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Abstract—We consider the problem of energy balancing in a
clustered wireless sensor network (WSN) deployed randomly in
a large field and aided by a mobile robot (MR). The sensor
nodes (SNs) are tasked to monitor a region of interest (ROI)
and report their test statistics to the cluster heads (CHs), which
subsequently report to the fusion center (FC) over a wireless
fading channel. To maximize the lifetime of the WSN, the MR is
deployed to act as an adaptive relay between a subset of the CHs
and the FC. To achieve this we develop a multiple−link mobility
diversity algorithm (MDA) executed by the MR that will allow
to compensate simultaneously for the small-scale fading at the
established wireless links (i.e., the MR-to-FC as well as various
CH-to-MR communication links). Simulation results show that
the proposed MR aided technique is able to significantly reduce
the transmission power required and thus extend the operational
lifetime of the WSN. We also show how the effect of small-scale
fading at various wireless links is mitigated by using the proposed
multiple− link MDA executed by a MR equipped with a single
antenna.

Index Terms—Wireless sensor network, cluster, mobile robot,
fading, mobility diversity

I. INTRODUCTION

Monitoring a region of interest (ROI) is one of the most

important applications of wireless sensor networks (WSNs)

[1], [2]. Multiple low-cost sensor nodes (SNs) are often

spatially deployed over a large ROI to observe different events

and estimate parameters of interest. In general, the SNs process

the local observations and report back to a fusion center (FC)

that optimally combines the individual reports to reach a global

decision. Being geographically dispersed to cover large areas,

the SNs are constrained in both bandwidth and power. To allow

a low− latency WSN when the ROI is very large, the WSN

is divided into multiple clusters to manage the large number

of SNs needed to provide reliable coverage (e.g., see Fig. 2).

Each cluster head (CH) receives data from each SN within

the cluster, which subsequently reports to the FC where the

ultimate decision is taken.

The framework of centralized decision for a single FC (i.e.,

single CH) network configuration has been extensively studied

in [3]–[5], to name but a few references. There are some
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recent publications [6], [7] (in the context of estimation) and

[8] (in the context of detection) that considered the effect of

inter−sensor collaboration on the WSN performance; after

the collaboration stage, the SNs (which in general can be a

subset of all SNs) report to a FC where the final decision is

made. While the authors in [6] claim to reduce the FC control

overhead, [7] derives the optimum power allocation scheme

for a given maximum total network power budget in order to

improve the estimation quality.

Now, clustered WSNs [9] has been extensively studied

in various contexts such as energy management [10], [11]

and fusion rules design [12]. In the context of clustering

algorithms, the authors in [13] propose a d − hop cluster

partitioning to deal with the load imbalance among CHs. In

this paper, we adopt the network configuration in [5], i.e., we

consider equal-sized clusters of SNs (e.g., [14]) that report

their information on a regular basis to a FC. For the CHs that

are too far from the FC and when communication link between

the CH and the FC is poor, a mobile robot (MR) is deployed to

act as an adaptive relay. We propose a multiple− link MDA

to extend the operational lifetime of the WSN and to deal with

the imbalanced load among the CHs. The transmission (CHs-

to-MR as well as MR-to-FC) links are assumed to experience

shadowing and multipath fading. We show that the proposed

MDA effectively deals with the energy imbalance in a cluster

WSN.

II. SYSTEM MODEL

Consider the problem of monitoring a large ROI by a

WSN consisting of a FC, M spatially distributed SNs that

are networked in N equal-sized clusters and a MR; all

equipped with a single antenna. The wireless channels CHs-

to-MR and the channel MR-to-FC are assumed to experience

shadowing as well as small scale fading1. Since most of

the WSNs are bandwidth constrained, we assume narrow

band communications so that the communication channels can

be modeled as non-frequency selective. The case where the

1The small scale fading is assumed to be time-variant over a coherence
time τ .
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spatially distributed CHs report to the FC via a dedicated

parallel access channel (PAC) is investigated in e.g., [11], [12].

Here, we propose to deploy a single MR to act as an adaptive

relay for forwarding the test statistics from the CHs to the

FC. So, at the MR (positioned at point p(t)), the test statistic

received from the jth CH at time t is:

T̂j(t) =

(
s(p(t),qj)h(p(t),qj , t)

‖p(t)− qj‖α/22

)
Tj(t) + n(t) (1)

where qj is the position of the jth CH, s(p(t),qj) represents

the shadowing which is modeled by a lognormal random

variable whose normalized spatial correlation function is expo-

nential, Tj(t) is the test statistic transmitted from the jth CH,

and n(t) ∼ N (0, σi
2)); h(p,qj , t) represents the small scale

fading assumed to follow Jakes’ model, i.e., its normalized

spatial correlation is:

ρ(p,q) = E [h(o,p, t)h∗(o,q, t)] = J0

(
2π‖p− q‖

λ

)
(2)

where o,p,q ∈ R
2 are arbitrary points in the space; J0(·) is

the Bessel function of first order and zeroth degree while λ
is the wavelength of the carrier used for the transmission. In

addition, the small-scale fading is assumed to remain constant

over the coherence time τ (i.e., h(p,qj , t)= hk(p,qj) and for

t ∈ [kτ, (k + 1)τ)), hk1
(p,qj) and hk2

(p,qj) are assumed

statistically independent for k1 �= k2.

Now, without loss of generality, we assume that the distance

between the CHs is significantly larger compared to λ and

so, for j �= i, hk(p,qj) and hk(p,qi) are considered to be

statistically independent.

Finally, to satisfy a certain average reference power Pref at

the receiver, the CHs and the MR use transmit power control

mechanism. At the jth CH, the average transmit power is:

Pj =
‖p(t)− qj‖α2Pref

s2j (p,qj) |hk(p,qj)|2
(3)

where t ∈ [kτ, (k + 1)τ), and α is the path loss coefficient.

III. PROPOSED SOLUTION

To extend the operational lifetime of the WSN and to

deal with the imbalanced load among the CHs, we propose

a double − link mobility diversity algorithm and derive a

MR path planner that we describe next in Section III-B. We

assume that the FC, at time instant t = kτ , has full knowledge

of the channel gains (h(p,qj), ∀j = 1, 2, . . . , N ) from CHs

to FC. Based on this information, the FC determines the L
CHs with the lowest (CH-to-FC) channel gain and forward

the corresponding CHs’ identities to the MR. Then, the MR

will act as a decode and forward relay that will establish

communication links only with these L (FC selected) CHs.

Nevertheless, due to small-scale fading, these communication

links may significantly reduce the communication quality and

eventually a larger amount of CH transmit power may be

required to satisfy the average transmit power (3). Since the

CH nodes are battery operated, optimizing their transmit power
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Fig. 1. Schematic communication architecture among peripheral CHs,
MR, and FC. The ith CH generates a test statistic (Ti) by combining
the observations received from the SNs within the cluster. The CH
can communicate with the FC directly or via the MR.

is of a particular importance in extending the WSN operational

lifetime.

We note that after a duration τ , the wireless communication

links may change due to the temporal dependence of the

small-scale fading term. As a result, the FC is required to

continuously estimate the set of L CHs with the lowest

CHs-to-FC channel gains and forward the corresponding CHs

identities to the MR.

Before introducing the proposed algorithm, we next briefly

describe few existing fading compensation techniques.

A. Related Compensating Techniques

Few existing techniques deal with the fading channel com-

pensation in practice. A widely used technique is the multi-

antenna diversity. In the context of WSNs, clearly this tech-

nique requires multiple antennae transceivers mounted on each

of the CH node. This not only increases the cost of the node

but also in many practical scenarios, may not be even feasible

due to both the node size limitations and transmit power

constraint. Hence, single antenna transceivers are desired in

practice.

Now, since the small-scale fading term is time varying,

temporal diversity technique could be used. Because this

work consider the scenarios where the coherence time is

significantly greater than the symbol duration, the temporal

diversity is not suitable as would introduce a large delay. In

this case, the MDAs [15] are suitable techniques to compensate

the small-scale fading in WSNs.

B. Multiple Link Mobility Diversity Algorithm

MDAs are a new type of diversity technique that exploit the

spatial variations of the small-scale fading and the mobility

of the MRs. Their operation is divided in two phases [15],

[16]: (i) exploration phase; and (ii) selection phase. During

the exploration phase, the MR explores a series of K stopping

points located in its vicinity (from where it estimates the



channel gain) that are optimized based on a path planner. After

the exploration phase, the MR uses a selection rule to decide

on the optimum position for establishing a communication

link.

The existing MDAs (e.g., [15]) are only applicable to the

compensation of a single small-scale fading channel. Here,

we require a simultaneously small-scale fading compensation

technique of L + 1 communication links (i.e., the L MR-to-

CHs as well as the MR-to-FC links). Therefore, in this paper

we extend our previous work in [15], [16] and develop a

multiple − link MDA. To the best of our knowledge, this

is the first time that a multiple − link MDA is proposed.

Next, we develop the path planner and the MDA selection

rule.

1) MDA development: In the context of MDAs (as previ-

ously stated), the set of distances among all stopping points

are small (see [15]). As a result, the shadowing term of the

jth CH-to-MR link at time t is assumed to be constant, i.e.,

s(p(t),qj) ≈ sj , ∀j = 1, 2, . . . , N . In addition, the distance

traveled by the MR is significantly small compared to the MR-

to-FC and MR-to-CH distances and so ‖p(t)−qj‖2 ≈ dj for

all t.
In this paper, we develop a trajectory planner with memory

that uses channel gain measurements both at the current and

previous states in order to estimate the MR’s next position.

This trajectory planner requires small-scale fading predictors

such as the one used in [15]. Here, for simplicity, we choose

the first order predictor2. However, using the results presented

here, the development of MDA with higher memory order

predictors can be easily established.

The small-scale fading predictor at time instant tn+1 given

the estimate ĥ(p(tn),qj) is [15]:

h̃(p(tn+1),qj) = ρ(p(tn+1),p(tn))ĥ(p(tn),qj) (4)

+
(√

1− ρ2(p(tn+1),p(tn))
)
uj,n

where tn+1 − tn 	 τ ; ĥ(p(tn),qj) is the estimate of

h(p(tn),qj), ρ(·) as in (2), and uj,n is a set of Normal

independent and identically distributed random variables for

0 ≤ j ≤ L, 1 ≤ n ≤ K.

To develop the path planner for the multiple− link MDA,

the MR position at time instant tn+1 (i.e., p(tn+1)), is chosen

such that the minimum channel gain is then maximized over

L+ 1 links. So, our optimisation problem is:

maximize�n∈[�d,�u] G1(p(tn+1))
s.t.
p(tn+1) = p(tn) + �n[cos(φn) sin(φn)]

T
(5)

where

G1(p(tn+1)) = E

⎡
⎣ min
j=0,1,··· ,L

⎧⎨
⎩

sj

∣∣∣h̃(p(tn+1),qj)
∣∣∣

d
α/2
j

⎫⎬
⎭
⎤
⎦ (6)

2This predictor considers only the measurements of the channel at the
current MR’s position to predict the small-scale fading term at the next
position.

and �n is the distance traveled by the MR between the

current and the next position, φn represents the MR movement

direction, and finally E [·] denotes the expected value with

respect to the random variables set {uj,n}∀j . Note that in (6),

qj , for j = 0 denotes the FC location. Since the predictor (4)

is Gaussian distributed, it can be easily shown that:

G1(p(tn+1)) =

∫ ∞

0

ΠL
j=0Q1

(
νj
σj

,
x

σj

)
dx (7)

where Q1(·, ·) is the Marcum Q function with

σj =
sj
√

1− ρ2(p(tn+1),p(tn))

d
α/2
j

(8)

νj =
sjρ(p(tn+1),p(tn))|ĥ(p(tn),qj)|

d
α/2
j

. (9)

Solving the optimisation problem (7) is computationally ex-

pensive in general3. However, we note that each multiplicative

term in (7) is a monotonically decreasing function that tends

to zero. Then, there exists a value X0 such that:∫ ∞

0

ΠL
j=0Q1

(
νj
σj

,
x

σj

)
dx ≈

∫ X0

0

ΠL
j=0Q1

(
νj
σj

,
x

σj

)
dx

(10)

Using Chebyshev’s inequality:

∫X0

0
ΠL

j=0Q1

(
νj

σj
, x
σj

)
dx

X0
≥

ΠL
j=0

∫ X0

0

Q1

(
νj
σj

,
x

σj

)
dx

XL
0

=
1

XL
0

ΠL
j=0

{
σj

√
π

2
L1/2

(
−ν2j
2σ2

j

)}
=

1

XL
0

G2(p(tn+1))

(11)

where L1/2(·) is Laguerre’s polynomial of degree 1/2. Now,

our optimisation problem becomes:

maximize�n∈[�d,�u] G2(p(tn+1))
s.t.
p(tn+1) = p(tn) + �n[cos(φn) sin(φn)]

T
(12)

where G2(p(tn+1)) is defined in (11), �n is defined over the

interval [�d, �u] and determines the correlation between the

small-scale fading terms (see (2)). We would like to make it

clear that �d is the design parameter and 0 < �d < �u. Here,

�u is the smallest distance � such that J0(2π�/λ) = 0 (i.e.,

the smallest distance such that the small-scale fading terms in

(4) are independent). Defining �n as above yields a correlation

factor ρ(p(tn+1),p(tn)) defined over the interval [0, 1).
From the extensive numerical results, we have observed

that the optimisation problem (12) yields an optimum value

�on equal to �d or �u with a probability approaching 1 (i.e.,

with a very high probability). Hence, to further simplify the

optimization process and to reduce the MR processing burden,

(12) is solved only for �n ∈ {�d, �u}. It is worth noting that

the optimisation is performed at time instant tn by making use

3The integral in the cost function (7) needs to be calculated numerically
since it can not be evaluated analytically. This not only incur delays into the
MDA algorithm but also require more MR processing power.



of the observed communication channel measurements at MR

position (p(tn)).

Clearly, solving the optimisation problem (12) will yield

a set of optimum MR stopping points. Now, the final step

is to decide on the single optimum MR position such that

the overall WSN performance is improved. In this paper, we

select this optimum stopping point as the one that maximizes

the minimum channel gain (i.e., incorporating both the MR-

to-CH and MR-to-FC links).

IV. SIMULATIONS

We evaluate numerically the performance of our proposed

multiple − link MDA. We simulate a WSN deployed in a

120 × 120 ROI and M SNs divided into N = 3 clusters

with arbitrary SN geometry, where the distances between the

MR and CHs are assumed to be known. The spatial config-

uration is shown in Fig. 2. We let the pathloss coefficient
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Fig. 2. Spatial configuration of the WSN where the SNs are repre-
sented with green.

α = 2, the variance of sj(p,qj) in (3) is taken such that

Var {10 log10(sj(·))} = 1dB, ∀j and the reference power

Pref = 1μW. Finally, we note that both G1(p(tn+1)) and

G2(p(tn+1)) are independent of the MR movement direction

and we take φn = φ, ∀n in (12).

In Fig. 3, we show the mean MR and CHs transmit power

(after executing the MDA) for different values of L compared

to the non − fading case4. Clearly, as expected, as the

number of stopping points increases, the MR probability of

finding a stopping point with a larger channel gain is also

increasing. As a result, the CHs transmit power decreases.

However, when considering the MR (i.e., sub-figure d)), the

MR transmit power increases when the number of stopping

points L increases. This is expected as an increase in L will

cause the MR to consider a larger number of communication

links. Hence, it decreases the degree of freedom in obtaining

simultaneously large channel gains for both itself and the L
CHs.

4In the non − fading case, the pathloss only communication channel is
considered and the MR is position at its initial point as in Fig. 2.
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Fig. 3. Average CHs transmission power in (3) versus the number
of stopping points (K), parametrized on the number of CHs that use
the MR as a relay (L) with Pref = 1 μW, and α = 2.

Interesting, in Fig. 3 (i.e., sub-figure a)), we can observe

that when the MDA is used, the CH1 transmit power is lower

than the non − fading case when the number of stopping

points K is larger than 4 and for L = 2 and L = 3. This is

due to the fact that the MDA takes advantage of the fading to

improve the channel gain.
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Now, to further validate our results, in Fig. 4 we observe

the CH selection probability (by the MR) for L = 1 and

L = 2 (when L = 3 all CHs are selected). Clearly, there

is a correlation between the selected CHs (i.e., the L CHs

with the lowest channel gain) and the corresponding selection

probability. For example, CH1 (experiencing the worst com-



munication channel) has a higher selection probability than

CH2 and CH3. Furthermore, we can observe an increase in

selection probability for all CH as L increases. This is as

expected since an increase in L also increases the opportunity

of a particular CH to use the MR as a relay in improving its

communication link.

V. CONCLUSIONS

In this paper, we propose an efficient multi− link MDA to

balance the CHs energy and extend their operational lifetime

in random clustered WSNs. We have shown how by using

an MR as a relay with the proposed MDA, the CH’s mean

transmit power can be significantly reduced. Finally, we have

also shown that the proposed MDA results in a lower CH’s

transmit power compared to the non-fading communication

channel case. Future work will investigate the analysis of the

problem for fully distributed solution (i.e., where there is no

FC).
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