
HAL Id: hal-01861673
https://hal.inria.fr/hal-01861673

Submitted on 25 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BLOCKS, a Component Framework with Checking
Facilities for Knowledge-Based Systems
Sabine Moisan, Annie Ressouche, Jean-Paul Rigault

To cite this version:
Sabine Moisan, Annie Ressouche, Jean-Paul Rigault. BLOCKS, a Component Framework with Check-
ing Facilities for Knowledge-Based Systems. Informatica, Slovene Society Informatika, Ljubljana,
2001, Special Issue on Component Based Software Development, 25 (4), pp.7. �hal-01861673�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163026432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01861673
https://hal.archives-ouvertes.fr


Informatica 17 page xxx–yyy 1

BLOCKS, a Component Framework with Checking Facilities for
Knowledge-Based Systems

Sabine Moisan�, Annie Ressouche� , Jean-Paul Rigault���

� INRIA Sophia Antipolis, France
Phone: �33 4 92 38 78 47, Fax: �33 4 92 38 79 39
E-mail: {Sabine.Moisan, Annie.Ressouche}@sophia.inria.fr
� I3S Laboratory, University of Nice Sophia Antipolis, France
Phone: �33 4 92 96 51 33, Fax: �33 4 92 96 51 55
E-mail: jpr@essi.fr

Keywords: component framework, behavioral model, model checking, artificial intelligence

Edited by: M. B. Juric

Received: Revised: Accepted:

BLOCKS is an answer to the software engineering needs of the design of knowledge-based sys-
tem engines. It is a framework composed of reusable and adaptable software components. How-
ever, its safe and correct use is complex and we supply formal models and associated tools to
assist using it. These models and tools are based on behavioral description of components and
on model checking techniques. They ensure a safe reuse of the components, especially when
extending them through inheritance, owing to the notion of behavioral refinement.

1 Introduction

In the design of Knowledge-Based Systems (KBS)
more attention has been paid to cognitive issues than
to software engineering ones. Yet, software qual-
ity (reusability, maintenance, evolution, and safety) is
also an important issue for such systems. That is why
we have developed a generic multi-level approach to
KBS development relying on best software engineer-
ing practices. A major outcome is a component frame-
work enriched with models and tools enforcing the
correct use of the framework.

A Knowledge-Based System basically consists of
an inference engine, a knowledge repository (aka
Knowledge Base), and a fact base. Each of these three
parts is the realm of one particular type (or role) of ac-
tor. In this paper we focus on the role of the designer,
the one who develops KBS engines.

The notion of KBS generators (or shells) emerged
in the late 80’s [17]. A KBS generator addresses a
given activity (e.g., diagnosis, classification) but it is
domain-independent: its KBS instances apply to var-
ious domains (e.g., classification of cardiologic dis-
eases, of astronomic objects, of biological organisms).
KBS generators take advantage of the cross-domains

similarities by abstracting the common artificial intel-
ligence concepts and by gathering representation tech-
niques within a unique environment.

Whereas generators aim to meet experts or end-
users needs (e.g., they help them manage knowledge
base evolution and maintenance), they provide lit-
tle help for the designer as far as Software Engi-
neering is concerned. Therefore we promote generic
tools for producing KBS generators. Adding such
a level improves versatility but increases complex-
ity. This paper proposes methods and tools to assist
the designer in implementing Artificial Intelligence
(AI) techniques in an efficient, versatile, reusable, and
maintenable way.

To face the corresponding software engineering
challenge (essentially a reusability problem), a collec-
tion of software engineering best practices have been
prescribed: object-oriented modeling (UML) and
programming (C++ and Java), component-oriented
framework [3, 10], behavioral modeling with associ-
ated proofs and simulations. In a KBS, the primary
element that is likely to evolve is the inference en-
gine. That is why this paper focuses on the design,
simulation, and validation of engines.

In the sequel we first describe our engine design



2 Informatica 17 page xxx–yyy S. Moisan, A. Ressouche, J-P. Rigault

framework, named BLOCKS1 (section 2). Then we
present the static model and the notion of a compo-
nent in BLOCKS (section 3). Section 4 is devoted to
the component behavioral model and the associated
verification techniques. We finally discuss the scope
and the benefits of our approach (section 5).

2 General Description of BLOCKS

This paper concentrates on BLOCKS which is part of
a wider software platform providing designers with a
set of generic toolkits. In addition to BLOCKS (com-
ponents for engine design) the platform offers com-
piler generators for knowledge description languages,
and several libraries (for graphic user interfaces, for
knowledge base simulation and verification). The task
of the designer is to select, adapt, and assemble com-
ponents from these toolkits into a customized KBS
generator, which can then be used to develop KBS ap-
plications.

The objective of BLOCKS is to help designers cre-
ate new engines and reuse or modify existing ones
without extensive code rewriting. Thus the compo-
nents of BLOCKS stand at a higher level of abstraction
than programming language usual constructs.

The framework consists of around 60 (C++)
classes. About a dozen of them implement basic data
structures (lists, sets, maps...). The remaining classes
are dedicated to knowledge representation artefacts
such as the classical AI notions of frame and of rule
[8]. As a matter of example, class Rule is composed
of a set of conditions and a set of actions that are to be
executed when the conditions are true (see figure 1).

The methods of BLOCKS classes are used by the
designer to construct new KBS engines. To continue
with the same example, class Rule sports two fun-
damental methods: one to test the conditions, the
other to execute the actions. Calls to these meth-
ods will appear in the code of rule engines. For
instance, a classical forward-chaining engine loops
over three phases: finding applicable rules (call
Rule::test_conditions); selecting a rule for ex-
ecution (conflict resolution specific strategy, written
by the designer); execution of the chosen rule (call
Rule::execute_actions).

The framework is rooted in our extensive experi-
ence with designing various KBS engines, for activ-
ities as diverse as computer aided design, classifica-
tion, or planning and in domains as different as civil

1Basic Library Of Components for Knowledge-based Systems

engineering, astronomy, medicine, finance, etc. This
has been the basis for a domain analysis that allowed
the major concepts of BLOCKS to emerge. A crucial
design decision was to determine the proper generality
level of the framework components. Too much gener-
ality is not suitable for efficiency, whereas too spe-
cific components, though easily applicable, are hardly
reusable. Our solution was to restrict the range of
targeted activities: we choose planning and classifi-
cation, merely because they are useful in our current
applications.

The analysis has been an iterative process with
three main steps:

– abstract modeling of existing engines using for-
malisms such as UML [18]; this led to the defi-
nition of the knowledge representation classes;

– completing classes and detailing their behavior;
this has been a major step for identifying com-
mon concepts and methods behavior, their roles
in problem solving, and their organization;

– modeling control to define sequencing of method
calls in engines.

BLOCKS is divided into several layers: the support
layer contains generic and abstract features (abstract
classes and methods, and generic functions) useful for
any kind of engine. By specializing the classes in the
support layer, the designer may define new layers ded-
icated to specific activities. These layers contain con-
crete classes, the instances of which will populate the
knowledge bases.

3 A Component View of BLOCKS

In BLOCKS we define a component as the realization
of a sub-tree of the class hierarchy: this complies to
one of Szyperski’s definitions for components [20].
At the framework top level, there are presently three
such components that the designer may compose or
extend. For this to be possible, the designer needs in-
formation about component properties. For it to be
safe, he or she should commit to some protocol. For
forcing it to be safe, we offer automatic proof and va-
lidity checking tools.

3.1 Components in BLOCKS

The three high level components are associated
with the initial sub-trees of classes Frame, Rule,



BLOCKS Informatica 17 page xxx–yyy 3

and State, corresponding to major KBS concepts.
Frames describe pieces of knowledge as static struc-
tures, composed of attributes which in turn are com-
posed of sub-attributes or “facets” (declarative or pro-
cedural). Rules describe pieces of knowledge as dy-
namic inferences in the form of conditions/actions
patterns. States store the history of the problem solv-
ing process.

The designer both adapt the components and writes
the glue code of engines. To achieve a given strategy
he/she will (non-exclusively) use these components
directly, or extend the classes they contain by inher-
itance, or compose the classes together, or instantiate
new classes from predefined generic2 ones. Among
all these possibilities, class derivation is certainly the
most frequent one. It is also the one that raises the
trickiest problems. In the sequel we shall mainly con-
centrate on it.

Let us continue with our example: the Rule class in
BLOCKS (figure 1) is composed of conditions and ac-
tions which originally do not take into account fuzzy
values. Thus, as mentioned in section 2, it can be
used by a simple rule engine. To cope with ac-
tivities requiring fuzziness, the designer must intro-
duce a FuzzyRule class as a derivative of Rule.
Relying on the static information of the class dia-
gram of Rule (signatures of methods and associations
among classes), the designer obtains the inheritance
graph shown on figure 1. But this static information
is not sufficient to ensure a safe use of the frame-
work. Indeed, in the example, the designer must also
redefine–in a “semantically acceptable” way–methods
test_conditions and execute_actions.

3.2 Protocol to Use the Framework

As previously mentioned, safe use of the framework
requires that a protocol be specified. This protocol of
use is defined by two sets of constraints. First, a static
set enforces the internal consistency of class struc-
tures; for instance, in C++, class derivation and com-
position demand a scaffolding of structure-dependent
construction/destruction operations. The static nature
makes it easy to generate the necessary information at
compile-time.

A second set of constraints describes dynamic
method requirements:

1. legal sequences of method calls; for instance,

2"template classes" in C++

FuzzyCondition

+ test()

FuzzyAction

+ execute()

FuzzyRule

+ test_conditions()
+ execute_actions()

1..n1..n 1..n1..n

<< refines >><< refines >>

Condition

+ test()

Action

+ execute()

Rule

+ test_conditions()
+ execute_actions()

1..n1..n 1..n1..n

Figure 1: Rule and FuzzyRule classes: above the
original classes, below the derived ones.

Rule requires that test_conditions be in-
voked before calling execute_actions;

2. constraints on the operations that a component
expects from other components; in the example,
the execute_actions method expects actions
to sport an execute method; this is hardly obvi-
ous on the class diagram(s);

3. specification of internal behavior of methods;

4. specification of the valid ways to redefine
method behavior in derived classes.

These dynamic aspects are more complicated to ex-
press than static ones, they are error-prone, and there
is no tool (as natural as a compiler for the static case)
to handle and check them. While items 1 and 2 can be
partially addressed by classical UML models (class
diagrams and Statecharts), the last two items are more
challenging. We shall propose a solution in section 4.

3.3 Realizing the Component Protocol

To implement the protocol of the previous section
BLOCKS applies three non-exclusive techniques.

First, well-known design patterns [9] make it pos-
sible to create polymorphic objects (abstract factory,
virtual constructor, singleton, prototype), to traverse
complex data structures (iterator, visitor), and to im-
plement polymorphic algorithms (strategy). This
helps clarify the software architecture, but it seldom
is a complete solution.



4 Informatica 17 page xxx–yyy S. Moisan, A. Ressouche, J-P. Rigault

Second, we use meta-programming [12], namely
the OpenC++ meta-object protocol [4, 5]. This
helps generate the language-dependent “scaffolding”
of constructors requested for frame derivation. It also
allows to implement some specific “aspects” [13] of
frames such as introspection or persistence. How-
ever meta-programmation is complex. Moreover the
knowledge about components is external to the com-
ponents, a risk of inconsistent evolution.

Therefore, third, the knowledge for using, deriv-
ing, and composing is embedded into the components
themselves. This allows static as well as dynamic ver-
ifications relying on this knowledge.

The first two techniques are out of the scope of this
paper. We focus on representing and embedding infor-
mation about behavior of components and methods.
There is no complete and consensual technique for
this: for instance, in JavaBeans, the embedded knowl-
edge is rather poor; in CORBA, the IDL is external
to the components and is not much richer. The next
section presents our solution.

4 Behavior Description and
Behavior Refinement

In order to reuse BLOCKS components in a safe way,
we define a mathematical model providing consistent
description of behavioral entities. Behavioral enti-
ties are whole components, sub-components, or sin-
gle methods. Such a model complements the UML
approach and allows to specify the class and method
behavior with respect to class derivation. We also pro-
pose a hierarchical specification language to describe
the dynamic aspect of components both at the class
and method levels. Finally we define a semantic map-
ping to bridge the gap between the specification lan-
guage and its meaning in the mathematical model.

In this paper we just intend to give the flavor of the
formal models.

4.1 Mathematical Model of Behavior

We have chosen input/output labeled transition sys-
tems [15] as a basis for our mathematical model.
Since these systems are a special kind of finite state
machines (automata), we shall denote them LFSM for
short in the rest of the paper. In our model a LFSM
is associated with a behavioral entity; each transition
has a label representing an elementary step of the en-
tity, consisting of a trigger event (input condition) and

the action to be executed when the transition is fired.
LFSMs are particularly well suited to check tempo-

ral logic properties. Temporal logic easily expresses
assertions about behavior. Formulae of this logic con-
cern either the states of the model or its executions3.
Moreover, tools and proof environments are available
to perform temporal logic checking on LFSM [11].
The major drawback of model checking is a possible
explosion of the state space. Although some tools use
symbolic model checking methods to cope with it, an
obvious method to push back the bounds of possibil-
ity is to use the natural decomposition of the system.
Hence, our specification language provides a hierar-
chical description of behaviors that allows to merge
symbolic and compositional approaches.

We substitute LFSM for regular UML Statecharts
to represent the state behavior of a class as well as of
a method.

In the object-oriented approach, the static seman-
tics of specialization (aka class derivation, or subtyp-
ing, or extension) usually obeys the classical Substi-
tuability Principle [14]. To enforce behaviorwise safe
derivation, the same principle should apply to the dy-
namic semantics of a behavioral entity–such as either
a whole class, or one of its (redefined) methods.

If � and � are LFSMs denoting respectively some
behavior in a base class and its redefinition in a deriva-
tive, we seek for a relation � � � stating that “� ex-
tends � in a safe way”. To comply with inheritance,
this relation must be a preorder sufficient to capture
the notion of “correct extention of behavior”.
� simulates � iff we can build a relation � that

relates each state of � to a state of � so that for two
related states � an �, every successor of � is related to
some successor of � with a transition bearing compat-
ible4 labels (trigger/action). The definition of simu-
lation is local since the relation between two states is
based only on their successor states. As a result, it can
be checked in polynomial time. Intuitively, if � sim-
ulates � then any valid input/output sequence (trace)
of � is also a trace of �. Thus � can be substituted
for � , for all purposes of � . Therefore, the extensions
in � do not jeopardize the behavior of � .

3Temporal logic is based on first order logic and has specific
temporal operators to express properties holding for a given state,
for the next state, eventually for a future state, or for all future
states. We can also express that a property holds for all the exe-
cutions starting in a given state or that it exists an execution satis-
fying a given condition.

4Two labels are compatible if they are equal once restricted to
the intersection of the LFSM alphabets.



BLOCKS Informatica 17 page xxx–yyy 5

For � we choose the notion of “simulation pre-
order”, i.e., � � � iff there is a simulation relation
� such that ����� ���, where �� and �� are respec-
tively the initial states of � and � . Relation � is
a preorder over LFSMs and it preserves satisfaction
of the formulae of a subset of temporal logic, expres-
sive enough for most verification tasks (���	 [11]).
Moreover, this subset has a practicable model check-
ing algorithm.

To capture the notion of safe extensibility for com-
ponents, we define a relation (�): if A and B are two
classes, B � A iff B derives from A and the LFSM
associated with B simulates the one associated with
A. The relation is also defined for method behavior:

 � 
� iff the LFSM associated with 
 simulates
the one of 
�.

With such a model, the description of behavior
matches the class hierarchy. Hence, class and method
refinements are compatible and consistent with the
static description: checking dynamic behavior may
benefit from the hierarchical organization.

4.2 Behavior Description Language

In addition to the previous mathematical model, we
propose a specification language. This language, very
similar to the Argos graphical language [15], is also
automata-based. It is easily compiled into finite state
machines and it supports existing verification meth-
ods and tools. Programs written in this language op-
erationally describe behavioral entities, we call them
behavioral programs.

Behavioral programs use simple automata as a
primitive construct. Labels correspond to input/output
events which determine how the entity changes its
state. The notion of event is abstract; in the language
it is just represented by a name and, thus, it may re-
ceive various interpretations. For instance, it may be
associated with the code of a method or with another
behavioral program.

The language defines three main constructs. The
first one is parallel composition (noted � � �). It
is a symmetric operator which behaves as the direct
product of its automata operands: transitions triggered
by the same input are fired simultaneously and their
outputs are unioned. Second, local event declara-
tions allow to declare events local to a (behavioral)
entity (when a local event is emitted, it can trigger
transitions only in its own entity). Parallel compo-
sition combined with local event declarations makes
it possible to represent communication between sub-

programs. Third, the refinement operator is similar
to its Statecharts counterpart (definition of hierarchi-
cal states), except that it cannot break the hierarchical
structure of programs and states. The states of an en-
tity may be decomposed into behavioral sub-entities.
This operator makes it possible to express interrupts,
exceptions, and normal termination of (sub)programs.

This language offers a syntactic means to build pro-
grams that reflect the behavior of BLOCKS compo-
nents. Nevertheless, the soundness of this approach
implies a clear definition of the relationship between
behavioral programs and their mathematical represen-
tation as LFSM (section 4.1). Let � denote the set of
behavioral programs and � the set of LFSMs. We de-
fine a semantic function � � � 	
 � that is stable
with respect to the previously defined operators (local
events, parallel, and refinement).

As a consequence, the language exhibits a funda-
mental composition property. This property is the
key to simplify model checking. For instance if we
have proved that �� � ��, then we can infer that
�� � � � �� � �, for any possible �. Thus, com-
positionality provides a hierarchical means to verify
properties.

4.3 Example: Adding Fuzziness to a Rule
Engine

Let us apply the previous model to a simple rule en-
gine, involving classes Rule and FuzzyRule (fig-
ure 1).

We can show that the behavioral program of
FuzzyRule is a safe extension of the one of Rule
(FuzzyRule � Rule). First, as can be seen on fig-
ure 2, the FuzzyRule behavior diagram is identical
to the Rule diagram except that FuzzyCondition
is substituted for Condition and FuzzyAction for
Action. This diagram expresses the dynamic behav-
ior of class Rule with respect to the correct sequence
of method calls: test_conditions must be called
before execute_actions.

Second, since Rule and FuzzyRule are compos-
ite classes, we must check the behavior of their parts.
Thus we consider classes Condition and Fuzzy-

Condition. Their behavorial programs are displayed
in figure 3. In this simple example, it is easy to see
that FuzzyCondition � Condition: FuzzyCon-
dition derives from Condition and FuzzyCondi-
tion trivially simulates Condition (they are associ-
ated with identical LFSMs). The same holds for Ac-
tion and FuzzyAction.



6 Informatica 17 page xxx–yyy S. Moisan, A. Ressouche, J-P. Rigault

(Fuzzy)Condition

[False]/False

local:
test_condition_GO

Rule::test_conditions()

(Fuzzy)Action

/test_conditions_GO

[True]

waiting
/execute_actions_GO

[False]

[end]

[activate_GO]
active

inactive

local:
test_conditions_GO, execute_actions_GO

(Fuzzy)Rule

initial state

terminal state

[test_conditions_GO]

[empty(Plist)]/True

[!empty(Plist)]/
Plist::head()
Plist::pop()
test_condition_GO

[True]

Figure 2: Rule and FuzzyRule behavior descrip-
tion. Rectangular boxes represent refinement and the
keyword local denotes local events. Note that we
had to introduce events to trigger method calls (e.g.,
test_condition_GO).

test_condition_GO

test_condition_GO

[P]/Proba

local:Proba

Condition

FuzzyCondition

[Proba>=C]/True

[Proba<C]/False

[P]/True

[!P]False

test_condition_GO

S1 S2

S0

S(Condition) S(FuzzyCondition)

[P]/True

[!P]/False

Figure 3: Condition and FuzzyCondition behav-
ioral programs and semantics. According to the se-
mantics of refinement and encapsulation, it turns out
that Condition and FuzzyCondition are associ-
ated with identical LFSMs. We recall that � is the
semantic mapping of section 4.2.

Hence, according to the composition property, we
can deduce that FuzzyRule is substituable to Rule

(FuzzyRule � Rule). Compositionality is indeed
the way to avoid state explosion in this kind of models.

In this example, the proof is straightforward. In

more complicated cases though, the proof may be less
obvious, but tools are available to run it automatically.

Relying on this proof, the designer can safely im-
plement the methods; he/she also has to modify the
glue code of the engine, especially the conflict reso-
lution strategy (section 2), e.g., to select the rule with
the highest likelihood. The resulting rule engine will
now accept fuzzy rules5.

5 Discussion

5.1 Components and Frameworks

Both Software Engineering (SE) and Artificial Intel-
ligence (AI) have an interest in component models.
However they have different views on components
and, hence, on reusability. SE tools focus on reusing
code, analysis and design patterns, or software ar-
chitectures. Few, if any, existing component frame-
works go as far as ensuring correct use through a proof
system. On the other hand, several AI approaches
have been proposed to reuse knowledge components
such as abstract problem-solving methods or ontolo-
gies [16, 19, 1]. They often manipulate formal de-
scriptions but they usually remain at the knowledge
level, thus they do not help producing code.

AI research has already proposed generic tools
that cover all steps of KBS design (from cognitive
model to implementation or simulation). We can
cite DSTM [22] or TASK [21] that are dedicated to
KBS design, although with different techniques and
approaches. DSTM aims at prototyping a cognitive
model before implementing it and, thus, it is more
expert-oriented. TASK proposes different languages
for the various steps of KBS design, and in particular
a formal specification language. Such generic tools
are very powerful since they are applicable across do-
mains and activities, but their use may be difficult.
Our work follows a similar line, with a stronger soft-
ware engineering flavor.

5.2 Verification of KBS

In AI, the most common verification adresses the in-
ternal consistency of knowledge bases and, of course,

5Of course the other elements of the KBS generator (such as
knowledge description language and expert interfaces) must be
adapted accordingly: our platform provides the necessary toolk-
its. By assembling all these elements, the designer produces a
new generator. Afterwards, experts can fill in different knowledge
bases, in order to produce new KBS instances.



BLOCKS Informatica 17 page xxx–yyy 7

our platform provides tools for such verification. Usu-
ally, it is on the final KBS that verification is per-
formed. It is too late since, at this time, all the KBS
elements (domain knowledge, engine strategy, or even
implementation artefacts) have been blended together.
Hence, each verification process has to sort out its el-
ements of interest. On the contrary, we promote high
separation of concerns, i.e., we separate the engine
design phase from the KBS one. The corresponding
tools are also separated.

Some systems verify the KBS consistency against
its domain and activity models. This verification gen-
erally relies on theorem proving techniques, using ei-
ther an embedded theorem prover as in TASK or ap-
plying an external tool like KIV [7]. We have not
yet investigated such verifications, but we expect that
model checking could also be applied.

The Software Engineering issue of verifying that a
KBS properly uses its generator features is often as-
sumed and seldom performed. Our generic approach
introduces such a verification. It corresponds to us-
age verification of a complete protocol of use (both
static and dynamic properties). For this purpose, we
use model checking instead of theorem proving, since
it is adapted to our finite state machine model, it can
be made automatic, and it can also automatically pro-
duce code for refined entities (furthermore this code
will be correct, by construction).

5.3 Run-time Verification and Simulation

The designer can use our specification language to de-
scribe classes and methods behavior through a ded-
icated interface. The corresponding programs can
serve both formal and practical aims.

On the formal side, the composition property makes
it possible to apply model checking techniques in an
incremental way. We have experimented with several
tools. EsterelStudio6 is a powerful environment to de-
scribe, simulate and verify reactive systems. How-
ever, its underlying paradigm (the synchrony hypoth-
esis [2]) restricts the type of communication. By con-
trast, Ptolemy7 is an open (meta-)tool for heteroge-
neous modeling and simulation. In particular, the user
can introduce new models of communication. For this
reason, we are going to customize Ptolemy; this will
provide a simulation tool and a front-end for model
checkers.

6from Esterel Technologies Company, http://www.esterel-
technologies.com

7available at: http://ptolemy.eecs.berkeley.edu

On the practical side, as we already mentioned,
our specification language can be used to generate
(correct) code. The generated code can provide ei-
ther skeletal implementations of methods, simulation
code, and run-time trace facilities. Moreover, by em-
bedding the code of behavioral programs in their com-
ponents, we can achieve run-time verification.

6 Conclusion

We have experienced that framework technology can
be adapted to the design of knowledge-based system
engines. Such an approach allows a significant gain
in development time. For instance, two years ago,
we had to design a new planning engine [6]. Once
the analysis completed, the implementation only took
two months (instead of about two years for a simi-
lar former project started from scratch) and more than
90 % of the code was composed of existing compo-
nents. Another experiment (for the classification ac-
tivity) led to almost the same measurement.

However, the protocol to use the framework is com-
plex and the static modeling (à la UML) is not suffi-
cient to prevent the designer from fatal misuse. To this
end, we assist the designer by modeling the behavior
of components, thus permitting automatic verification
during class derivation and composition. The model
has also a pragmatic outcome: it allows the simula-
tion of resulting KBS engines and the generation of
code, of run-time traces, and of run-time assertions.

This behavioral formalism relies on a mathemat-
ical model, a specification language, and a seman-
tic mapping from the language to the model. This
lays the foundation for model checking and simula-
tion tools. The model supports multiple levels of ab-
straction, from highly symbolic (just labels) to merely
operational (pieces of code). Moreover this model is
original in the sense that it covers both static and dy-
namic properties of components. To use our formal-
ism, the designer has only to draw simple graphs with
a (yet to be) provided graphic interface, oblivious of
the underlying models and their complexity.

The same idea could be applied to other component
frameworks, outside AI. Our approach gathers tech-
niques from several Computer Science domains sel-
dom intersecting each other: real-time and reactive
systems, object-oriented paradigm, and knowledge-
based systems. This work can be considered as a suc-
cessful example of multidisciplinary integration.



8 Informatica 17 page xxx–yyy S. Moisan, A. Ressouche, J-P. Rigault

References

[1] V.R. Benjamins, B. Wielinga, J. Wielmaker, and
D. Fensel. Brokering Problem Solving Knowl-
edge at the Internet. In EKAW’99, European
Knowledge Acquisition Workshop, volume 1621
of LNAI. Springer-Verlag, 1999.

[2] G. Berry. The Foundations of Esterel. In
G. Plotkin, C. Stearling, and M. Tofte, edi-
tors, Proof, Language, and Interaction, Essays
in Honor of Robin Milner. MIT Press, 2000.

[3] J. Bosch, P. Molin, M. Mattsson, P. Bengts-
son, and M. E. Fayad. Object-Oriented Frame-
works: Problems & Experiences. In R. Johnson
M. Fayad, D. Schmidt, editor, Building Applica-
tion Frameworks: Object Oriented Foundations
of Framework Design. John Wiley, 1999.

[4] J. Cavarroc, S. Moisan, and J-P. Rigault. Simpli-
fying an Extensible Class Library Interface with
OpenC++. In OOPSLA’98, Worshop on Reflec-
tive Programming in C++ and Java, 1998.

[5] S. Chiba. A Metaobject Protocol for C++. In
OOPSLA’95, volume 30 of SIGPLAN Notices,
pages 285–299. ACM Press, 1995.

[6] M. Crubézy. Pilotage de programmes pour le
traitement d’images médicales. PhD thesis, Uni-
versité de Nice Sophia Antipolis, 1999.

[7] D. Fensel, A. Schönegge, R. Groenboom, and
B. Wielinga. Specification and Verification
of Knowledge-Based Systems. In Workshop
on Validation, Verification and Refinement of
Knowledge-Based Systems, ECAI, 1996.

[8] R. Forsyth. Expert Systems : Principles and
Case Studies. Chapman and Hall, 2nd edition,
1989.

[9] E. Gamma, R. Helm, R. Johson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[10] R. E. Johnson. Frameworks = (Components +
Patterns). CACM, 10(40):39–42, 1997.

[11] E. M. Clarke Jr., O.Grumberg, and D.Peled.
Model Checking. MIT Press, 2000.

[12] G. Kiczales, J. de Rivière, and D. Bobrow. The
Art of the Meta-Object Protocol. MIT Press,
1991.

[13] G. Kiczales, J. Lamping, A. Menhdhekar,
C. Maeda, C. Lopes, J-M. Loingtier, and J. Ir-
win. Aspect-oriented programming. In Mehmet
Akşit and Satoshi Matsuoka, editors, ECOOP
’97, volume 1241. Springer-Verlag, 1997.

[14] B. Liskov and J. L. Wing. A New Definition
of the Subtype Relation. In ECOOP’93, volume
707 of LNCS, pages 119–141. Springer-Verlag,
1993.

[15] F. Maraninchi. Operational and Compositional
Semantics of Synchronous Automaton Compo-
sition. LNCS: Concur, 630, 1992.

[16] M. A. Musen, S. W. Tu, H. Eriksson, J. H. Gen-
nari, and A. R. Puerta. PROTEGE-II: An Envi-
ronment for Reusable Problem-Solving Methods
and Domain Ontologies. In IJCAI, Chambéry,
August 1993.

[17] M. Richer. An evaluation of expert system de-
velopment tools. Expert Systems, 3(3):166–182,
July 1986.

[18] J. Rumbaugh, I. Jacobson, and G. Booch. The
Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

[19] G. Schreiber, B. Wielinga, R. de Hoog,
H. Akkermans, and W. v. de Velde. Com-
monKADS: A Comprehensive Methodology for
KBS Development. IEEE Expert, 9(6):28–37,
1994.

[20] C. Szyperski. Component Software - Beyond
Object-Oriented Programming. Addison Wes-
ley, 1998.

[21] X. Talon and C. Pierret-Golbreich. TASK: from
the specification to the implementation. In 8th
IEEE Int. Conf. on Tools with Artificial Intel-
ligence, pages 80–88. IEEE Computer Society
Press, 1996.

[22] F. Trichet and P. Tchounikine. DSTM: a Frame-
work to Operationalize and Refine a Problem-
Solving Method Modeled in Terms of Tasks and
Methods. Int. J. of Expert Systems With Applica-
tions (ESWA), 16(2):105–120, February 1999.


