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Abstract

Since the strict separation of working spaces of humans and robots has experienced a softening due to recent robotics

research achievements, close interaction of humans and robots comes rapidly into reach. In this context, physical human–

robot interaction raises a number of questions regarding a desired intuitive robot behavior. The continuous bilateral

information and energy exchange requires an appropriate continuous robot feedback. Investigating a cooperative manipu-

lation task, the desired behavior is a combination of an urge to fulfill the task, a smooth instant reactive behavior to human

force inputs and an assignment of the task effort to the cooperating agents. In this paper, a formal analysis of human–robot

cooperative load transport is presented. Three different possibilities for the assignment of task effort are proposed. Two

proposed dynamic role exchange mechanisms adjust the robot’s urge to complete the task based on the human feedback.

For comparison, a static role allocation strategy not relying on the human agreement feedback is investigated as well.

All three role allocation mechanisms are evaluated in a user study that involves large-scale kinesthetic interaction and

full-body human motion. Results show tradeoffs between subjective and objective performance measures stating a clear

objective advantage of the proposed dynamic role allocation scheme.
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1. Introduction

A variety of physical tasks require the cooperation of two
or more agents and demands for haptic joint action of mul-
tiple partners, robots together with humans. In such kind
of tasks, humans interact and communicate in different
modalities: verbally, e.g. through speech, and also non-
verbally, e.g. through gestures and the sense of touch. The
twofold feature of haptic interaction is particularly chal-
lenging: physical coupling allows the agents to negotiate
and accomplish the joint action task simultaneously. This
means that intuitive interaction is mediated by task-oriented
actions. In addition, the strong implicit nature of the haptic
communication channel requires sophisticated interpretive
capabilities to understand the partners’ behavior on a fast
time scale. One keypoint to be negotiated is the necessary
effort to accomplish cooperative physical tasks which must
be continuously allocated among all contributors. Observ-
able effects of negotiation are emerging strategies in terms
of temporally consistent haptic interaction patterns called
specialization (Reed et al., 2006). In physical cooperation,
these patterns refer to a self-organized distribution of the

agents’ individual contributions. Forming patterns of inter-
action seems to ease mutual understanding of partners,
as improved task performance has been observed repeat-
edly in cooperative settings (Reed et al., 2005; Feth et al.,
2009). As soon as autonomous physical assistants are able
to produce their own task-directed behavior, the question of
role assignment arises similarly. Observations from human–
human cooperation or motion planning techniques can be
used by the robot to calculate its own necessary force con-
tribution to achieve task progress. However, the assignment
and possible re-allocation of roles can evolve during task
execution and cannot be pre-computed. The resulting chal-
lenge is the synthesis of a robotic assistant that takes the
human habit to establish and dynamically change roles into
account and renders an intuitive behavior to the human part-
ner. Therefore, an understanding of the physical meaning
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of roles in human–robot cooperative manipulation helps to
develop a framework for role allocation.

Most of the related existing approaches towards
autonomous physical robotic helpers target merely the
smooth and intuitive reactive behavior of robots in physi-
cal interaction with humans rather than situation-dependent
active task contribution. Only little related research on the
topic of role adaptation in physical human–robot interaction
exists.

Oguz et al. (2010) proposed a haptic negotiation
framework for blending between dominant and recessive
control states in a dynamic virtual task. Their system real-
ized dynamic role exchange by granting control to one of
the operators regarding the intentions of the human, who
was assumed to display the intention of gaining control
by applying large forces to the system. Later, Kucukyil-
maz et al. (2011) showed that this dynamic role exchange
scheme improved task efficiency significantly when com-
pared with an equal control guidance scheme and con-
stituted a personal and subjectively pleasing interaction
model. In a similar scenario, Passenberg et al. (2011)
introduced adaptable haptic assistance in a shared control
setup. They used human effort and task performance crite-
ria to find static optimal assistance levels for certain tasks
and outlined possibilities for implementing on-line adapta-
tion. Abbink et al. (2012) provide a comprehensive review
on haptic shared control accompanied by design guide-
lines to be considered for such interactive systems. Despite
many inspiring affinities between haptic shared control and
human–robot physical role allocation, differences emerge
from human interaction with a physical entity: In shared
control scenarios, approaches rely on the possibility to
adjust either the coupling between the human operator and
the virtual object, or the coupling between the operator
and the virtual assistant both acting on the same control
interface. In scenarios involving physical robotic assistants,
the missing option to control the human partner’s coupling
with the object as well as the varying coupling of partners
through the object impose additional challenges.

The main contribution of this work is the development of
a set of strategies for static and dynamic role allocation in
haptic human–robot cooperation and an experimental eval-
uation of the proposed strategies. The task of cooperative
human–robot object manipulation is analyzed in redundant
and non-redundant degrees of freedom. The meaning of
effort sharing along the redundant degrees of freedom is
derived. A user study shows the effects of three different
effort sharing strategies on task performance and subjective
acceptance in a realistic large-scale scenario.

1.1. Related work

The synthesis of physical robotic assistants for coopera-
tive load sharing tasks reaches back to the early 1990s
when Kosuge et al. (1993) deployed an object-centered

impedance control scheme similar to Schneider and Can-
non (1992) for a set of robots cooperating with a number of
humans.

Successful hardware implementations named MR Helper
and the distributed variant DR Helpers (Hirata and Kosuge,
2000) encouraged a number of groups to research synthe-
sis methods for cooperative human–robot object manipula-
tion strategies. An overview of the achievements of Hirata
and Kosuge in this field is given in Kosuge and Hirata
(2004). The application of cooperative load transport has
also been targeted by Gillespie et al. (2001) using the
rather different Cobot approach. While Kosuge’s robotic
helpers could actively render a virtual object impedance
behavior with features such as collision avoidance, Cobots
cannot move on their own: they are inherently passive.
However, motion induced by a human operator is projected
along virtual curvatures by arranging counter-acting forces
in the Cobots. This approach focuses on desired paths or
workspace constraints rather than desired virtual dynamic
object behavior, similar to the virtual fixtures introduced by
Rosenberg (1993) as overlays such as virtual rulers guid-
ing the operator’s effector motion in telepresence setups. An
approach combining desired virtual constraints and desired
virtual object dynamics was proposed by Takubo et al.
(2002). In their work, a robotic partner rendered a virtual
non-holonomic constraint, namely a virtual wheel, that pro-
hibits sideway slipping motion and thus simplifies opera-
tion, similar to a wheelbarrow. This simplification, however,
inhibits maneuvering of bulky objects in narrow passages.
The group of Ikeura investigated the feedback behavior of
a following manipulator during cooperative object trans-
port. Human impedance characteristics were found to be
the best in terms of subjective scores (Ikeura et al., 1994)
and to enable natural movement profiles (Ikeura et al.,
2002). All of these approaches consider robotic partners
that react on user operation which certainly limits these
devices’ capabilities.

In order to overcome such limitations, a significant body
of work was dedicated to fundamentally model human
behavior in cooperative haptic tasks and to transfer find-
ings to cooperative robotic partners. The popular concept
of jerk minimization in human arm movements as pro-
posed by Flash and Hogan (1985) for pointing has been
transferred to cooperative manipulation by Maeda et al.
(2001). This enabled a robotic partner to not just react to
a human operator input but also to predict human intentions
and act accordingly. Reed et al. (2005, 2006) investigated
the effects of specialization in human–human interaction
and successfully transferred their results to a human–robot
setup so well that participants could not distinguish between
the robotic partner and an actual human partner (Reed
and Peshkin, 2008). Reed’s findings on evolving specializa-
tion were further investigated by Groten et al. (2009) who
showed that users prefer a dominance difference among col-
laborating partners in contrast to equally shared control. In
this context, dominance refers to the actual achievement of
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influence or control over another and therefore reflects the
individual share of the overall contribution to task success.

In order to decide on the necessary overall contribution,
first, the desired trajectory must be known. Miossec and
Kheddar (2008) discovered a motion model for cooperating
humans that outperformed the minimum-jerk model used
by Maeda et al. (2001). Based on this trajectory generation
method for cooperative object moving tasks, Evrard and
Kheddar (2009) developed a controller blending scheme
that allows a leader/follower role allocation with one sin-
gle blending parameter. Recent insights on leader/follower
assignment from this group are given by Kheddar (2011)
who suggests that blending of stable leader and follower
controllers will not necessarily result in a stable overall
behavior. Human following behavior as a response to a
leading robotic manipulator has been investigated in a coop-
erative vertical lifting task by Parker and Croft (2011).
Behavioral hallmarks such as different frequency domains
of human visual and haptic response could be discovered.
An overall system architecture that comprises a confidence-
based role adaptation, implemented on a very small-scale
humanoid robot was recently presented by Thobbi et al.
(2011).

An emerging interest in smart physical robotic assistants
for human workers in industrial settings is visible for a
few years. Wojtara et al. (2009) developed a basic physi-
cal assistant for the well-defined task of precise position-
ing of windshields during car manufacturing processes.
Their framework proposes a strict geometrical separation
of the degrees of freedom and weighs the assistant’s force
contribution to the task according to haptic cues.

1.2. Contribution

The main contribution of this work is an investigation of
the objective and subjective effects of dynamic role alloca-
tion for a physical robotic assistant. Therefore, the task of
cooperative load transport is analyzed and decomposed into
two components for steering and progressing. Meaningful
decomposition parameterizations are derived such that the
necessary effort resulting from a desired task progress is
allocated among the cooperating partners. Therefore, we
propose three different strategies: first, a constant role allo-
cation disregarding the human’s haptic expression of the
desire to accelerate or decelerate the task progress; second,
a continuous adjustment of the allocated roles depending
on human feedback; and, third, a discretized version of the
second approach. Within a user study involving large-scale
kinesthetic interaction in a realistic scenario with human
full-body motion, the proposed approaches are evaluated in
terms of task performance and user acceptance.

1.3. Notation

In this article, bold characters are used for denoting vectors
and matrices. Here Ker( A) denotes the kernel or nullspace

Fig. 1. The cooperative manipulation scenario and the exper-
imental setup: human and robot jointly transporting a bulky
table.

of matrix A and Kerj( A) denotes the jth vector span-
ning A’s nullspace. A matrix’s nullity is the dimension of
its nullspace. Superscripts are used to denote the refer-
ence frame of the respective matrix and vector quantities,
whereas quantities referring to the inertial frame are written
without superscripts.

The remainder of this article is structured as follows.
The problem is stated and confined in Section 2 where
our conceptual approach is also presented. Section 3 gives
a systematic analysis of the envisaged task and explains
the meaning of roles. The deployed control scheme is pre-
sented in Section 4. Our experimental setup is depicted in
Section 5. The evaluation methods used are explained in
Section 6 and the results are presented in Section 7. A dis-
cussion of the results is given in Section 8 and we conclude
and give an outlook in Section 9.

2. Problem definition and approach

Our work addresses the cooperative task of jointly manip-
ulating a rigid bulky object by human–robot teams. In the
following, we concisely define our problem and outline our
conceptual approach.

2.1. Definition of the effort sharing problem

The envisaged scenario allows the cooperation between a
human and an assistive robot. Parker (2008) and Olfati-
Saber et al. (2007) define cooperation as the willing par-
ticipation of all agents towards a common goal along a
shared plan. In line with this, we focus on manipulation
tasks which require physical cooperation between partners
through close coupling with an object, see Figure 1.

When two or more agents cooperate through jointly
manipulating a common object, the problem of sharing the
task’s physical effort arises. The physical coupling imposed
by the task’s geometrical and dynamical properties has to
be addressed and exploited such that each agent’s effort in
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Fig. 2. Overview of the modeling approach: a dyad consisting of agent 1 and agent 2 cooperatively manipulates a common object
according to a shared plan. Both agents employ an inverse object model and impedance control loop (a) generating desired object-
centered wrenches (b). The effort-role behavior determines the control inputs applied at the agents’ grasp points (c) which compose the
object-centered wrench (d) required for motion tracking. Roles are allocated by mutual feedback of the control inputs.

terms of input wrenches allows for a smooth and efficient
cooperation.

We confine the effort sharing problem to the following
conditions:

• One human cooperates with one robot/system of robots
with centralized communication towards achieving a
common known goal (e.g. reaching certain configura-
tion(s) when jointly manipulating an object).

• Constraints of the environment are such that the task is
achievable (e.g. a feasible path to the goal exists).

• All participants tightly grasp a single rigid object with
commonly known shape and dynamics.

• Object dynamics are holonomic, i.e. the manipu-
lated system does not have any velocity-dependent
constraints.

• The grasp points are such that the task is controllable
and its control inputs are redundant (Lawitzky et al.,
2010).

• The partners interact with each other only through the
haptic channel provided by the physical coupling.

2.2. System-theoretic modeling approach

A dynamic modeling approach of the task is employed to
define the physical and geometrical properties of the manip-
ulation task under environmental constraints. Through this
approach, we model the dynamics of the manipulated object
including the agents’ contact points, see Figure 2. Starting
from an object-centered viewpoint, the agents’ contribu-
tions to the task can be defined by spatially distributed con-
trol inputs, i.e. forces that affect the object’s motion towards
the goal.

Results on the cooperation of human dyads suggest an
object-centered formulation of the desired path, as they
achieve better tracking performance in a cooperative task
when they have common visual access to the central part of
a manipulated object (Salleh et al., 2011). Thus, the desired
motion of the manipulated object can be intuitively rep-
resented by an object-centered trajectory as a result of a
priori negotiation between the agents. Impedance control
loops closed on motion feedback and employed by each

agent ensure tracking of the desired object trajectory. In this
article, we assume shared goals in terms of known interme-
diate configurations of the manipulated object. A path for
the cooperating dyad can be precomputed by the robot from
planning as proposed by Kirsch et al. (2010) or from human
demonstration (Medina et al., 2011).

Furthermore, the object model is assumed to be known
to all agents, and in order to obtain the required individ-
ual control inputs for motion tracking, each agent applies
an inverse dynamics model of the object. While the human
motor control system is known to accomplish haptic tasks
by a combination of impedance control and inverse dynam-
ics model of the task (see, e.g., Franklin et al., 2003),
automatic parameter acquisition for rigid-body loads is a
difficult problem, which has been frequently discussed in
the literature since Atkeson et al. (1986). Also state-of-
the-art methods require structural knowledge of the friction
phenomena involved. Therefore, we address the manip-
ulation of objects known to the robot in terms of their
geometry, grasp points and relevant dynamical properties.

This is where the demand for an effort sharing strategy
comes into play: redundancies of the control inputs, which
are usually present if two or more agents are manipulating a
single object (Lawitzky et al., 2010), span a subspace of the
control inputs which can be deliberately distributed between
the agents without affecting the motion.

Effort sharing describes the distribution of voluntary
force inputs among agents. Each agent can be assigned a
certain input behavior in terms of an effort sharing policy.
The behavioral patterns of the agents due to a certain effort
sharing policy can be referred to as roles that the agents
take on in the redundant task space. The effort-role behav-
ior synthesized in this paper is embedded in the interaction
control loop and mediates the robotic agent’s control inputs
to the task.

While a feedforward assignment of roles in a centralized
manner works well for robotic agents, such an assignment
is inappropriate for humans. Investigation of human coop-
erative behavior in a dyadic tracking task provides evidence
for role distributions, which are partly person-specific and
partly interaction-dependent (Groten et al., 2009). If we
assume persistent validity of the agents’ shared plan which
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Fig. 3. Haptic human–robot joint action task: cooperative manip-
ulation of a rigid object by multiple agents acting at different grasp
points.

holds true for a static environment, the applied input of a
single human agent can be estimated based on the object
dynamics and fed back to allocate the agents’ roles on-
line. Assuming a manipulation system which allows for
measurements of the human input forces, multiple human

agents may be considered to contribute to the task. In this
article, we develop concepts for role allocation within a
human–robot dyad and evaluate these concepts with an
experimental study.

3. Synthesis of role behavior

This section presents the object model and a parameteri-
zation method for effort sharing policies. Different sharing
policies and the definition of roles we adopt in the exper-
iments are explained. Our method to parameterize effort
sharing policies generalizes to multiple cooperating part-
ners. Therefore, in the first part of the derivations we will
keep the method as general as possible and later specialize
to the dyadic case.

3.1. Object model

The general problem of joint transfer of an object in
free space involves the contribution of N agents that
tightly grasp a rigid object of arbitrary shape as shown in
Figure 3.

In the figure, a body frame C is attached to the object
and the inertial frame is denoted by I . In addition, a
collision-free trajectory in compliance with the environ-
ment, the dynamical and geometrical model of the manipu-
lated object, the coupling between the agents, is crucial to a
system-theoretic analysis of the task.

We assume that the rigid-body dynamics of the object can
be described by

Mcẍc + fc( xc, ẋc) = uc, (1)

where xc is the configuration of the object with inertia Mc,
fc is the sum of environmental forces such as friction and
gravitation, and uc denotes the external wrench applied by
the agents to the object.

Agent i contributes to the manipulation task via input
wrench ui applied at the grasp point xi on the object, i =
1, . . . , N . In order to formally represent the type of grasp
and to consider only the efficient input wrench components
of the agents, we introduce the applied wrench ũi as

ũi = RBiR
Tui, (2)

where R denotes the rotation of frame C with respect to
I and Bi is a selection matrix referred to the body frame
C with elements bk,l = {0, 1} determining which indepen-
dent torque and force components an agent can effectively
apply at the grasp point. Note that Bi is also known as
wrench basis in grasp analysis (Murray et al., 1994). Thus,
the external wrench on the object is composed by

uc =
N

i=1

Giũi, (3)

where matrix Gi (dim(ũi)×dim(uc)) denotes the partial
grasp matrix (Prattichizzo and Trinkle, 2008). It is given
by the Jacobian of the kinematic constraints φi( xc) which
describes the position of the rigid grasp point with respect
to the object frame. The kinematics comprising position xi

and velocity ẋi of the grasp point of agent i are

xi = φi( xc) (4)

ẋi = GT
i ẋc. (5)

In the following, the dynamics and kinematics of the object
grasped by the agents serve as a basis for analysis of the
effort sharing problem.

3.2. Effort sharing by input decomposition

In this section, we develop a strategy for effort sharing
which utilizes redundant degrees of freedom that naturally
arise from actuation redundancy. According to our system-
theoretic approach outlined in Section 2.2, with the inverse
dynamical system model (1) a desired external wrench ûc

can be calculated, which is to be imposed on the object
to track a shared plan given as a desired trajectory of the
object configuration xc,d . Note that, in general, only parts of
the applied wrenches cause the object’s motion and hence
constitute the external wrench. The remaining component
of the applied wrench is called the internal wrench and
causes squeeze forces on the object. In the next step, we aim
for solutions of each agent’s applied wrench ũi, in order to
compose a desired ûc.

By substituting (3) into (1), we obtain for the object
model

Mcẍc + fc( xc, ẋc) = Gũ, (6)

with the complete grasp matrix G composed by the block
diagonal matrix

G = diag


G1, . . . , GN


,
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Fig. 4. Illustrative example of input decomposition in a one-
dimensional redundant task: (a) minimum-norm solution; (b) pos-
sible, but inefficient solution.

and the stacked applied wrench

ũ =


ũ1 . . . ũN

T
.

Let us introduce now

ũ = Aûc, (7)

where A denotes a decomposition matrix from desired
external wrenches to applied wrenches. Using (7), the
dynamical object model depending on the desired external
wrench yields

Mcẍc + fc( ẋc) = GAûc.

In order to achieve tracking of the desired trajectory through
feedforward control of the inverse dynamics, matrix A has
to be chosen to sustain uc = ûc, i.e. A has to be an inverse
of G, fulfilling

GA = I. (8)

Note that dim(uc) is equal to the dimension of the object’s
configuration space dim(xc), since the task is required to
be controllable and holonomic. In our setting, we further
assume that the number of actual inputs is larger than the
required number of inputs for task completion,

dim( ũ) > dim( uc) .

A minimal example of such actuation redundancy is the
movement of an object in one-dimensional space by two
agents, each applying an input wrench. The task is redun-
dant as one agent’s input would be sufficient for controlling
the object, and arbitrary compositions of the agent’s input
forces are possible, see Figure 4. Therefore, the choice of A
in (8) is not unique.

We can show that a particularly interesting solution
for the effort-sharing matrix A is the generalized Moore–

Penrose pseudoinverse G+ of the complete grasp matrix
G, which yields the minimum-norm solution for ũ (Doty
et al., 1993). Since we are solving for wrenches, there is par-
ticular physical meaning of the minimum-norm solution:
the applied wrench obtained with G+ represents an effi-
cient decomposition, because the external wrench is com-
posed by a minimum magnitude of the applied wrench’s
components, see Figure 4 (a). Hence, the applied wrench
has no components which could cause ineffective internal
wrenches.

Fig. 5. Illustrative scenario of planar cooperative manipulation:
one human (left) and one robot (right) jointly move a bulky object
in the x–y-plane.

In addition, the nullspace of G defined as

Ker( G) = {ũ|Gũ = 0}

provides a solution space for ũ. Note that in a physical
meaning, the null-space component causes no motion of the
object, as it does not affect the external wrench. When we
replace A by G+ in (7), the family of all solutions for ũ is
given by

ũ = G+ûc +
nullity(G)

j=1

λjKerj( G), (9)

with parameter λj ∈ R. Depending on the choice of λj,
the solution ũ potentially produces internal wrenches, as
depicted in Figure 4 (b). In fact, solution (9) provides an
effort sharing strategy by input decomposition: In redun-

dant degrees of freedom where effort sharing between the
agents can take place and which are affected by λj, and in
non-redundant degrees of freedom where each agent’s input
is uniquely defined by a necessary contribution.

In the following section we show how λj can be used to
parameterize the effort sharing strategy between the agents
in a single redundant direction.

3.3. Policies for effort sharing

In this section we show how the agents can be assigned
meaningful policies regarding their effort behavior in a sin-
gle redundant degree of freedom. With reference to the
experiment conducted in this study and for intuitiveness of
analysis, we consider from this section on a planar cooper-
ative manipulation task involving two agents for the design
of effort sharing policies without loss of generality. The
presented strategy may be conducted in multiple redundant
degrees of freedom.

3.3.1. Analysis of a planar dyadic task An example planar
dyadic task is shown in Figure 5, which satisfies the require-
ments from Section 2.1. The joint transport of a large table
on ball casters, or the joint movement of any other heavy
object by sliding it on a surface can be such a task. Both,
the human (i = 1) and the robotic agent (i = 2) could
provide input wrenches ui of dimension dim(xc) with

xc =


xc,φ xc,x xc,y
T

,
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which generally include torques. However, a common prop-
erty of bulky objects regarding their handling is the lack
of sensitivity of object dynamics to certain torque compo-
nents, meaning that these torques cannot be applied effec-
tively at the grasp points (see also Wojtara et al., 2009). This
can be explained within our illustrative scenario. Assume a
beam-like bulky object with a long geometrical axis, which
is manipulated by two partners using a single-handed grasp
on the respective end of the object, see Figure 5. In order to
induce a desired rotational motion around the zC-axis, from
experience the reader might agree that it is rather cumber-
some to apply the required torque component through the
wrist. It is much easier to apply an appropriate force com-
ponent through the whole arm which induces turning by
translational motion of the grasp point.

Since our analysis focuses on the primary effects of the
system’s redundant degrees of freedom for effort sharing,
the wrench basis

B1,2 =


0 1 0
0 0 1



is chosen in our illustrative scenario. Putting it into (2)
reduces the input wrench to the effectively applied wrench

ũ =


u1,x u1,y u2,x u2,y
T

. (10)

The kinematic constraints (4) of the system can be
written as

xi =


xc,x xc,y
T − RrC

ic,

with

R =


cos φ − sin φ

sin φ cos φ



denoting the rotation of object frame C with respect to
inertial frame I by angle φ, and

rC
ic =


ric,x ric,y

T

being the vectors from the grasp point of agent i to the ori-
gin of C. According to (5), the 4 × 3 transpose of the grasp
matrix

GT =

⎡
⎢⎢⎣

sin φ r1c,x + cos φ r1c,y 1 0
− cos φ r1c,x + sin φ r1c,y 0 1
sin φ r2c,x + cos φ r2c,y 1 0

− cos φ r2c,x + sin φ r2c,y 0 1

⎤
⎥⎥⎦ (11)

can be derived. Since we can calculate

∀φ dim( xc) = rank( G) = 3

for different grasp constraints r1,c = r2,c = 0, our planar
system is redundant regarding the applied wrench (10) since
dim( ũ) = 4.

Thus, parts of the task effort in terms of applied wrenches
can be shared arbitrarily among the contributing agents
within the redundant degree of freedom without influence
on the external wrench of the object. In the following, we

introduce effort sharing policies which are described by
a certain choice of the parameter λ in (9) characterizing
meaningful shares. In a first step, we will investigate static
sharing policies yielding constant role behaviors, while in
Section 3.4 our notion of roles is extended to encompass a
dynamic allocation within dyads.

3.3.2. Identification of meaningful policies In the given
planar example, the only redundant degree of freedom is
intuitively represented by the yC-axis of the object frame
C (cf. Figure 5), hence components of the external input
wrench along this axis can be arbitrarily shared among the
two agents. Let us recall now decomposition (9) leading to
the agents’ applied wrenches ũ. The nullspace Ker( G) is
spanned by the family

Ker( G) = diag (R, R) Ker( G)C , with

Ker( G)C =


0 1 0 −1
T

, (12)

allowing one degree of freedom for the design of differ-
ent effort sharing policies through the choice of the scalar
parameter λ in (9). Three extreme policies of particular
physical meaning are discussed below.

• Balanced-effort policy. By choosing the policy

πbal : λ = 0, (13)

we obtain the min-norm solution for ũ. The effort in
terms of magnitude of the applied wrench is to be
equally shared among the agents, see Figure 6(a).

• Maximum-robot-effort policy. If we want to have the
robot to take over all of the sharable effort, then the
applied human force in the yC-direction would be zero,
i.e. ũC

1,y = 0. Hence, λ is chosen such that the human
does not contribute any voluntary effort to the task,
which yields the policy

πmax : λ = −


0 1 0 0


ũC
bal, (14)

with the min-norm applied wrench

ũC
bal = diag (R, R)T G+ûc. (15)

The required human effort in terms of the Euclidean
norm

ũC
1  =


( ũC

1,x)2 +( ũC
1,y)2

is minimized now, since ũC
1,x refers to the necessary

input contribution, see Figure 6(b). Intuitively spoken,
the human has to apply wrenches only in those degrees
of freedom, which simply cannot be accomplished by
the robot alone, i.e. rotation, and motion in xC-direction.

• Minimum-robot-effort policy: Dual to policy πmax, the
human has to take over all of the sharable effort, if we
satisfy ũC

2,y = 0 through the policy

πmin : λ =


0 1 0 0


ũC
bal, (16)
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Fig. 6. Given exemplary external wrench realized by three differ-
ent effort policies.

where ũC
bal is given by (15). Using this policy results in a

minimum-effort robot assistance, i.e. in each degree of
freedom, the human has to apply wrench components to
accomplish the task, see Figure 6(c).

When we introduce the family of effort sharing policies

π : λ = −α


0 1 0 0


ũC
bal, (17)

with policy parameter α ∈ R, obviously the policies πbal,
πmax and πmin are parameterized by setting α = 0, α = 1
and α = −1 respectively.

Note. Policies (17) with α ∈ [−1; 1] and the kernel fam-
ily parameterized by (12) are efficient, since no counter-
acting internal wrench on the object is generated. Figure
6(b)–(c) depict the extreme, yet still efficient cases for
|α| = 1, which are obtained intuitively from Figure 6(a)
by shifting the voluntary effort. Setting |α| > 1 generates
counter-acting wrenches, cf. Figure 4 (b).

3.4. Dyadic allocation of roles

The effort sharing policies (17) with constant policy param-
eter α imply a static role in terms of the effort sharing ratio
among the dyad in the redundant direction, resulting from a
feedforward calculation of the agents’ applied wrenches. In
contrast, a dynamic role allocation strategy as investigated
here varies the policy parameter α over time depending on

the measured wrench feedback of the partner. In the dyadic
case, the robotic agent may compute an estimation of its
partner’s applied wrench, if the object’s dynamics (1) and
kinematics (4), (5) is known to the robot. In Section 4.1 we
provide details on such an estimation strategy.

Note. The roles and the allocation strategy refer to a task’s
redundant degree of freedom. With multiple redundant
degrees of freedom, role allocations between the partners
may differ.

The resulting robot behavior in terms of its urge to com-
plete the task is influenced by the velocity profile of the
configuration trajectories planned by the robot. Velocity
profiles can be taken from observations in human–human
experiments, can describe the technical limitations of the
robotic system in its environment, or can be a mixture
of both. Kinodynamic motion planning techniques can be
alternatively used to produce trajectories with bounds on
velocities and accelerations (Donald et al., 1993) in order to
generalize the approach to arbitrary feasible transport tasks.

3.4.1. Constant role allocation As a baseline strategy, we
propose a constant allocation of roles during the task. Any
arbitrary choice of a constant parameter α directly affects
the robot’s urge to accomplish the task.

Given a certain velocity profile, following the inverse
dynamics a choice of α = 0 results in an equal, feedforward
composition of the external wrench in the redundant degree
of freedom. In the performed human user studies we investi-
gate this case as it is symmetric: A human partner applying
the same wrench as the robot in the redundant degree of
freedom moves the object according to the robot’s velocity
profile. In contrast, a human partner who applies the same
wrench in the opposite direction cancels the robot’s applied
wrench.

3.4.2. Weighted proactive role allocation For the realiza-
tion of the weighted role allocation strategy developed in
this work, we propose a continuous, first-order dynamical
system with the policy parameter

α = α0 +
 t

t0

α̇ dt, (18)

bounded within the interval [−1, 1] by an anti-windup sat-
uration to obtain only the efficient policies. The derivative

α̇ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

τ−,w

ũC
1,y,est

 , if ξ = 0

τ+,w ũC
y,thr, if ξ = 1 ∧

ũC
1,y,est

 < ũC
y,thr

τ+,w

ũC
1,y,est

 otherwise

is weighed by the feedback of the human wrench compo-
nent ũC

1,y,est in the redundant direction, which yields a role
allocation with a progressively changing policy depend-
ing on the magnitude of the partner’s contribution, and the
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Fig. 7. Policy parameter α over time for a simulated profile of
the human wrench component ũC

1,y,m and an expected wrench

component ũC
1,y > 0.

agreement indicator

ξ =


0, if sgn( ũC
1,y) = sgn( ũC

1,y,est) = 0

1, otherwise.
(19)

Note that the initial value α0 = −1 produces ini-
tially a minimum-robot-effort behavior. Either zero human
force input or force input ũC

1,y,est in the expected direction

sgn( ũC
1,y) produces an agreement value of ξ = 1 and lets

the policy parameter α rise which leads to emerging robot
effort. A threshold ũC

y,thr is used to define a neutral human
force input which is treated as silent agreement. The con-
stants τ−,w and τ+,w weigh the human’s agreement or dis-
agreement force input. A faster reaction to disagreement
signals (i.e. −τ−,w > τ+,w > 0) is considered to be a reason-
able option. This choice lets the robot rapidly fall back to
minimum effort if the human signals discomfort by apply-
ing a counteracting force. The qualitative dynamical behav-
ior of the weighted role allocation scheme is illustrated by
a simulation example in Figure 7(a).

3.4.3. Discrete role allocation In order to investigate
whether role allocation with a small number of distinct
meaningful steps is more understandable for the human
partner and hence beneficial for cooperation, a discrete
version of the continuous role allocation mechanism is
developed. A chattering-free output discretization of the
weighted role allocation mechanism to three distinct val-
ues ζ = {−1, 0, 1} is achieved by an output quantization

with hysteresis. The rate of change of the internal contin-
uous policy parameter α̂ is also chosen depending on the
agreement indicator ξ from (19) with

˙̂α =


τ+,d , if ξ = 1

τ−,d , otherwise.

A quantization with hysteresis maps the internal continu-
ous policy parameter α̂ onto the discrete value ζ , replacing
the continuous output (18). A smooth transition between the
three discrete levels is achieved by a bang–bang-like ramp
generating mechanism

α̇ = τb sgn ( ζ − α)

where τb denotes a blending time constant. The qualita-
tive behavior of the discrete role allocation scheme is also
illustrated by simulation, see the example in Figure 7(b).

4. Robot interaction control

In order to embed the role behavior developed in Section 3
in a robotic agent, we present an architecture for feedback
interaction control, see Figure 8. The robot’s applied wrench
ũ2 is realized by an admittance-type force controller impos-
ing motion at the robot’s grasp point x2 on the object. The
effort-role behavior (grey box) consisting of three modules,
role allocation, sharing policy and sharing strategy gener-
ates the robot’s input behavior for given external wrenches
ûc and estimates of the human applied wrench ũ1,est. A
given object-related trajectory xc,d is reference to the sys-
tem’s inverse dynamics comprising a model of the object
as well as the robot, and generates a feedforward compo-
nent of the external wrench ûc,dyn. A feedback component
ûc,imp as output of an impedance control law ensures track-
ing of the object configuration under model uncertainties
and unexpected human behavior. In the following section,
the interaction control architecture is explained in detail.

4.1. Estimation of the partner’s input

The robotic agent may compute an estimate of the applied
wrench of a single human partner. If the robot’s kines-
thetic feedback available through its end effector with a
rigid grasp at x2 is sufficiently accurate, i.e. it provides mea-
surements ( x2, ẋ2, ẍ2) of the grasp point’s configuration, the
object’s motion ( xc, ẋc, ẍc) can be inferred by the robot’s
partial grasp matrix GT

2 , which is invertible for a rigid
grasp. In the dyadic case, the external wrench is superposed
by the partners’ wrench components according to (3), cf.
uc = uc,1 + uc,2 in Figure 8. Thus, we obtain the estimated
applied wrench

ũ1,est = G−1
1


uc − G2ũ2,m


, (20)

where the external wrench uc is calculated using the inverse
dynamics1 (1), ũ2,m is the measured applied wrench of the
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Fig. 8. Overall scheme of the interaction control architecture embedding the effort-role behavior.

Fig. 9. Inertial admittance-type control scheme including manipulator-base coordination.

robot and G1 is the human’s partial grasp matrix. Owing to
the superposition of external wrench components (3), only
a single agent’s unknown input can be determined uniquely
by (20).

4.2. Admittance-type force control

An admittance-type force control law is utilized to impose
the robot’s applied wrench ũ2. The controller renders the
dynamics

u2 − u2,m = Mrẍ2 + Drẋ2, (21)

where u2,m is the measured input wrench, matrix Mr and Dr

are a rendered virtual robot’s mass and friction, respectively.
Note that for a rigid grasp, Equation (21) has to be formu-
lated in dim(u2). Zeroing ineffective components of u2 (e.g.
u2,φ = 0) yields the robot’s applied wrench ũ2. In order to
make use of the extended workspace of a mobile robot com-
posed by a manipulator-base system, the admittance control
law is calculated in the inertial frame similar to Unterhin-
ninghofen et al. (2008). The control scheme depicted in
Figure 9 compensates for repositioning of the mobile base
through transformations between the local robot frame R

and the inertial frame, which are denoted by I TR and RT I

respectively, so that the grasp pose of the manipulator is not
affected.

Following of the mobile base is ensured by the velocity
command ẋR

b =

ẋb,φ ẋb,x ẋb,y

T
generated according to the

control law

ẋR
b = diag


Khdg, Kdst, Ktng


ehdg edst etng

T
. (22)

Three independent proportional controllers with gains Khdg,
Kdst and Ktng move the mobile base controlling heading
error ehdg, distance error edst and tangential error etng to zero
with respect to a desired relative configuration of the manip-
ulated object and the robot base, as illustrated in Figure 10.
The desired pose of the end-effector xR

d with respect to the

robot frame R is chosen to meet a certain lower bound μmin

of the manipulability measure


det

JTJ


> μmin ∀ xR

d − xR
m < xR,

where J is the Jacobian of the manipulator and xR

describes required workspace bounds during manipulation.
Assuming a rigid grasp of the robot’s manipulator on the
object, the errors ehdg, edst and etng can be determined as
functions of xR

d and xR
m. The control gains in (22) are tuned

to achieve a smoothly damped, spring-like following behav-
ior of the platform that keeps the manipulator within its
workspace bounds during mobile manipulation. The result-
ing motion command ẋR

b is then executed by an omnidirec-
tional velocity control law as proposed in Nitzsche et al.
(2003).

4.3. Object-centered motion tracking

In addition to the capability to apply input wrenches ũ2 on
the manipulated object, the mobile robotic agent needs the
capability to impose a desired trajectory of the object con-
figuration xc,d as a result of the shared plan. The tracking
behavior is synthesized in an object-centered representation
by means of an external wrench

ûc = ûc,dyn + ûc,imp, (23)

decomposed by the underlying effort-behavior. Wrench
component ûc,dyn compensates in a feedforward branch for
the dynamics of the combined manipulator-object system
with

ûc,dyn = M( xc, ẋc,d) ẍc,d + f( xc, ẋc,d) , (24)

where mass matrix M( xc, ẋc,d) and friction term f( xc, ẋc,d)
comprise the mass and friction terms from (1) and (21). An
object-centered impedance-type control law acting on the
tracking error of the configuration xc generates the external
wrench component

ûc,imp = Kp( xc,d − xc) +Kd( ẋc,d − ẋc) . (25)
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(a)

(b)
x

Fig. 10. (a) Desired and (b) actual configuration of the base with
respect to the object, described by a desired and measured pose of
the manipulator’s end-effector, xR

d
and xR

m, respectively.

Stiffness gain Kp and damping gain Kd render a compli-
ant behavior, if the object configuration deviates from the
expected.

The external wrench (23) guaranteeing object-centered
motion tracking feeds the effort-role behavior, which can be
regarded as a selective wrench filter. Depending on the esti-
mated human’s applied wrench ũ1,est and the policy param-
eter α of the role allocation scheme, the robot’s applied
wrench ũ2 reflects the robot’s voluntary contribution to
the task effort as a result of its effort-role behavior. The
admittance-type force control law (21) imposes the applied
wrench on the object and renders the robot’s input behavior.

5. Experiment

In order to evaluate our effort sharing strategy and the
effects of the role allocation schemes developed in Sec-
tion 3.4, we conducted a user study at Munich Multi Joint
Action Laboratory of CoTeSys research center. A human–
robot interaction scenario was designed for this study in a
unique large-scale setup, involving the joint manipulation
of a real-sized bulky object. The participants were asked to
maneuver jointly with a human-sized mobile robot through
our cluttered lab area (see Figure 1) in order to collabora-
tively transport a table. The realization of such a joint action
task serves as the proof of concept for our approach and
provides valuable observations through a real scenario. In
this section, we describe the experimental setup, conditions,
design, and the procedure.

5.1. Experimental setup

The mobile robot used in the experiment consists of
an omnidirectional mobile base developed by Hanebeck
et al. (1999), two admittance-controlled anthropomorphic
manipulators (Stanczyk and Buss, 2004) using six-degree-
of-freedom wrench sensors (JR3 67M25A3-I40-DH) on
each end-effector. A two-finger parallel gripper of type
Schunk PG70, which is mounted at the robot’s right manip-
ulator, provided a rigid grasp of the flange attached to the
table. A detailed description of the robot’s system hard-
ware and software architecture can be found in Althoff et al.
(2009) and Medina et al. (2011). During the experiment all

Fig. 11. Cooperatively manipulated table equipped with a handle
and wrench sensor for the human (left) and a grasp flange for the
robot (right), both mounted at a height of 0.925m over the ground.

data collection was done by the mobile robot at a sampling
frequency of 1 kHz. The wrench sensor at the human side
was identical to those attached to the end effectors of the
robot and it was connected to a PC on the robot. The table
configuration as well as the grasp points were tracked using
the robot’s inverse kinematics, transformed by the mobile
base’s odometry readings. The interaction control architec-
ture was implemented in MATLAB Simulink and executed
at 1 kHz under Ubuntu Linux utilizing Matlab’s Real-Time
Workshop.

During the experiment, the subjects were asked to move a
wooden table weighing 44 kg that was mounted on an alu-
minum frame standing on ball-caster feet (see Figure 1).
The ball casters provided low-friction, holonomic maneu-
verability of the table. A handle and a flange were rigidly
attached to the table at facing sides for the grasp points of
the human and the robot, respectively (see Figure 11). The
flange was a solid wooden plate that provided slippage free
zero-backlash grasp for the robot.

The parameters used by the robot’s interaction control
architecture (21) and (25) in Section 4 were set to the
following values regarding the task-relevant degrees of
freedom:

Mr = diag(0.4 kg m2, 20 kg, 20 kg)

Dr = diag(10 N · m s rad−1, 100 Ns m−1, 100 N · s m−1)

Kp = diag(200 N · rad−1, 200 N · m−1, 200 N · m−1)

Kd = diag(50 N · m s rad−1, 50 N · s m−1, 50 N · s m−1)

An off-line estimation of the object dynamics used in (24)
revealed the parameters of the table mass matrix

Mc = diag( 13.5 kg m2, 44 kg, 44 kg) ,

the table friction fc was considered as a Coulomb-type
friction of 14 N in total, acting at the table feet.
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5.2. Conditions

We designed three conditions implementing different
behaviors of the robot:

1. Constant role allocation (CRA): As explained in Sec-
tion 3.4.1, the robot contributes to the task without
changing its role, i.e. it uses a balanced-effort policy
α = 0 at all times.

2. Weighted proactive role allocation (WPRA): As
explained in Section 3.4.2, as long as the force applied
by the human is in the expected direction, or the human
is inactive, the robot increases the policy parameter α

gradually with time. Otherwise, it decreases α. During
the experiment, we used τ+,w = 0.02 (N s)−1, τ−,w =
−0.04 (N s)−1, and ũC

1,y,thr = 10 N.
3. Discrete proactive role allocation (DPRA): Similar to

WPRA, the robot changes its role by increasing or
decreasing α gradually. We defined three discrete roles
in this condition (see Section 3.4.3). During the exper-
iment, we used τ+,d = 0.2 s−1, τ−,d = −2 s−1, and
τb = 2 s−1.

5.3. Participants, procedure and design

A total of 18 subjects (6 female and 12 male), aged between
19 and 44, participated in our study. All of the subjects were
right handed and used their right hands for moving the table.
We conducted a within subjects experiment, in which each
subject experimented with all conditions in a single day.
The conditions (CRA, WPRA, and DPRA) were presented
to the subjects in permuted order using a balanced Latin
square design to avoid learning effects. The subjects were
given detailed instructions about the task and the conditions
before the experiment.

In the experiment, a trial consisted of moving the table
jointly with the robot to four parking configurations and
then coming back to the initial configuration, as shown in
Figure 12. The subjects were allowed to apply pushing and
pulling forces using only their dominant hands by hold-
ing the handle of the table; lifting the table off the ground
and talking during the experiment were prohibited. The
positions of the human and the robot in each of the park-
ing configurations were clearly marked on the floor of the
area. These marks were shown to the subjects before the
experiment. The free space available for maneuvering the
table between the parking configurations was constrained
by obstacles in such a way that ambiguities and possible
alternative common paths were avoided. Extension 1 pro-
vides the reader with a video of an experimental trial’s
course.

For each condition, the subjects performed the task three
times (i.e. three trials). After each trial, a small break was
given to initialize the table and robot pose. After perform-
ing these three trials successfully, the subjects were given a
questionnaire to comment on their experience. Afterwards,
they were presented with a new condition.

Fig. 12. Bird’s eye view of the lab area used for the experiments.
The outer box corresponds to the boundary of the environment and
spans a square of approximately 8 m × 8 m. The regions marked
as gray are occupied by obstacles. The positions of the table and
the interacting dyad (i.e. the human and the robot) in each of four
designated parking configurations, pi, i = 1, . . . , 4, are depicted.
The paths, si, i = 1, . . . , 4, connecting the parking configurations
are represented by dotted lines.

6. Evaluation

In this section, quantitative as well as subjective measures
used for the evaluation of the user study are introduced.

6.1. Quantitative measures

This section presents details on the quantitative measures
we adopt in the analysis. The data collected in the first
300 ms of each trial is discarded to eliminate possible dis-
crepancies encountered at the beginning of the trials. Also
data collected at the final leg of segment s4 (see Figure 12)
is discarded since the final parking procedure was difficult
for some of the participants, and we had to cut some trials
early due to impending collisions with obstacles. The data is
low-pass filtered using a first-order filter with 15 Hz cut-off
frequency.

Task performance is quantified in terms of task comple-
tion time. We also examine the individual interaction forces
applied by the agents, the work done by the partners, and
the total work done on the table as indication of the physical
effort. Also, the degree of cooperation under each condition
is investigated with respect to the amount of disagreement
in the dyad’s operation and the distribution of the robot’s
effort policy.

6.1.1. Task performance The completion time (CT) of
each trial is taken as a measure of performance.
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6.1.2. Effort The average of the human’s and robot’s
applied wrenches and the work done by them are consid-
ered to be indications of the effort made by the agents. Work
done by the agents during a trial is calculated by

Wi =
 CT

0

ũi,m · ẋi

 dt,

where ũi,m denotes the measured wrench exerted by the
agent and ẋi the velocity of the grasp point. The total work
done on the table by the partners during a trial considers the
accumulated energy transfer on the table, i.e. how efficiently
the table could be moved to the parking configurations. It is
calculated by

Wtable =
 CT

0
|uc · ẋc| dt,

where the motion-causing external wrench uc is obtained by
evaluating (3) for ũi,m. Note that the absolute energy flow
is accumulated, since the human partner is assumed not to
recoup by absorbing energy, i.e. through breaking actions.

6.1.3. Amount of disagreement In our experiment, a dis-
agreement is assumed to occur when two partners pull or
push the table in opposite directions along the yC-axis.
Instead of contributing to the movement of the object,
part of the forces in this axis are wasted for compressing
the table (i.e. squeeze force) or resisting the other partner
(i.e. tensile force). Groten et al. (2009) call these forces
interactive forces defined as

uI =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ũC
1,y, if sgn( ũC

1,y) = sgn( ũC
2,y)

∧ |ũC
1,y| ≤ |ũC

2,y|
−ũC

2,y, if sgn( ũC
1,y) = sgn( ũC

2,y)

∧ |ũC
1,y| > |ũC

2,y|
0, otherwise.

In order to come up with a metric of disagreement, the inter-
active forces during the disagreement periods are weighed
with the time spent in disagreement. Since we are not inter-
ested whether the agents disagree by pushing or pulling
against each other (which is indicated by the sign of uI ),
the amount of disagreement

ADI =
 CT

0
|uI | dt,

is calculated based on the magnitude of the interactive
forces.

6.1.4. Role allocation The frequency distribution of the
policy parameter α is investigated to provide a better
understanding of the dynamic role allocation behaviors in
different conditions.

6.2. Subjective measures

At the end of each condition, the subjects are asked to fill in
a questionnaire, which is designed with the technique that
Basdogan et al. (2000) have used for investigating haptic
collaboration in shared virtual environments. The question-
naire consists of 20 questions taken from NASA-TLX task
load index (Hart and Stavenland, 1988) as well as those
developed by Kucukyilmaz et al. (2011). The subjects indi-
cate their level of agreement or disagreement on a seven-
point Likert scale for a series of questions, some of which
are rephrased and asked again within the questionnaire in
an arbitrary order. The average of the subjects’ responses to
the rephrased questions is used for the evaluation. NASA-
TLX evaluates the degree to which each of the following
six factors contribute to the task workload:

• Mental demand: One question asks how much mental
and perceptual activity was required for achieving the
task (e.g. thinking, deciding, calculating, remembering,
looking, searching, etc.).

• Physical demand: One question asks how much phys-
ical activity was required for achieving the task (e.g.
pulling, pushing, turning, calculating, remembering,
looking, searching, etc.).

• Temporal demand: One question asks how much time
pressure the subjects felt during the task.

• Performance: One question asks the subjects to assess
their self-performance in accomplishing the goals of the
task.

• Effort: One question asks how hard the subjects had to
work to accomplish their level of performance.

• Frustration level: One question asks how much irrita-
tion, stress or annoyance the subjects felt during the
task.

The remaining questions are asked in the following
categories:

• Collaboration: Two questions investigate the extent to
which the subjects had a sense of collaborating with the
robot during the task.

• Interaction: Two questions explored the level of inter-
action the subjects experience during the task.

• Comfort: One question asks how comfortable the task
was.

• Pleasure: One question asks how pleasurable the task
was.

• Degree of Control: Two questions ask the subjects about
their perceived degree of control on the movement of
the table.

• Predictability: Two questions investigate how pre-
dictable the robot’s movements were during the task.

• Trust: Two questions investigate whether the subjects
trusted their robotic partner on controlling the table or
not.
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Fig. 13. Average completion time of the task. The bars represent
standard errors of the means.

• Human-likeness: Two questions ask the subjects
whether the robot’s actions (movement patterns) resem-
bled those of a human being acting in a similar real-life
scenario.

7. Results

This section presents the results of the experiment in terms
of the quantitative and subjective measures defined in Sec-
tion 6. Statistically significant differences between condi-
tions were investigated using one way repeated measures
analysis of variance (ANOVA) and multiple comparisons
were performed via post-hoc Student’s t-tests with Bon-
ferroni correction. Mauchly’s test was conducted to check
whether the assumption of sphericity was violated. If so,
the degrees of freedom were corrected using Huynh–Feldt
estimates of sphericity.

7.1. Quantitative analysis

In this section, we present the quantitative results according
to the measures introduced in Section 6.1.

7.1.1. Task performance Figure 13 illustrates the mean
completion time under each condition and the standard
error of the means.

According to ANOVA results, we observe a statistically
significant effect of the condition on completion time (p <

0.001). Specifically, the subjects completed the task signifi-
cantly faster under WPRA than they did under the other two
conditions. While the completion time is slightly smaller
in DPRA than it is in CRA, the difference between these
conditions is not significant.

7.1.2. Effort Figure 14 illustrates the mean individual
wrenches applied by the agents and the standard error of
the means.

According to ANOVA results, the experimental condi-
tion has a significant effect on interaction forces of both
the human and the robot (p < 0.001). We observe that

Fig. 14. The averaged applied wrenches of the human and the
robot. The bars represent standard errors of the means.

Fig. 15. Average work done by individual agents and average
work done on the table. The bars represent standard errors of the
means.

the average wrench applied by the human under WPRA is
significantly smaller than it is under the other conditions
(p < 0.001), whereas it is significantly higher under DPRA
(p < 0.001). On the other hand, the applied wrench of the
robot is significantly higher under WPRA and DPRA than
it is under CRA (p < 0.001).

Figure 15 illustrates the average work done by the indi-
vidual agents and the dyad under each condition. The error
bars denote the standard error of the means. The results are
in parallel to those observed for the wrenches applied by the
agents.

We consider the work done as an indication of physi-
cal effort. ANOVA results suggest that there is a signifi-
cant effect of the experimental condition on the individual
work done by the agents and the work done on the table
(p < 0.001). We observe that the subjects put the least
effort under WPRA (p < 0.001) and the most under DPRA
(p < 0.001). Similarly, we observe that the total work done
on the table under WPRA is smaller than that under CRA
(p < 0.05) and DPRA (p < 0.001). The total work is the
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Fig. 16. The averaged amount of disagreement under each condi-
tion. The bars represent standard errors of the means.

largest under DPRA (p < 0.001). The robot showed sig-
nificantly more effort under WPRA and DPRA than it did
under CRA (p < 0.001). Even though we observe the high-
est robot effort in DPRA, the difference between the WPRA
and DPRA conditions is not statistically significant.

7.1.3. Amount of disagreement The amount of disagree-
ment under each condition is illustrated in Figure 16.

The ANOVA results indicate a significant effect of the
condition on the amount of disagreement (p < 0.05). The
multiple comparison results imply that the amount of dis-
agreement is similar under CRA and WPRA, whereas it
is lower under DPRA than CRA (p < 0.001) and WPRA
(p < 0.001). Note that we consider only the signs of the
applied wrenches to decide whether there is a disagree-
ment between the partners. Also we check for interactive
forces that are smaller than 1 N, and do not treat these as
disagreements.

7.1.4. Role allocation Figure 17 illustrates how the role
allocation behavior changes for the WPRA and DPRA con-
ditions. For each condition, a sample trial is selected show-
ing the human’s wrench profile and the resulting profile
of the policy parameter α. Upon examining the plots, we
observe that even though the human’s wrench profile is
similar under WPRA and DPRA, the resulting robot behav-
ior is drastically different. In particular, the discrete state
transitions under DPRA become obvious in contrast to the
continuous blending under WPRA.

The frequency distributions of the policy parameter α

under the WPRA and DPRA conditions are illustrated
in Figure 18. We observe that under WPRA the robot
acted towards maximum effort. On the other hand, we see
a almost uniform distribution between the three discrete
states of effort sharing behaviors (also due to transitions,
we notice values in between these three states).
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under each condition.

7.2. Subjective evaluation

The key results of the subjective evaluation are as follows:

• The subjects thought that the task was physically and
mentally less demanding under WPRA. The physical
demand for DPRA was significantly higher than it was
for WPRA (p < 0.005) and CRA (p < 0.05).

• The subjects felt significantly less comfortable under
DPRA than they felt under CRA (p < 0.01) and WPRA
(p < 0.005).

• The subjects believed that their control over the table’s
movements under DPRA was significantly more than
that under WPRA (p < 0.05).
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• Under DPRA, the predictability of the robot was signif-
icantly lower than it was under CRA (p < 0.05).

Figure 19 shows the mean values of the subjects’
responses to the questionnaire and the standard error of the
means.

8. Discussion

In this study, we investigate the benefits of using a dynamic
role allocation scheme for cooperative human–robot inter-
action. We implemented two different dynamic role alloca-
tion schemes, i.e. WPRA and DPRA, and compared them
with a scheme with constant role allocation, i.e. CRA. The
evaluation of cooperative physical human–robot interaction
is especially tricky due to the diversity of real-life appli-
cations and target domains. In such systems, optimizing for
the human’s collaborative experience as well as the task per-
formance is desired. In order to present a broad analysis, we
utilize quantitative and subjective measures as explained in
Section 6, each of which is designed to evaluate a differ-
ent aspect of the cooperative task. Along with performance
measures, we propose quantitative measures for evaluating
the effort and efficiency of the partners in the dyadic task.
Subjective measures are presented to discover the accept-
ability of the proposed schemes by the humans. However,
our results indicate that no single interaction scheme can
satisfy every aspect of interaction. Hence, the domain and
task knowledge should be considered carefully.

The subjective evaluation, when considered along with
the quantitative results presents insight about the users’
perception of different effort sharing policies. During the
experiments, we observed that, under DPRA, the subjects
accelerated and decelerated from time to time as an effect
of adaptation to the changing policy α. We infer that such
movements might have caused the subjects to finish the task
in a longer time. The average wrench of the robot is sig-
nificantly higher under WPRA and DPRA than it is under
CRA, which indicates a possible tendency towards maxi-
mum effort in the robot’s behavior under both conditions.
As a consequence of the smooth blending, under WPRA,
the maximum effort policy that was dominantly employed
by the robot made the subjects think that the task required
them to be faster (i.e. the task had a higher temporal
demand). Eventually this perception could be responsible
for the lower completion time under WPRA.

We observed that the level of agreement during the task
was the highest under DPRA. Reed et al. (2005) mention
that sometimes force oscillations may be observed during
interaction for negotiation purposes or in an effort to adapt
to the varying velocity enforced by the robot. Since the
states were discrete under DPRA, the behavior of the robot
was observable. Hence, the users might have needed to use
force oscillations less for adaptation, but acted in a more
determinate way through their applied forces, resulting in
an increased level of agreement during the task.

Under DPRA, the subjects were able to observe the oper-
ation of the robot more clearly and infer that different
behaviors were displayed by the robot. On the other hand,
WPRA resulted in smooth role blending, which was not
consciously perceived by the subjects for most of the time.
We also observe that the mental and physical demand of
task, as well as the frustration level and the physical effort
were higher under DPRA. This may be an artifact of the
pronounced role switching behavior faced during the task
under DPRA.

The subjects thought that the robot was acting less collab-
oratively under WPRA and DPRA. A possible reason for
this is that the changing effort role of the robot made the
interaction more complex, and the subjects favored a con-
stant role allocation scheme. The subjects found the level
of interaction to be higher under DPRA. Under WPRA, the
role exchanges were probably too smooth to be observable,
hence the subjects failed to perceive the interactive nature
of the task.

The subjects felt in control of moving the table under
DPRA significantly more than they did under WPRA. They
also thought that they spent more effort in DPRA, which
agrees with our effort measures. Also since the robot dis-
played greater effort under WPRA, the perception of the
relative control level of the subjects might have dropped.
In addition, the subjects felt significantly less comfortable
under DPRA and they thought that the predictability of the
robot was significantly lower than it was under CRA. Since
the behavior of the robot was less smooth under DPRA,
the subjects might have felt discomfort due to abrupt role
transitions and experienced a difficult time in inferring
the robot’s actions in advance. However, in WPRA, as the
behavior was smooth, the subjects were able to predict
the robot’s actions better. As the subjects could not infer
the actions of the robot clearly under DPRA, they may
be driven to being more dominant in pulling and pushing
the table, which eventually increases their perceived control
level during the task.

The subjects’ belief that the robot would perform the task
correctly was the highest under CRA, in which the sub-
jects observed no unexpected behaviors as the robot’s effort
sharing policy was constant at all times. Finally, the human-
likeness of the robot was lower under DPRA than it was
under WPRA and CRA. As mentioned above, we observed
that the smooth operation under CRA and WPRA provides
a more comfortable experience for the subjects, in which
the subjects reported that they could trust the robot and pre-
dict its actions. Even though we have not yet discovered the
salient features that make the communication with a robot
more human-like, obviously subjective sensations such as
smoothness, comfort, predictability, and trust adds to higher
human-likeness scores.

The aforementioned points draw a clear distinction
between two different implementations of a dynamic role
allocation scheme. Although in essence both WPRA and
DPRA realize dynamic role allocation based on the wrench
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Fig. 19. Means of the subjective measures under each condition. The bars represent standard errors of the means.

acquired from the same human partner, the discretized ver-
sion of the scheme invokes more distinct role transitions.
However, these defined transitions increase the visibility of
the underlying scheme, and allow the users of the system to
observe it better. This makes a DPRA-like scheme a viable
alternative for interactive training applications. In training,
it is necessary for the users to observe the role of the trainer
(i.e. the robot) so that they can adapt to it. When the trainer’s
role is not perceived, the users typically tend to obey the
guiding system and do not learn the dynamics of the sys-
tem (Forsyth and Maclean, 2006). This effect can clearly
be observed when we examine the frequency distribution
of the policy parameter in Figure 18. As indicated in the
figure, under WPRA, the users tend to go along under the
supervision of the robot most of the time. Since the robot
puts its maximum effort into the task most of the time, the
users would only seldom take initiative and, hence, fail to
gain training experience.

On the other hand, in many applications, users would pre-
fer comfort over having a better sense of interaction. For
instance, when working with an assistive robot in a coop-
erative manipulation task, users would prefer to finish the
task in the fastest and the least tiring way. In such a set-
ting, WPRA could be the better alternative as it optimizes
for task performance and human effort. Finally, in some
settings such as physical interaction with the elderly or chil-
dren, subjective sense of comfort, pleasure, and trust could
matter the most, making CRA a better choice.

9. Conclusion

In this paper we present a systematic analysis of cooper-
ative human–robot manipulation and introduce three dif-
ferent schemes for the allocation of effort resulting from
the task. The envisaged cooperative load transport task is
decomposed into the subtasks of steering and progressing

according to the objects geometrical and dynamical prop-
erties. Meaningful decompositions are derived in order to
parameterize policies to distribute the effort among the
contributing partners. The effort along the direction of
redundant inputs is allocated among the agents in terms of
roles following three proposed strategies. The experimental
evaluation revealed the interesting effect that a continu-
ous dynamic role allocation policy is objectively superior
over a constant role strategy whereas the human partners
subjectively preferred the constant role which was more
obvious.

Our next steps include the application of our dynamic
role allocation scheme to more complex tasks involving
dynamically changing environments with a stronger empha-
sis on different capabilities of the partners. Furthermore,
possibilities to generate the underlying reference object tra-
jectory will be investigated in more detail. We are con-
vinced that the ability of a robotic system to adjust its own
role within a cooperation is a relevant factor for the use-
fulness of future physical robotic assistants. The decrease
of subjective acceptance of a dynamically changing role
in spite of the performance increase leaves a number of
interesting research questions.

Note

1. Certain non-linearities such as static friction prevent invert-
ibility of the object dynamics and therefore the partner’s input
estimation.
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