based on sequence variation 

within housekeeping genes, including a tryptophan biosynthesis gene trpE (G) (Johansson 

et al., 2014) and RBAM 007760 (Gotor-Vila et al., 2016), a gene involved in surface adhesion 

and biofilm formation. This has allowed identification of strains, which better colonize the 

rhizosphere.  Strains of Pseudomonas fluorescens that produce the antibiotic 2,4-

diacetylphloroglucinol (2,4-DAPG) have been monitored in cereal rhizospheres using phlD 

gene sequences as markers (Mavrodi et al., 2007). 

2.6.5. Nematode assemblages 

For community analysis of nematodes extracted from soils, markers within the small sub unit 

(SSU) of the ribosomal DNA (rDNA) have been most widely exploited to identify nematode 

feeding guilds (Griffiths et al., 2006). Donn et al., (2012) developed a directed terminal 

restriction fragment length polymorphism (dT-RFLP) method whereby PCR primers are used 

to amplify the SSU rDNA, followed by restriction of the amplicons with selected enzymes and 

comparison of the resulting fragment sizes with those in sequence databases produced from 

fully characterised species. A series of rDNA barcodes have been selected that allow 

identification to family and genus levels (Floyd et al., 2002; Holterman et al., 2006; Vervoort 

et al., 2012), which can then be allocated to feeding guilds. These have been used 

experimentally to show effects of long term soil management practices on the frequency of 

occurrence of each taxon following qPCR analyses with up to 51 primer sets (Quist et al., 

2016 and 2017).  Wang (2012) proposed a simpler system based on qPCR of 18S rDNA 

targets, but which only identifies certain guilds of bacterial-feeding, fungal-feeding, 

omnivorous and predatory nematodes but not herbivorous nematodes.  A range of bespoke 

markers have also been designed for specific detection of different plant pathogenic 

nematode species (e.g. Madani et al., 2005; Holeva et al., 2006; Nakhla et al., 2010). 

2.6.6. Soil-borne plant pathogens 

Bilodeau (2011) reviewed the use of qPCR methods for detection of soil-borne plant 

pathogenic micro-organisms and nematodes.  An updated list of available qPCR assays 

suitable for detection of soil-borne pathogens is shown in Table 3. 
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Table 3: Markers used for detection and quantification of soil-borne pathogens 

Pathogen Marker Reference 

Aphanomyces cochlioides rDNA (ITS) Almquist et al., 2016 

Colletotrichum coccodes rDNA (ITS) Cullen et al., 2002 

Fusarium graminearum 

Fusarium culmorum 

PKS13 Zearalenone 

biosynthesis 

Atoui et al., 2012 

 

Fusarium avenaceum 

Fusarium culmorum 

Fusarium graminearum 

Fusarium poae 

 Waalwijk et al., 2004 

Fusarium culmorum  

Fusarium avenaceum 

Fusarium coeruleum 

Fusarium sulphureum 

rDNA (ITS) Cullen et al., 2005 

Fusarium oxysporum rDNA (ITS1-5.8S-ITS2) Jiménez-Fernández et al., 2010 

Fusarium oxysporum f. sp. melonis translation elongation factor 

(TEF-1α) 

Haegi et al., 2013 

Fusarium culmorum 

Fusarium graminearum 

Fusarium  pseudograminearum 

Trichodiene synthase gene 

(tri5) 

Hogg et al., 2010 

Fusarium solani f. sp. phaseoli rDNA (SSU) Filion et al., 2003 

Globodera rostochiensis 

G. pallida  

rDNA (ITS1)  

rDNA (ITS1) 

Toyota et al., 2008 

Adams et al., 2009 

Gaeumannomyces graminis var. 

avenae 

Gaeumannomyces graminis var. 

tritici 

rDNA (TS1) Bithell et al., 2012 

 

Gaeumannomyces graminis var. 

tritici 

translation elongation factor 

gene (EF1-α) 

Keenan et al., 2015 

Helminthosporium solani rDNA (ITS) Cullen et al., 2001 

Heterodera avenae mitochondrial cytochrome 

oxidase subunit 1 (COI) 

Toumi et al., 2015 

Heterodera schachtii rDNA (ITS) Madani et al., 2005 

Phomopsis sclerotioides rDNA (ITS) Shishido et al., 2013 

Phytophthora kernoviae rDNA (ITS) Hughes et al., 2011 

Phytophthora rubi cox1 cytochrome oxidase sub 

unit 1  

Woodhall & Peters, 2014 

Plasmodiophora brassicae rDNA (18S and ITS1) 

rDNA (18S) 

rDNA (ITS) 

rDNA (ITS)  

rDNA (ITS) 

rDNA (18S) 

rDNA (ITS1) 

Sundelin et al., 2010 

Rennie et al., 2011 

Wallenhamer et al., 2012 

Li et al., 2013 

Kennedy et al., 2013  

Cao et al., 2014 

Deora et al., 2015 

Polymyxa betae 

Polymyxa graminis 

rDNA (ITS) Ward et al., 2004 
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Table 3 (continued)  

Pathogen Marker Reference 

Polyscytalum pustulans rDNA (ITS) Lees et al., 2009 

Pratylenchus penetrans β-1,4-endoglucanase gene Mokrini et al., 2013 

Pythium violae rDNA (ITS) 

rDNA (ITS and 5.8S) 

Cullen et al., 2007 

Schroeder et al., 2006 

Rhizictonia cerealis β-tubulin gene 

Unique SCAR sequence 

Guo et al., 2012 

Woodhall et al., 2017 

Rhizoctonia solani  

AG1-1        

AG2-1     

AG2-2        

AG3-PT     

AG4           

AG5           

AG8           

rDNA (ITS), β-tubulin 

 

 

 

 

Lees et al., 2002 

Budge et al., 2009 

Woodhall et al., 2013 

 

 

Rhizoctonia solani AG2-2 IIIB rDNA (ITS1, 18S and 5.8S) Abbas et al., 2014 

Sclerotinia sclerotiorum 

  

mitochondrial small subunit 

rRNA intron and ORF1 

Rogers et al., 2009 

Kim & Knudsen, 2008 

Sclerotium cepivorum rDNA (ITS) Woodhall et al., 2012 

Spongospora subterranea rDNA (ITS) 

rDNA (ITS2) 

van de Graaf et al., 2003 

Qu et al., 2011 

Streptomyces spp. nec1 virulence gene 

txtAB thaxtomin toxin 

synthetase gene 

16S rRNA 

Qu et al., 2011 

Cullen & Lees, 2007 

Schlater et al., 2010 

Synchytrium endobioticum rDNA (ITS) Van Gent-Pelzer et al., 2010 

Verticillium dahliae  

Verticillium longisporum 

Verticillium tricorpus 

β-tubulin gene 

rDNA (ITS) 

Debode et al., 2011 

 

Verticillium albo-atrum rDNA (IGS)  

 

Bilodeau et al., 2012 

Peters, 2012 

Maurer et al., 2013 

Verticillium dahliae β-tubulin gene 

rDNA (IGS) 

Duressa et al., 2012 

Bilodeau et al., 2012 

Verticillium dahliae 

Verticillium longisporum 

rDNA (18S) 

rDNA (ITS-5.8S)  

Banno et al., 2011 
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3. Conclusions 

The analysis of biological community structure and function in soil is benefiting from the availability 

of an ever-expanding assortment of molecular tools.  Although complex and expensive, and 

therefore mostly confined to use in research, some molecular procedures are rapidly evolving and 

may become available as affordable procedures for routine analysis of biological indicators of soil 

health.  The use of qPCR to detect and quantify specific organisms from total soil DNA and eDNA is 

already starting to be used on a routine basis. For example, the Predicta® soil testing service offered 

by the South Australian Research and Development Institute (SARDI) is already offering quantitative 

analysis of the distribution of some soil-borne pathogens of broadacre and potato crops in relation 

to the risk of disease development (Ophel-Keller et al. ,2008).  The first uses of high throughput next 

generation sequencing in national and international surveys are suggesting that there is a core 

microbiome in geographically distant and disparate soils (Orgiazzi et al., 2013), but that there are 

also major differences in taxonomic and functional representation (Noronha et al., 2017).  

Metagenomic analysis of soils is also showing that the microbiome is dynamic, varying with season 

(Jumpponen et al., 2010) and agricultural land use (Fierer et al., 2012; Souza et al., 2015; Zhalnina 

et al., 2015; Jenkins et al., 2017; Manoharan et al., 2017). 

A number of technical challenges remain to be fully overcome in the application of molecular 

analyses for reliable characterisation of the taxonomy and function of soil communities (Delmont et 

al., 2012). It is very difficult to suggest standardised practices to sample and extract unbiased and 

representative samples of DNA from organisms with very different cell membranes and accessible 

DNA and across the full variability of soil types. This problem is exacerbated by the uneven spatial 

distribution of microbial communities in soil. Furthermore, the yield and quality of extracted DNA 

varies with the chemical and physical properties of different soils (Feinstein et al., 2009) as well as 

the extraction method used (Petric et al., 2011).  Although attempts have been made to standardize 

methods for DNA extraction from soil (Phillipot et al., 2010), their validation has been restricted to 

certain analytical methods. Since different analytical methods have different DNA quality 

requirements, there remains a need for further validation and standardisation of methods suitable 

for use with each new analytical method of choice.  In addition to sampling and extraction, biases in 

soil community analyses can be attributed to differences in the molecular markers targeted as well 

as in the methods used for their analysis and the databases used for their identification. 

Heterogeneity of PCR templates amplified from different target organisms can create artefacts and 

biases (Goyer and Dandie, 2012). The accuracy of quantification is also influenced by the number 

of copies of the target gene in the genome of each organism. 

Whilst standardization of sampling, extraction and analytical methods is highly desirable, it is unlikely 

that a single standardised procedure will be suitable for all types of molecular soil analysis.  It is 

much more likely that a series of standardised procedures will be needed that are optimised for 

several parameters, including the types of organism to be studied, the numbers of soil samples to 
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be tested, the amounts of soil in each sample and the type of analysis to be performed.  Of key 

importance will be the introduction of suitable internal controls that ensure efficient extraction of high 

quality DNA and the accuracy of its detection, quantification and representation within the soil 

community. For routine comparisons of soil health, the costs of sampling, DNA extraction and 

molecular analysis are also likely to be highly influential. High-throughput PCR and sequencing 

methods contribute to a significant increase in testing efficiencies, allowing simultaneous 

investigation of multiple targets and whole communities from a single DNA extract.  Developments 

in technology are also moving towards the performance of molecular analyses in situ, rather than 

having to transport samples for laboratory analysis.  Nevertheless, the cost of molecular analysis 

remains a key constraint to its routine application in monitoring soil health. 

The wide range of taxonomic and functional markers that are available for probing soil DNA, together 

with the high throughput methods that are available for automated analysis, mean that multiple 

analyses can now be easily and simultaneously performed on a single soil DNA extract. Since DNA 

extraction is the most expensive part of the analysis, it is cost effective to test each extract for multiple 

markers.  The challenge over the current Research Partnership is to identify the most appropriate 

biological soil health indicators to include in this type of analysis.  Knowledge exchange workshops 

are already in progress, together with growers and agronomists, to explore the most useful targets 

for routine testing. The challenge will be to link the results of such testing to yield and quality benefits 

across entire cropping systems. Future workshops will also include demonstrations of the benefits 

of testing and will involve agronomists in the sampling procedures and, eventually, in interpretation 

of the results of DNA analyses. Future research within the Partnership will concentrate on validating 

and standardising the most appropriate molecular methods and building data on the effects of long-

term soil management practices on key soil health indicators, including both beneficial and 

pathogenic organisms. 
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5. Appendix 1 

Method for total DNA extraction from soil samples of up to 500g 

(after Woodhall et al., 2012) 

 

Scope:  This method is suitable for direct extraction and purification of total DNA from composite 

soil samples of up to 500g.  The procedure below is described for samples of 250g. 

Materials: 

1. Minimix auto paint shaker (Merris Engineering Ltd., Ireland) 

2. Kingfisher ML magnetic particle processor (Thermo Fisher Scientific).  

3. Grinding buffer (120 mM sodium phosphate buffer pH 8.2, 2% centrimonium bromide, 

1.5M sodium chloride) 

4. Antifoam B (Sigma-Aldrich) 

5. 5M potassium acetate 

6. Isopropanol 

7. Silicon dioxide (Sigma-Aldrich) 

8. Wizard® Magnetic DNA Purification System for Food (Promega) 

Procedure:  

1. Sieve soil to remove stones. 

2. Place 250 g soil into 1000 ml Nalgene wide mouth environmental bottles with 20 

stainless steel ball bearings (25.4 mm), 500 ml grinding buffer and 15 ml Antifoam B. 

3. Shake for 4 min. in a minimix auto paint shaker (Merris Engineering Ltd., Ireland). 

4. Centrifuge a 50 ml sub-sample at 5,000g for 5 min. 

5. Transfer 20 ml of the supernatant to a clean tube containing 2 ml of 5M potassium 

acetate and incubate on ice for 10 min. 

6. Centrifuge at 12,000 g for 5 min. 

7. Transfer the supernatant to a clean tube containing 15 ml isopropanol and 800 µl 

silicon dioxide suspension. 

8. Shake on flat bed shaker at 100 rpm for 15 min. 

9. Centrifuge at 12,000 g for 5 min. 

10. Discard supernatant and add 2ml Buffer A (Promega Wizard® Food Kit) to the 

pelleted silica particles. 

11. Shake tubes on their side for 10 min, at 65 °C and 100 rpm. 

12. Centrifuge at 12,000 g for 5 min. 

13. Extract DNA from 1000 µl of the supernatant by magnetic capture using the Wizard® 

Magnetic DNA Purification System for Food (Promega) in a Kingfisher ML magnetic 

particle processor (Thermo Fisher Scientific) according to the manufactuers’ 

instructions.  
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6. Appendix 2 

Method for extraction of extracellular eDNA from soil samples of up to 500 g 

(after Taberlet et al., 2012) 

 

Scope:  This method is suitable for direct extraction and purification of eDNA from 

composite soil samples of up to 500g.  The procedure below is described for 

samples of 250g. 

Materials: 

1. Sodium phosphate buffer pH 8 (1.97 g NaH2PO4 and 14.7 g Na2HPO4 per l 

sterile distilled H2O). 

2. NucleoSpin Soil kit (Macherey-Nagel, Düren, Germany) 

Procedure: 

1. Sieve soil to remove stones 

2. Add an equal weight of phosphate buffer (pH 8) to the soil in a wide neck 

bottle.   

3. Mix thoroughly by gentle orbital shaking for 15-30 min (e.g. at 50-100 rpm) to 

homogenise the sample. 

4. Centrifuge aliquots of the resulting soil suspension at 10,000 rcf for 10 min. 

5. Purify DNA from 500 µl of the supernatants using a Nucleospin Soil 

commercial kit (Macherey-Nagel, Düren, Germany) following the 

manufacturers’ instructions but skipping their lysis step. 

 

 


