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Abstract— Agriculture lends itself to automation due
to its labour-intensive processes and the strain posed on
workers in the domain. This paper presents a discrete
event simulation (DES) framework allowing to rapidly
assess different processes and layouts for in-field logistics
operations employing a fleet of autonomous transporta-
tion robots supporting soft-fruit pickers. The proposed
framework can help to answer pressing questions regard-
ing the economic viability and scalability of such fleet
operations, which we illustrate and discuss in the context
of a specific case study considering strawberry picking
operations. In particular, this paper looks into the effect
of a robotic fleet in scenarios with different transporta-
tion requirements, as well as on the effect of allocation
algorithms, all without requiring resource demanding
field trials. The presented framework demonstrates a
great potential for future development and optimisation
of the efficient robotic fleet operations in agriculture.

I. INTRODUCTION

The introduction of robots into agricultural domain is
expected to yield impressive productivity gains as well
as improving produce quality and traceability. As the
agricultural domain is generally very labour intensive,
introducing automation in relatively small doses, rather
than aiming to automatise entire operations, can have
significant positive impacts, both in terms of produc-
tivity as well as in workers’ health and well-being [1].

In this paper we present a powerful simulation frame-
work to analyse the economic viability and potential
of automatising logistics tasks in soft-fruit production
operations using a fleet of autonomous mobile robots.
We present the utility of employing a Discrete Event
Simulation framework, coupled with robots’ path plan-
ning ability, in order to run and evaluate many different
scenarios in short periods of time. When it comes
to actual deployment of robotic fleets in agricultural
domains, the question that needs answering is about
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(a) An aerial view of the
investigated strawberry farm.

(b) Robot Thorvald adopted
for in-field logistics.

Fig. 1: Our case study: robotic in-field logistics in
agriculture.

the optimal size of the fleet and the modification of
operations that go along with their introduction, as well
as an assessment of the scalability of the respective
approaches. We make a contribution towards answering
these questions with a generic simulation framework,
evaluated and discussed in a specific scenario and
discuss the lessons learned from this initial assessment.

The core contributions of this paper are:
1) A novel discrete-event simulation (DES) frame-

work, modelling the interaction between logistic
robotic fleets and human soft fruit pickers in the
field (Sec. III),

2) A case study of the proposed DES framework,
based on quantitative data gathered in a pilot
study (Sec. IV), and

3) The assessment and discussion of scalability and
economic viability in in-field logistics (Sec. V).

II. RELATED WORK

Agricultural robotics is an emerging technology be-
ing deployed at different stages of food production
including applications such as precision seeding [2],
weeding [3] and harvesting [4]. Agricultural and food
logistics has important role in ensuring food quality
and on overall health of the personnel involved [5].
Fleets of autonomous transportation robots have been
predominantly used in warehouse applications [6] with
many recent attempts in precision agriculture [7], [8].
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Many of the existing work in in-field agricultural
robotics focus on the multi-robot path planning [9],
[10], and very few have looked at collaborative interac-
tions between humans and robots. The costs associated
with introducing a robotic fleet should be justifiable in
terms of improved productivity and quality or reduction
in other costs. As environments can vary, and different
types of robots are available at different costs with
different functionalities, this optimisation problem may
be solved by simulating the processes and observing the
effect of having fleets of different sizes and types. A
direct approach would involve simulating continuous-
time models of the processes. This, however, could
result in long simulation runtimes when the state of
the process does not change for a considerable amount
of time. An alternative approach is to discretise the
processes and running a DES looking at the changes
between the important states that are of interest.

III. DISCRETE EVENT SIMULATION

In a DES model of a system, the basic unit which
changes its state is known as an entity which compete
among themselves for capacity limited resources. The
entities in the DES described here are human workers
and robots in a farm. A resource is an element provid-
ing some service, and is usually capacity-limited. Here,
robots are examples of resources providing transporta-
tion service and are available in finite numbers. A step
change performed by or on an entity is known as an
operation. In case of a robot assistant, going to the
assigned worker location for providing assistance is an
operation. An event is a set of operations happening at
a time instance resulting in n a change of the system
state (consisting of the states of individual entities). A
DES jumps through different event times and updates
the states of entities and the whole system. A detailed
overview of the DES concept is available in [11].

The DES discussed here is developed using SimPy
[12], a discrete event simulation framework in Python
as a Robot Operating System (ROS) [13] package
enabling easy integration with a wide range of existing
mapping and robot navigation algorithms in ROS. For
example, the DES makes use of an existing ROS
package [14] for path planning and navigation.

IV. THE RASBERRY PROJECT

A. Project Aims

The RASberry project (Robotics and Autonomous
Systems for Berry Production) aims to develop au-
tonomous fleets of robots for horticultural industry.

In particular, the project considers strawberry produc-
tion both in a traditional open ground fashion and in
polytunnels. The first major objective is to support in-
field transportation operations to aid and complement
human fruit pickers, followed by other objectives on
applications such as plant treatment, yield forecasting
and fruit picking. To achieve this goal, the project
will bridge several current technological gaps including
the development of a mobile platform suitable for
the strawberry fields, software components for fleet
management, in-field navigation and mapping, long-
term operation, and safe human-robot collaboration.

20− 30% of the labour time is spent walking crates
of picked fruit and empties back and forth from the
crop to the ends of field/greenhouse and on farm
logistics hubs. In addition, around 10% of the field
area is designated for transportation needs (access for
tractors, lorries, etc.). The proposed fleet for in-field
transportation will eliminate the need for workers to
carry picked crop and replenish them with empty crates.
In addition, the transportation infrastructure can be
significantly reduced since the robots do not require
special arrangements. The robot will be equipped with
a dedicated picking crate storage and weight sensors for
basic quality assurance. This functionality will enable
more precise traceability of the produce and more
precise yield estimation. The in-field transportation is
a universal problem for production of various crop
and hence the results of the project will be directly
transferable to other domains.

B. Modelling the RASberry use case

The scenario considered in this use case consists of
a close representation of a real strawberry production
site located in the Southern Norway. The site features
an open rectangular field containing 28 parallel rows
of strawberry plants, each 120m long and separated by
1.5m, resulting in 3360m of total row length covering
an area of 0.5 ha. The resulting topology of the site
corresponds to a comb pattern with the main transporta-
tion route containing the local store connecting starting
points of all rows (see Fig. 2).

In a traditional setup, a group of human pickers
assigns themselves into individual rows and carry on
picking until their crate is full. The full crate needs to
be transported to the local store located in front of the
rows and aligned roughly with the middle row. When a
picker reaches the end of the row, the picking process
continues on the other side of the strawberry plant row
until the picker returns to the beginning of the row. If
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Fig. 2: A representative visualisation of the RASberry-
DES with three pickers and a fleet of three robots.

there are still unallocated rows, the picker selects the
first free one and carries on with the picking process. A
common deviation from this sequence of operations is
during warm weather conditions, when the full crates
are unloaded at a cold storage facility rather than the
local storage to ensure product quality. As this cold
storage may be at a distance from the farm (hundreds of
metres or more), the pickers will have to travel farther
whenever the crates are full.

The robot-assisted picking consists of a fleet of N
robots which are assigned to individual human pickers
as soon as they complete a single tray using one of
the considered task allocations algorithm. The robot
travels to the assigned picker who then loads the full
tray onto and collects an empty one from the robot so
that they can carry on picking immediately after the
robot has left their location. The robot with the full
tray travels to the local/cold store, unloads the cargo
and then becomes available for all future tasks.

We have conducted a short real field experiment to
measure the main characteristics of the manual picking
process undertaken by a group of 14 human pickers
working during 4 hour period. The picking of the entire
block took approx. 4:08 h (14880 s) resulting in 87
completed crates in total. The observed picking rate
followed a normal distribution of 2408 ± 90 s (mean
± std) and estimated loading time was 110± 44 s per
crate. The rough transportation speed is assumed the
same for all pickers at 1m/s.

In the DES of RASberry usecase, all the required
parameters of the farm area and picker models are
calculated from the above observations. Each farm row
is discretised into a set of nodes placed along the row.
This distance is set as 5m for the experiments reported

here. The yield from each row is also assumed to be
normally distributed with 0.0650 ± 0.0013 crates per
node distance. The same field is used for all simulations
with a total yield of 86.68 crates. There is assumed to
be only one local storage at the head of the 14th row and
a cold storage at a distance of 250m from head of the
starting row. In order to differentiate the performance
of different pickers, the picking and transportation
rates are assumed to be normally distributed, 0.0375±
0.0007m/s and 1.00 ± 0.02m/s respectively (received
from field observations). When there are robot agents,
the pickers are assumed to take the same time to
load the full crates on the robot, as they would have
taken to unload at the local/cold storage. All robots
are assumed to have the same transportation rates and
unloading time. It is also assumed that the pickers will
transport and unload any partially filled crates to the
local storage station, when they finished picking the
last row allocated to them, and there are no more rows
to be allocated. A schematic visualisation of the agents
(see Fig. 2), with updates at each event time, is also
provided. The picking process is discretised by looking
at the changes in picker states while moving from one
topological map node to another.

The picker agents have six different states, namely
idle, transporting (moving to a row node to start picking
or to a storage station for unloading), picking, unload-
ing, waiting for a robot to arrive, and loading on a
robot. A picker will reach the last two states only
when there are robots. The robot agents have five states,
namely idle, transporting (to a picker or to the storage),
waiting for picker to load, unloading at local storage
and charging. The transitions between these agent states
are shown in Fig. 3a and Fig. 3b.

The picking process is initially simulated with pick-
ers alone, and then with different number of robots
for transporting the crates. It is assumed that only
one picker is allocated to a row. When robots are
available, a robot is assigned to only one picker at a
time. i.e., the robot is available for further assignments
only after unloading the crates from picker in the
current assignment. It is also assumed that there is
no capacity limitation at the storage stations. A picker,
once completed the current row will be allocated to the
next unallocated row. Robots are assigned to pickers
using lexicographical and uniform utilisation methods.
Lexographical ordering (of their identification tag) is
used to resolve any deadlocks. This greedy allocation
is similar to the one observed in real farms. In the
uniform utilisation method, the scheduler will try to



row finished &&
no new allocation

crates full ||
(crates not empty &&
 row finished &&
 no new allocation)

crates full && robots

robots arrived

crates empty &&
row finished &&
no new allocation

new allocation ||
row not finished

row not finished new allocation

(crates full && no robots) ||
(row finished && all rows allocated)

goal: a row node

goal: storage

reset: empty crates

goal: a row node

Loading

Picking

Waiting

Transportation

IdleUnloading

goal: a row node

(a) State diagram of a human picker.

no picker assignment
Unloading

Transportation

Loading

Charging

Idle

new picker assignment

full crates from picker

full crates from picker

battery ok

battery low

new picker assignment
goal: picker nodegoal: storage

reset: empty crates

goal: picker node
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Fig. 3: State transition diagrams, shown with conditions
that trigger them, and state variables being set.

distribute the tasks across the fleet, such that they all
are uniformly utilised. Ten trials of each experiment is
performed to observe the variations. It will be possible
to extent the DES with other task allocation algorithms.

V. ANALYSIS

A. Validity of the manual picking simulation.

In order to check the validity of the manual picking
simulation, the DES was initially run without any
robot agents. The average process completion times
observed were 15094.77 ± 124 s, compared with the
observed 14880 s in the field study. This increase in
the process completion time, 1.44% of the actual data,
was expected as a result of the randomly distributed
picking and transportation rates. From the actual field
study, it was observed that each picker has to travel
(with speed of 1m/s) approximately 124.64m/crate to
unload at the local storage station approximately. On
average a picker is allocated to two rows, resulting in
an additional 21m travel to the start of a row, after the
picker is allocated to a row (total transportation time
of 145.64 s). From the simulations, each picker spent
approximately 140.33 ± 14.80 s/crate in transportation
state for approximately 6.19 crates. This change in
the transportation required (3.65% decrease from the
actual) are also in the accepted range. Moreover, the

simulations were fast enough to run multiple trials.
Even the slowest of the simulations reported in this
paper took less that 7 s to simulate all the events
in 4:08 h clock time on a workstation with Intel R©

CoreTMi7-3770 CPU and 16GB RAM.

B. Picking performance with a robotic fleet under low
transportation requirements

These experiments were performed to inspect
whether introducing a robotic fleet would improve
any performance metric, and what would be its ideal
size, under low transportation requirements. In these
experiments, the scheduler would assign an idle robot
to a picker, as soon as he requested for one. The robots
would carry empty crates to the picker and brings full
crates to local storage. The time a picker would wait
for a robot is same as the time to travel to the local
storage. As the picker can resume picking after loading
the robot, there by saving the time a human would have
taken to return from the local storage. In an actual farm,
unloading crates at local storage was found to have a
low transportation to picking time ratio (6.75%). As
the robotic fleet was mainly reducing pickers’ trans-
portation, the margin of performance improvements in
these experiments was very small.

Variation in the total completion time, and corre-
sponding picker utilisation for the simulations with
the number of robots varied from zero to 14 are
shown in Fig. 4. Picker utilisation is represented as a
percentage of the overall process completion time. It
can be seen that the completion time was very high
for small number of robots and started decreasing as
there were more robots, with the crossover taking place
for seven robots. Correspondingly the picker utilisation
also went above that without the fleet. With seven
robots, there was 0.84% decrease in the completion
time and 1.21% increase in the picker utilisation. With
14 robots, these values were improved to 3.59% and
3.13% respectively. The high completion time for small
number of robots was a result of the long duration for
which pickers had to wait to get access to the limited
resource (robot assistant). As the number of available
robots was increased, the waiting time was reduced.

The performance gains with robot fleet seem
marginal from these experiments, mainly due to the low
transportation to picking time ratio (6.73%). A robot
fleet would have more influence in cases where the
picking time has a lower ratio to other state times. Ex-
amples for such scenarios include polytunnels, where
the plants are on raised beds resulting in faster picking
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Fig. 4: Box plot of task completion time and picker
utilisation with different fleet size and transporting to
local storage

and when full crates need to be transported directly to
a cold storage. We consider such a case in Sec. V-D.

C. Utilisation of the fleet under different task allocation
strategies

In the simulations discussed in Sec. V-B, robots
were assigned using lexicographical allocation. Further
simulations were carried out with uniform utilisation
approach, to investigate the influence of allocation
algorithm on the performance of the fleet. Theim-
provements in the total completion time and picker
utilisation from those with lexicographical allocation
were minimal, but noticeable variation in the individual
robot utilisation (robot’s working time as a percentage
of the total completion time) was observed. The box
plots of robot utilisations are shown in Fig. 5a and Fig.
5b for lexicographical and uniform utilisation alloca-
tions respectively. Although the average utilisation is
similar for both the methods, there was lot more varia-
tions in individual robot utilisation with lexicographical
method. This is because the uniform utilisation method
considers the time robots worked so far, before making
a new assignment. From these experiments, it was
concluded that algorithms used for robot allocations
influenced individual robot utilisation and between the
two approaches tested, uniform utilisation was the
better one in making sure no robot is over-used.

D. Picking performance with a robotic fleet under high
transportation requirement

Another set of experiments was performed to look
at the performance variations without and with a fleet
under higher transportation requirements. In this, full
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(a) Using lexicographical allocation.
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(b) Using uniform utilisation allocation.

Fig. 5: Robot utilisation as percentage of process com-
pletion time while using different allocation strategies.

crates were transported directly to a cold storage 250m
from the farm (see Fig. 1 and Fig. 2) resulting in
a high transportation to picking time ratio (30.93%).
Allocations were performed using uniform utilisation
approach. A box plot of the task completion time
and corresponding picker utilisation (picking time as
a percentage of the completion time) observed in these
simulations are shown in Fig. 6. In comparison to
the earlier set of experiments (see Sec. V-B), it took
longer to complete the process due to the increased
transportation. With the pickers alone, it took approx-
imately 3410 s (22.61%) more than the earlier set of
experiments. With a fleet of five robots, the processing
time came below that without a fleet, resulting in a
decrease of 2.48% in completion time and an increase
of 1.65% in the picker utilisation. With a fleet of 14
robots, the completion time was decreased by 19.75%
and the picker utilisation was increased by 16.79%.
With small fleet, pickers’ waiting times to get a robot
were higher resulting in high completion times.
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Fig. 6: Box plot of task completion time and picker util-
isation with different fleet size and full crates unloaded
at the cold storage

VI. CONCLUSION AND OUTLOOK

The utilisation of a discrete event simulation allows
the rapid analysis and exploration of different scenarios
and processes in the in-field logistics domain, including
state-full interaction between a robotic fleet and human
workers. It has been shown that the overall timing of
the simulation results is as little as 1.44% deviation
in overall task completion time when compared to the
actual field study, indicating viability of the simulation
model to study different work flows without requiring
resource expensive field trials. Another positive aspect
of introducing a robotic fleet is on the pickers’ health,
as they no longer have to transport the full and heavy
crates. The optimal number of robots for the actual
farm considered here with 14 pickers, as a trade-off
between improving overall completion time, pickers’
waiting time and costs of robots, is approximately 5-7.

From the actual case study, two key lessons can be
learned:

1) In this prototype, human pickers actively re-
quested a robot only if and when they had
finished picking. Hence, they had to wait for
the robot to arrive which consequently under-
mines productivity gains. Anticipatory schedul-
ing, where the scheduler can estimate when a
robot is needed a picker’s location, will address
this issue and is at the centre of our future work
within the RASberry project.

2) While without robots, a local collection station
is needed in the vicinity of the picker rows, we
have shown that a change of operations where
the robots take the freshly picked fruit straight to

the cool storage can be implemented with only
little more investment into robots, unleashing
potentials to improve the product quality.

We believe, it is these changes in operational patterns
and routines that will unveil the true potential of in-
field logistics, and DES is a viable way to analyse the
scalability and economic aspects of different process
implementations. Possible future work includes appli-
cation of different existing allocation algorithms for
robot allocation and considering anticipatory arrival of
picker requests to reduce picker’s waiting time.
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