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Abstract— Transient current instability is one of the most 
common faults evident in Pulse Width Modulation (PWM) 
controlled brushless DC motors. This paper explores the under-
developed field of real-time acoustic diagnostics for electrically 
based faults using consumer grade sensors. Current instabilities 
produce an audible torque transient on the motor, easily 
detectable using consumer acoustic sensors; a USB microphone 
and smartphone in this case. Two time-frequency signal 
processing techniques, Wavelet Packet Transform (WPT) and 
Empirical Mode Decomposition (EMD), are used to isolate 
information pertaining to the fault and are assessed for 
computational performance. This gives four processed signals to 
search for instabilities using a peak finding technique. We then 
compare the performance of each method. With the USB 
microphone WPT signal correlating the best results (𝟗𝟑%), a 
simplistic logarithmic predictive model is used to estimate the 
durations for the next experimental run, in real-time. The results 
prove that readily accessible and affordable consumer acoustic 
sensors can be used for real-time fault diagnostics with a high 
degree of accuracy. 
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I. INTRODUCTION 

Acoustic supervision and monitoring is an attractive 
prospect for many industrial applications with proven 
advantages over many established systems including; earlier 
and more accurate detection, non-invasive and readily 
accessible sensors and better cost-benefit performance [1]. 
Research in this field is highly active with the majority 
focussed on seeded mechanical impact based faults, detecting 
the acoustic shockwave.  

Acoustic Emission (AE) energy indexing/analysis has 
been used to detect seeded mechanical defects on roller 
element bearings [2, 3]. Similar case study is also explored in 
[4, 5, 6] using wavelet analysis. A good example of vibration 
analysis for bearing fault detection using wavelet transform is 
[7]. Another study investigates seeded mechanical defects on 
roller element bearings and gears using EMD of acoustic 
signals [8]. The work in [9] uses wavelet signal processing of 
vibration and acoustic signals to detect a simulated cracked 
tooth in a gear box. Another study mentions the requirement 
for real-time condition monitoring in industry and looks at 
motor fault diagnosis. However, it is unclear whether the 
experiment demonstrates real-time detection, and this is an 

area that is highly underdeveloped in this field [10]. All prior 
works discussed use specialised, research grade AE sensors, 
not easily accessible, that require mounting to the component 
to deliver sufficient signal to noise ratio. A review of 
condition monitoring and fault diagnostics for electrical 
motors is given in [11]. However, all the faults in this work 
are seeded and there is little mention of acoustic techniques. 
There is very little literature on acoustic diagnostics for 
electrically-based faults nor for real-time processing.  

As opposed to seeded mechanical faults, it is far more 
difficult to detect and model transient current instabilities 
arising in PWM-based DC motors. Electronically 
commutated motors require a closed-loop power controller to 
convert the DC supply to AC for each phase; synchronising 
the motor. The design and operation of each controller will 
vary depending on the supply, type of motor and application. 
Often, controllers under commissioning, motor tuning, or 
operating in widely varying conditions, can result in transient 
current instabilities delivered to the motor. These instabilities 
could potentially cause damage to the controller or 
demagnetisation of the motor [12]. Detection could allow 
intervention to prevent further damage, and diagnostics could 
help assess maintenance requirements.  

We present a novel application of acoustic monitoring to 
detect electro-mechanical instabilities on a brushless DC 
electric motor. Our work explores aspects previously 
unaddressed in the literature, namely; real-time processing 
and expansion to include electrically based faults. Consumer 
sensors (which are easily accessible) are used to highlight the 
under-usage of these types of sensor in both research and 
industry. Acoustic signals are processed in real-time to reveal 
the instability time-frequency information. This is done using 
two signal processing techniques, WPT and EMD, which are 
analysed for computational performance and ability to deliver 
information pertaining to the fault. 

Our proposed solution uses a bespoke PWM power control 
system that delivers intermittent transient current instabilities 
with increasing frequency for higher voltages. At the end of 
the previous PWM cycle, the controller calculates the new 
duty from the demand. When the sampled current is already 
too high, the next cycle is switched off. This can resolve or 
continue to the end of the commutation period. A detailed 
view of the instability is given in Figure 1. This fault is native 
to this particular setup and is used here as an example of the 
potential electro-mechanical faults requiring diagnostic 
information. 

Acoustics are well suited to this application due to the 
audible torque transient caused by the current instabilities; 
hence an electro-mechanical fault. In this case, the frequency 
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information is almost entirely in the audible range of a human 
ear. This permits the use of consumer sensors which are more 
accessible and can be remote from the workpiece. Should 
faults deliver ultrasonic frequencies then contact based 
sensors would likely be required.  

In the next section, we describe the experimental setup and 
signal processing techniques employed. Detail is given on the 
design of WPT and EMD as used in the experiment, complete 
with an explanation on the real-time processing for this work. 
The experimental results are discussed with focus on; the 
diagnostic performance of the acoustic sensors and signal 
processing techniques, and real-time computational 
processing efficiency. The main findings, their impact and 
significance are conferred in the conclusions.  

II. METHODOLOGY 

This section describes and justifies the research approach; 
providing information regarding the experimental setup, data 
acquisition and signal processing. Two experimental runs are 
undertaken; the preliminary run gathers initial data allowing 
design of a predictive diagnostic model. This model is used to 
estimate instability duration throughout the primary run, in 
which processing is undertaken in real-time. The experimental 
setup for both runs is identical; the only minor improvements 
made to the preliminary run was the addition of real-time 
processing for predictive diagnostics. 

A. Experimental Setup & Data Acquisition 

The experimental setup is given in Figure 2. A Unite 
MY1020 1600 W, 36 V brushless DC motor is controlled 
using a custom Arduino-based digital PWM controller; 
consisting of two boards (low and high power). These are 
powered by a Keysight E3631A triple output DC PSU, set to 
deliver a voltage range of −15 to +15 V and a Voltcraft PS-
1302D 0 − 30 V, 2 A PSU. The controller setup delivers a 
10 kHz current to drive the motor; speed is controlled by 
adjusting the supply voltage. High voltages or rapid voltage 
ramp up delivers intermittent transient instabilities. A USB 
microphone (Audio-Technica AT2020 USB+) and a 
smartphone (Samsung Galaxy S7 using WO Mic) are USB 
connected to a laptop; sampled by Matlab at 48 kHz with 
16 bit resolution. Both sensors are placed approximately 
10 cm away with their sensitive planes aimed toward the 
motor. A single phase of the motor input current from a Hall-
effect sensor control feedback loop is sampled at 250 kHz 
with 16 bit resolution using a Tektronix DPO 7054C 
oscilloscope. 

 
Figure 2: Diagram of the experimental setup. 

The practical operation of the sampling is complex; both 
the audio and current sampling must be triggered manually. 
The smartphone audio signal lags the USB microphone signal 
by approximately 0.5 s due to the smartphone audio streaming 
software. To capture sufficient instabilities a sampling 
duration of 20 s is chosen based on previous experience. The 
oscilloscope is set to sample for 20 s. To accommodate for the 
time delay from manual triggering and the smartphone lag, the 
audio sampling duration is set to 25 s. The audio is triggered 
first, followed by the oscilloscope within the 5 s window. This 
allows for the audio and current signals to be synchronised in 
post processing. The Voltcraft control voltage for each run 
was slightly different (approximately 21 V for the first run and 
23 V for the second run), as creating the conditions for 
instabilities to manifest is difficult to control.  

B. Signal Processing & Analysis 

For the preliminary run, all data streams are synchronised 
manually in the time-domain. This is repeated for analysis 
purposes in post for the primary run. Figure 3 shows the raw 
unprocessed signals from the oscilloscope current, and 
microphone and smartphone audio. 

The aim of signal processing is to extract and separate the 
fault information from the background noise as much as 
possible. The instability can be detected by finding a spike in 
the audio signal indicating the louder ticking sound of the 
torque transient. However, the time domain information is 
noisy, meaning a peak finding technique could either miss 
instabilities due to insufficient amplitude, or have erroneous 
detection due to background noise. By analysing the time-
frequency domain, much of the background noise can be 
removed with complex filtering. A filtered signal can then be 
analysed for spikes indicative of instabilities. 

The preliminary run audio signals are used to design the 
WPT and EMD signal processing parameters, the peak 
finding detection method and some simplistic diagnostics. 
This design is performed through post-analysis, not in real-
time. The designed method is then implemented for the main 
run in real-time. WPT and EMD [5, 13] are selected for testing 
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Figure 1: Motor current signal showing instability #4 at the centre. 



 

 

as they are prominent time-frequency techniques in acoustic 
diagnostic literature. WPT allows for complex filtering to 
accurately reconstruct the fault information whilst leaving out 
unwanted noise [4, 5, 6]. EMD decomposes a signal by sifting 
the mean of the upper and lower envelopes into IMFs. This 
technique is more akin to an empirical algorithm rather than a 
theoretical transform; however, this makes it especially good 
with non-stationary and non-linear signals; an ideal candidate 
for fault detection [8, 13]. EEMD [14] is not required as audio 
is highly oscillatory by nature. Furthermore, the additional 
processing is highly computationally intensive and unsuitable 
for real-time processing.  

 

1) Wavelet Packet Transform Design 

The parameters that require selection and optimisation are; 
the selection of the mother wavelet, the number of levels of 
decomposition and, selection of the reconstruction node. The 
mother wavelet is chosen based on the maximum signal 
energy to Shannon-entropy ratio as detailed in [15]. 60 
different mother wavelets from the Haar, Daubechies, 
Symlets, Coiflets, Biorthogonal, Reverse-Biorthogonal, 
Discrete approximation of Meyer (dmey) and Fejer-Korovkin 
families are analysed. The dmey wavelet gave very high 
performance; isolating nearly all the fault information into a 
single terminal node. The wavelet analyser is used to 
determine the required level of decomposition using the 
terminal node coefficients (Figure 4); aiming to maximise 

Figure 3: Plot of the synchronised raw signals showing instability #6. Note the units of the audio signal are vacillating as only the relative changes in 
amplitude that are of interest. 

 

Figure 4: WPT dmey level 4 frequency ordered terminal node coefficients clearly showing the instability information in node 17.  

 



 

 

isolation of the fault information into the minimum number of 
nodes. This is clearly visible in node 17 as shown. The node’s 
coefficients are used to reconstruct the signal; preserving the 
fault information and filtering out most of the unwanted noise. 

2) Empirical Mode Decomposition Design 

To determine the required level of decomposition the 
audio signals are initially decomposed to give 4 IMFs, shown 
in Figure 5. For the microphone and smartphone, IMF 1 and 
IMF 2 are selected respectively for further processing. This is 
based on visual analysis showing the best separation of the 
fault information away from background noise.  

 

3) Instability Detection Design 

To summarise, the original microphone and smartphone 
signals (Figure 3), are processed through WPT and EMD to 
give 2 × 2 signals (shown in Figure 6): 

 microphone WPT 
 smartphone WPT 

 microphone EMD IMF 1 
 smartphone EMD IMF 2. 

The fault information signal to noise ratio is significantly 
improved. A standard peak finding algorithm detects the 
instability spikes in each processed signal. A standard 
deviation based amplitude threshold, is set for each signal 
such that only instability spikes protrude above. The key to 
diagnostic tuning is setting the threshold such that sufficient 

Figure 5: EMD level 4 decomposition of both the microphone (left) and smartphone (right) test signals. 
 

Figure 6: Microphone and smartphone signals processed by WPT and EMD. Threshold and the representative peaks are highlighted. 



 

 

width is detected to estimate the duration. Windowing 
discretises between separate instabilities (requiring a 
minimum separation of 0.02 s). This value is chosen based on 
observation to be sufficient to distinguish between different 
instabilities but, not so long as to class two separate 
instabilities together. Figure 6 shows the threshold line and 
separate instabilities highlighted.  

4) Diagnostics Design 

Basic diagnostics are performed to illustrate the potential 
for acoustics for similar applications. For each processed 
signal (Figure 6), the duration between the first and last peak 
found for a single instability is correlated against the actual 
duration (derived from the current signal) according to Eq. 1.  

𝜌 , =
∑(𝑥 − �̅�)(𝑥 − 𝑦)

∑(𝑥 − �̅�) ∑(𝑥 − 𝑦)
 Eq. 1 

A simplistic logarithmic model is developed, based on the best 
performing correlation results (in this case microphone WPT), 
to predict the instability duration in real-time throughout the 
primary run. 

5) Real-Time Processing 

To bound the problem, the purpose of real-time processing 
is to detect faults quickly enough to either shutdown the motor 
or provide a warning to the operator. Real-time processing can 
either be achieved using analog or digital techniques. Analog 
processing by nature performs much faster than digital, but 
this is beyond the scope of this work. Digital processing relies 
on splitting the data into discretised time segments. The 
previous segment can be searched for faults whilst the next is 
recorded. For continuous operation, this relies on the 
processing time being shorter than the time duration of each 
segment. The segment duration determines the refresh rate 
and detection response time of the system.  

 In this case, the refresh rate is set to 0.2 s, fast enough for 
all intended purposes and appearing real-time to the user. As 
the next segment is recorded the previous one is searched for 
instabilities as per the methods described above. The primary 
run current signal and audio are synchronised and processed 
identically to the preliminary run. The diagnostic results are 
analysed for accuracy against the actual instabilities and their 
durations. The results are presented in the next section.  

III. RESULTS & DISCUSSION 

This work set out to push the boundary of acoustic 
monitoring into diagnosing electrically-based faults; this case 
uses a transient current instability on an electric motor by way 
of example. By using consumer sensors, the practical uses 
these devices can deliver are highlighted. The diagnostic and 
computational performance of real-time WPT and EMD 
signal processing is examined. 

A. Acoustics & Sensors Diagnostic Performance 

The preliminary run first to last peak durations are given 
in Table I. For the 10 instabilities that occurred, all were 
detected by each processed signal. Table II gives the same 
results from the primary run where 82 instabilities occurred; 
some have been omitted for brevity. The greater number of 

instabilities is due to the higher control voltage. All 
instabilities were detected by each processed signal; with a 
single exception of microphone EMD instability 44, one of 
the shortest that occurred. There were no erroneous detections 
in either run. This issue has been partially addressed through 
complex time-frequency filtering, but minimising false alarms 
is beyond the scope of this work. 

With almost perfect detection rates for all processed 
signals, the consumer sensors and time-frequency signal 
processing techniques are ideally suited for remote 
monitoring of electrical machines. To expand on this 
achievement, additional information, providing a diagnostic 
element, can be extracted from the acoustic signals. 
Estimating the instability duration from the acoustic signal 
can indicate whether preventative or corrective intervention is 
required. By way of example, Table II also gives the 
logarithmic model (based on the microphone WPT signal) 
estimation error. Demonstrating that, despite its simplicity; 
based on a small preliminary data set with no validation, still 
accurately predicted the durations with only −1.2% mean 
error. However, due to the limitations of the model and 
training data the spread is quite high. Nevertheless, it still 
illustrates that acoustics has huge potential for diagnostic 
capabilities.  

TABLE I: THE FIRST TO LAST PEAK DURATION OF EACH PEAK CLUSTER FROM THE 

PROCESSED AUDIO SIGNALS CORRELATED AGAINST THE ACTUAL INSTABILITY 

DURATION DERIVED FROM THE CURRENT SIGNAL ANALYSIS. 

RUN 1 FIRST TO LAST PEAK DURATIONS (SECONDS) 

Instability 
Number 

Current 
Microphone Smartphone 

WPT EMD WPT EMD 

1 0.003 0.014 0.003 0.024 0.019 
2 0.003 0.014 0.003 0.019 0.015 
3 0.003 0.007 0.003 0.009 0.009 
4 0.002 0.002 0.000 0.008 0.007 
5 0.003 0.013 0.003 0.017 0.018 
6 0.003 0.014 0.004 0.015 0.015 
7 0.003 0.014 0.003 0.028 0.019 
8 0.003 0.014 0.003 0.019 0.019 
9 0.001 0.002 0.001 0.008 0.007 

10 0.001 0.001 0.001 0.006 0.009 
Correlation (%) 93.38 75.31 81.70 82.25 

TABLE II: SUMMATIVE TABLE OF THE FIRST TO LAST PEAK DURATION FROM THE 

SECOND REAL-TIME RUN. 

RUN 2 FIRST TO LAST PEAK DURATIONS 
(SECONDS) LOGARITHMIC 

ESTIMATION 
ERROR (%) Instability 

Number 
Current 

Microphone Smartphone 

WPT EMD WPT EMD 

1 0.003 0.005 0.004 0.014 0.013 -12.957 
2 0.003 0.005 0.004 0.013 0.014 -11.814 
3 0.003 0.004 0.004 0.013 0.009 -22.268 
4 0.003 0.005 0.004 0.018 0.013 -12.957 
5 0.003 0.005 0.004 0.013 0.011 -14.548 

11 0.003 0.005 0.003 0.009 0.009 -14.412 
44 0.001 0.002 - 0.009 0.009 48.877 
60 0.001 0.008 0.008 0.024 0.007 376.768 
81 0.003 0.005 0.004 0.009 0.009 -12.957 
82 0.003 0.005 0.004 0.014 0.009 -14.548 

Min 0.001 0.002 0.003 0.006 0.001 -25.692 

Max 0.003 0.008 0.008 0.025 0.021 376.768 

Mean 0.003 0.005 0.004 0.012 0.010 -1.209 

Std. Dev. 0.001 0.001 0.001 0.004 0.003 64.941 



 

 

Table III gives the correlation results from the preliminary 
data showing that the microphone sensor and WPT processing 
performed the best with 84.4% and 87.5% correlations 
respectively. The best overall correlation of 93.4%, naturally 
comes from the microphone signal processed using WPT. 

The smartphone performance compared to the microphone 
is particularly impressive considering the aperture and 
diaphragm are considerably smaller. The technology currently 
present in smartphones prevents them from becoming an all-
in-one diagnostic tool, although this is likely to change as 
processing and memory improves. Comparing to analysing 
the current signal, these methods provide a simple and cost-
effective solution. Although current analysis would provide 
better accuracy, due to the high sampling rates and specialist 
knowledge required it is significantly more difficult.  

B. Real-Time Acoustic Fault Diagnosis – EMD & WPT 
Performance Comparison 

WPT outperformed EMD both diagnostically and 
computationally. WPT isolated almost all the fault 
information within a single terminal node, delivering a well-
filtered signal and improved performance. EMD split some 
information between the IMFs due to the nature of sifting. The 
computation required for EMD is greater than WPT, despite 
the inclusion of the duration prediction. Table IV gives the 
processing times that indicate which is more computationally 
intensive. Despite a minute time difference of −3.42 ×
10  s, this represents a significant cost saving over long 
periods. Note that the processing time for each frame is 
slightly longer than the recording time meaning this system 
will only run up to the limits of the computer memory. For a 
continuous system, faster processing would be required so the 
frame processing time is smaller than the recording time.  

IV. CONCLUSION 

Real-time acoustic fault diagnosis, of an electrically-based 
fault, using consumer sensors, is demonstrated on a transient 
current instability for a PWM controlled brushless DC motor. 
100% of the instabilities were detected with the microphone 
sensor and WPT processing proving the strongest candidates. 
This broadens the horizon for acoustic monitoring, previously 
limited to seeded mechanical faults, to include electrically-
based faults. Acoustic processing in real-time, seriously 
under-developed in the literature, is performed digitally. This 
aspect is crucial for industry adoption of acoustic 
measurements for monitoring and supervision purposes. Here, 

accessible laptop hardware is used, easily achieving real-time 
processing. The consumer sensors show that research grade 
costly sensors are not required until fault information is 
contained in ultrasonic frequencies. These sensors have added 
advantages; being remote from the workpiece, able to monitor 
components with limited or no access, excellent accuracy and 
diagnostic capabilities as well cost-benefit performance. The 
historic knowledge, confidence and reliance surrounding 
established condition monitoring techniques such as vibration 
has resulted in the uptake of acoustics by industry to be very 
slow. The methods demonstrated are applicable to almost any 
fault with an acoustic signature. It is hoped that this work 
could open opportunities for future development of this field. 
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