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Abstract—Climate change is an issue of growing economic,
social, and political concern. Continued rise in the average
temperatures of the Earth could lead to drastic climate change or
an increased frequency of extreme events, which would negatively
affect agriculture, population, and global health. One way of
studying the dynamics of the Earth’s changing climate is by at-
tempting to identify regions that exhibit similar climatic behavior
in terms of long-term variability. Climate networks have emerged
as a strong analytics framework for both descriptive analysis and
predictive modeling of the emergent phenomena. Previously, the
networks were constructed using only one measure of similarity,
namely the (linear) Pearson cross correlation, and were then
clustered using a community detection algorithm. However,
nonlinear dependencies are known to exist in climate, which begs
the question whether more complex correlation measures are
able to capture any such relationships. In this paper, we present
a systematic study of different univariate measures of similarity
and compare how each affects both the network structure as well
as the predictive power of the clusters.

I. INTRODUCTION

Identifying and analyzing patterns in global climate is an
important task, lending scientists a deeper understanding of
the complex interactions between many variables that lead to
observed climate phenomena. Complex networks have already
been established as an effective means of representation of the
climate [1]–[4], both for descriptive and predictive tasks [5].
These networks are constructed from gridded climate data,
wherein each vertex represents a grid point (physical location
in space) and weighted edges represent the climatic similarity
between them (correlation in climate variability). By pruning
and clustering these networks, climate scientists are able to
uncover structure in the climate system and determine how
different regions relate to each other.

A. Related Work

A number of publications related to this work exist in the
literature, both in terms of clustering climate data in general
as well as the use of complex networks to represent the
climate system. For example, there are several studies on

clustering climate data including applications of standard k-
means clustering [6], [7] and a weighted k-means kernel with
spatial constraints [8], to identify climate zones; a shared
nearest neighbor method [9] to discover climate indices [10];
and a correlation-based approach of to identify multivariate
clusters from data. The concept of climate networks was
introduced in [3] and we were the first to apply community
detection for the purpose of identifying climate regions [2],
[5]. One other work considered the possibility of nonlinear
correlation measures [1] in a limited context and concluded
that the difference between linear and nonlinear measures
was not significant. Still, a comprehensive and systematic
evaluation different measures of similarity and how they affect
the network structure is lacking from the literature.

B. Contributions

In this paper, we consider six different measures of simi-
larity from four different genres: distance-based, linear, rank-
based, and nonlinear measures. We create networks for three
different edge densities to enable a fair comparison between
the resulting networks. We calculate network statistics, per-
form prediction experiments (using the methodology described
in [5]), and we compare the results to evaluate effects that arise
from choosing different measures of similarity.

The remainder of this paper is organized as follows. In
Section II, we introduce the dataset used for these experi-
ments. In Section III, we discuss the different measures of
similarity included in this study. Sections IV and V present
the experimental setup and results, respectively. Section VI
discusses the software we developed to easily create networks
in this framework, which is available available for download
with sample datasets on our website1. We conclude by pointing
to some open challenges for future resarch in multivariate
network construction and place our work in a broader context
within and beyond climate science.

1http://www.nd.edu/ dial/software/climateNet.zip
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II. DATA

The Earth science data for our analysis stems from the
NCEP/NCAR Reanalysis project [11], which is publicly ac-
cessible for download at [12]. This dataset is constructed
by fusing and assimilating measurements from heterogeneous
remote and in-situ sensors. Variable selection is an important
issue in this context, one we have not yet fully explored.
Previous research has relied on domain expertise for an
appropriate selection [13]–[15]; however, we did not want to
limit ourselves with an a priori selection and therefore include
a wide range of variables in our study.

Specifically, for the purpose of these experiments we se-
lected seven variables with the guidance of a domain expert;
temperature (SST), sea level pressure (SLP), horizontal(HWS)
and vertical (VWS) wind speed, precipitable water (PW),
relative humidity (RH), and geopotential height (GH). These
variables were chosen both for variety and because they
are significant variables when it comes to defining climate
regimes. The dataset is available on an angular evenly spaced
5 ◦ x 5 ◦ latitude-longitude grid at monthly intervals for a
period of 60 years (1948-2007). Data is provided as a separate
720-element time series for each grid point.

Climate data presents some unique challenges because
seasonality creates natural recurrence patterns resulting in
temporal autocorrelation (Figure 1(a)). We combat this by pre-
processing the raw data into anomaly series, which captures
only the long-term variability, or deviation from usual behav-
ior. Following the precedent set by related work [3], [9], we
de-seasonalize the data by monthly z-score transformation and
de-trending. At each grid point, we calculate for each month
m = {1, ..., 12} (i.e., separately for all Januaries, Februaries,
etc.) the mean

µm =
1
Y

2007∑
y=1948

am,y (1)

and standard deviation

σm =

√√√√ 1
Y − 1

2007∑
y=1948

(am,y − µm)2 (2)

where y is the year, Y the total number of years in the dataset,
and am,y the value of series A at month = m, year = y. Each
data point is then transformed (a∗) by subtracting the mean
and dividing by the standard deviation of the corresponding
month,

a∗m,y =
am,y − µm

σm
(3)

The result of this process is illustrated in Fig. 1(b), which
shows that de-seasonalized values have significantly lower
autocorrelation than the raw data. In addition, we de-trend the
data by fitting a linear regression model and retaining only the
residuals. All data used for experiments or discussed hereafter
using this method.

(a) Raw Data

(b) De-Seasonalized

Fig. 1. The de-seasonalized data (bottom) exhibits significantly lower
autocorrelation due to seasonality than the raw data (top).

III. MEASURES OF SIMILARITY

We used six different measures of similarity in our ex-
periments. These popular measures were selected because
they offer a wide spectrum of ways to think about similarity
between two time series, from linear interactions to monotonic
curve fitting to general information finding methods.

A. Euclidean Distance

The Euclidean distance between two points is the normal
distance, as would be measured by a ruler. In our networks
we compute the distance between two time series by summing
over the whole series the pair-wise distances between points
taken at the same time step. We do not take the square root
in this variation, and instead calculate it as

t∑
i=1

(ai − bi)2 (4)

where i is a single time step and t is the length of the series.

B. Manhattan Distance

Manhattan distance is the sum of the lengths of the projec-
tions of the line segment between two points on the coordinate
axes. It is also referred to as taxicab distance because it
represents the minimum number of city blocks a taxi would
have to travel between two points. Like the Euclidean distance,



we calculate the sum of Manhattan distance between time
series as

t∑
i=1

|ai − bi| (5)

C. Pearson Correlation

The Pearson correlation is a measure of the linear correla-
tion between two variables. It is one of the most commonly
used measures in statistics and serves as our baseline, because
Pearson correlation and variants on it have been used in most
prior works [3], [5], [16]. It is computed as∑t

i=1(ai − ā)(bi − b̄)√∑t
i=1(ai − ā)

∑t
i=1(bi − b̄)

(6)

where x̄ denotes the mean over the entire series x. Pearson
correlation gives a value between -1 and +1, but since inverse
relationships are of equal relevance in this particular context
we use the absolute value.

D. Mutual Information

Mutual Information measures the dependence between two
variables, or how how much knowing the quantity of one
variable tells you about the quantity of another variable. It is
calculated from the joint probability density functions of both
variables as well as the marginal probability density functions
of each individual variable,∫ ∫

p(a, b)log
(

p(a, b)
p(a)p(b)

)
dxdy (7)

This measure is of potential significance for our experiments
because it captures linear as well as nonlinear interactions.
Mutual information networks were calculated using a Matlab
package; for implementation details see [17].

E. Spearman’s Rho

Spearman’s Rho is a non-parametric, rank-based measure
of dependence between two variables. It captures both linear
and nonlinear interactions by seeing how well the relationship
between two variables can be fit using a monotonic function,
which is either strictly increasing or strictly decreasing. Like
Pearson correlation, Spearman’s Rho ranges from -1 and +1,
and once again we take the absolute value. It is called a rank-
based measure because each variable is ranked individually
and then the differences between ranks for a given data point
are calculated. A perfect correlation in Spearman’s Rho is
when the highest value of variable x is found at the same
point as the highest or lowest value of variable y, the second
highest x at the second highest/lowest y, and so on. To simplify
our calculations, we break ties arbitrarily. We then use the
following equation to calculate Spearman’s Rho over an entire
time series as

1−
∑t

i=1(a
i − bi)2

n(n2 − 1)
(8)

where xi is the rank of variable x.

F. Kendall’s Tau

Like Spearman’s Rho, Kendall’s Tau is also calculated by
comparing the relative ranks of the variables in two time series.
Instead of checking correlation between ranks, however, it
checks whether pairs are concordant or discordant. For two
pairs p and q and sets of ranks x and y, if xp is greater than
xq and yp is greater than yq, or xp is less than xq and yp

is less than yq, then the pair is concordant (in agreement).
Otherwise, there is disagreement and they are considered a
discordant pair. We count the total number of concordant and
discordant pairs for all possible pairs of points in the series,
then calculate Kendall’s Tau as

concordantpairs− discordantpairs

1/2(n− 1)
(9)

Like Pearson correlation and Spearman’s Rho, Kendall’s Tau
also ranges from -1 to +1 so we take absolute value as we are
interested in both negative and positive correlation.

IV. EXPERIMENTAL SETUP

A. Network Construction

We built networks for each of our seven variables combined
with each of our six edge weighting methods. For the present
purpose, we are only interested in grid points over the oceans;
this decision is justified in [5]. Therefore, we first we apply
a land-sea mask to the data to select the relevant data points.
Then, we construct a fully connected network, meaning that
we compute the edge weight between each pair of vertices
in the network. Finally, we prune the networks to remove
edges with low weight, which represent relatively weaker
connections. Other authors have elected to use a fixed pruning
threshold [3]; in prior work we used the statistical confidence
in the correlation as a more rigorous method for pruning [5].
In this paper, we prune all networks to a fixed number
of edges to ensure the fairest possible comparison between
them, using 50,000, 100,000, and 250,000 edges (these values
were determined from the significance-based pruning in [5].
Specifically, our pruning algorithm sorts the edges and then
retains only the top m edges by weight, plus any ties. Thus,
our experiments encompass 126 different networks (7 variabes
× 6 measures × 3 pruning levels). The steps of this network
construction process are visually summarized in Figure 2.

B. Prediction Experiments

The first step after we prune the networks is to detect
clusters. We do this using the Walktrap community detec-
tion algorithm with default parameters, selected because it
is computationally efficient and able to incorporate edge
weights [18]. The algorithm also determines the number of
clusters based on an external optimization criterion.

We are interested in testing the predictive power of the
clusters [5]. We selected nine regions from a variety of
different climate aspects, and the model predicts two variables
for each of these (our dependent variables): air temperature
and precipitation. We average the values over all grid points



Fig. 2. Step-by-step overview of the network construction process.

in each of these regions into one time series, and these then
become our dependent variables (Y).

We create our independent variables (X) from the clusters
in a similar fashion. We average the anomaly values from
every vertex in the cluster into one single time series for
every cluster. Each cluster becomes a variable, and then we
build a linear regression, attempting to predict the precipitation
and temperature from the time series for the clusters. We
use the first 50 years as a training set and the last 10 years
as our testing set. This is representative of the predictive
tasks we would want clusters to be able to do – relate the
climate variability over oceans to land climate, like climate
indices [10]. We use root mean square error (RMSE) to
evaluate the regression experiments.

Fig. 3. Target Regions.

TABLE I
NUMBER OF VERTICES - GH NETWORK

Similarity Measure 50k Edges 100k Edges 250k Edges
Euclidean Distance 1,699 1,701 1,701
Manhattan Distance 1,699 1,701 1,701
Mutual Information 1,701 1,701 1,701
Pearson Correlation 1,701 1,701 1,701
Spearman’s Rho 1,701 1,701 1,701
Kendall’s Tau 1,701 1,701 1,701

After we run these experiments, we create new predictors
from the best of the results. For each measure of similarity and
climate variable, we select the level of pruning that performed
the best. Then, for each measure of similarity, we create a
new predictors wherein each variable’s clusters from their best
level of pruning is a variable. We run these new predictors on
the same 18 variables from the first experiments. These create
multivariate predictors from the univariate networks that were
built.

V. RESULTS

A. Network Statistics

The network statistics we were interested in included
number of vertices, number of edges, clustering coefficient,
characteristic path length, and diameter. Table 1 shows the
number of vertices in a typical network. There are 1701 sea
data points in our data set, so every vertex is represented in
almost every network. Networks that do not have 1701 vertices
have vertices that had 0 edges going to or from them post
pruning.

Table 2 shows the number of edges in a typical network.
Although we pruned the networks to 50,000, 100,000, and
250,000 edges, there are not exactly those number of edges in
the networks. This is because we included ties in the pruned
networks.

TABLE II
NUMBER OF EDGES -PW NETWORK

Similarity Measure 50k Edges 100k Edges 250k Edges
Euclidean Distance 50,000 100,001 250,024
Manhattan Distance 50,002 100,002 250,003
Mutual Information 50,001 100,000 250,029
Pearson Correlation 50,001 100,001 250,000
Spearman’s Rho 50,000 100,001 250,005
Kendall’s Tau 50,001 100,007 250,019



TABLE III
CLUSTERING COEFFICIENT - GH NETWORK

Similarity Measure 50k Edges 100k Edges 250k Edges
Euclidean Distance 0.547 0.672 0.729
Manhattan Distance 0.549 0.672 0.727
Mutual Information 0.613 0.679 0.655
Pearson Correlation 0.605 0.680 0.673
Spearman’s Rho 0.603 0.679 0.671
Kendall’s Tau 0.604 0.679 0.671

TABLE IV
CLUSTERING COEFFICIENT - PW NETWORK

Similarity Measure 50k Edges 100k Edges 250k Edges
Euclidean Distance 0.615 0.593 0.558
Manhattan Distance 0.611 0.580 0.546
Mutual Information 0.561 0.386 0.316
Pearson Correlation 0.585 0.484 0.410
Spearman’s Rho 0.579 0.477 0.403
Kendall’s Tau 0.579 0.478 0.403

Tables 3 and 4 show two different trends noticed in the clus-
tering coefficients of our networks. The clustering coefficient
is a measure of the degree to which vertices tend to cluster
together. It measures how close the neighbors of a vertex
are to forming a fully-connected clique. For our networks,
we took the average clustering coefficient of all vertices. In
table 3, the clustering coefficient rises as the number of edges
rises. This makes sense, as more edges should lead to greater
clustering. In table 4, however, the clustering coefficient goes
down as the number of edges rises. In previous work, edges
were not pruned by a constant number of edges but rather by
a significance test based method. In the network represented
by table 3, this method lead to 249,322 significant edges.
In the network represented by table 4, this lead to 50,835.
The highest clustering coefficients in table 3 were found for
250,000 edges while the highest clustering coefficients in table
4 were found for 50,000 edges. We think this is because
additional non significant edges are likely to just cluster
randomly, which leads to a decrease in local clustering. It is
also possible the different variables interact with local and far
away vertices differently, meaning that there are possibly more
local relationships for geopotential height than precipitable
water.

Characteristic path length is the average distance, in number
of edges, between two randomly selected vertices in the effort.
Table 5 shows a typical network’s characteristic path values.
As would be expected, the characteristic path length goes
down as more edges are added. One variable, shown in table 6,
differed from the others in characteristic path length. While the
trend of decreasing path length with increasing edges remained
true, the paths were much longer. This is shown in table 6.
The other variables had values much closer to table 5.

Diameter is the number of vertices in the shortest path
between the two vertices that are furthest apart in a network.
As would be expected, this decreases given an increase in the
number of edges. This happens for every variable, and the GH
network has higher than expected diameter, given its higher
than expected characteristic path length.

TABLE V
CHARACTERISTIC PATH - OMEGA NETWORK

Similarity Measure 50k Edges 100k Edges 250k Edges
Euclidean Distance 2.320 1.971 1.827
Manhattan Distance 2.338 1.984 1.827
Mutual Information 2.549 2.129 1.829
Pearson Correlation 2.527 2.125 1.830
Spearman’s Rho 2.508 2.113 1.829
Kendall’s Tau 2.508 2.112 1.829

TABLE VI
CHARACTERISTIC PATH - GH NETWORK

Similarity Measure 50k Edges 100k Edges 250k Edges
Euclidean Distance 16.425 7.978 2.614
Manhattan Distance 17.054 7.98 2.601
Mutual Information 10.062 5.772 2.182
Pearson Correlation 10.508 6.414 2.430
Spearman’s Rho 10.406 6.284 2.418
Kendall’s Tau 10.397 6.235 2.416

B. Prediction Results

Table VII has the results of the first step of our predictive
experiments. It displays the most effective pruning level for
each variable and measure of similarity. The results are inter-
esting, as it appears that regardless of how many significant
edges networks had in our previous work, the best performing
clusters are generally those clustered at 50,000 edges. We
think this is because predictors that have more edges generally
have less clusters in our experiments. This is because, at least
compared to the significance-based pruning, we are forcing
there to be extra edges in the networks that have more edges.
This causes there to be more random edges, resulting in less
networks that contain less predictive power. In addition to
lower quality clusters, the larger edge networks also suffer
from more noise in their linear regressions - there are less
independent variables to build the model on.

We took these results and created new predictors, one for
each method of edge weighting, and ran the new models on
the same 18 variables as before. The results are in Table VIII.
These results suggest that the difference between different
methods of edge weighting are minimal. The biggest indicator
of the region of the root mean square error is the prediction
experiment, rather than the method of edge weighting. In
addition to the experimental results, we also include the
average RMSE for all of the precipitation and all of the temper-
ature experiments. Pearson correlation performed the best in
the precipitation experiments and Spearman’s Rho performed

TABLE VII
MOST EFFECTIVE PRUNING

Variable Euclid. Man. Mut. Info Rho Tau Pearson
GH 50k 50k 50k 50k 50k 50k
VWS 100k 100k 250k 250k 250k 250k
PW 50k 50k 50k 50k 50k 50k
RH 50k 50k 100k 250k 50k 50k
SKT 50k 50k 50k 50k 50k 50k
SLP 50k 50k 100k 50k 50k 50k
HWS 50k 50k 50k 50k 50k 50k



TABLE VIII
PREDICTIVE EXPERIMENT RESULTS

Variable Euclid. Manhat. Mutual Info Rho Tau Pearson
air-ausindpap 0.65 0.59 0.59 0.59 0.58 0.57
air-brazil 0.51 0.46 0.51 0.49 0.50 0.49
air-india 0.73 0.65 0.59 0.59 0.61 0.64
air-peru 0.61 0.59 0.54 0.48 0.54 0.54
air-sahel 0.70 0.66 0.72 0.64 0.69 0.70
air-southafr 0.82 0.84 0.76 0.72 0.78 0.71
air-useast 0.66 0.88 0.81 0.72 0.72 0.68
air-uswest 0.64 0.64 0.72 0.59 0.61 0.63
air-weurope 0.62 0.63 0.52 0.49 0.54 0.57
prate-ausindpap 0.64 0.62 0.67 0.67 0.64 0.66
prate-brazil 0.44 0.44 0.48 0.49 0.48 0.46
prate-india 0.71 0.63 0.68 0.69 0.69 0.65
prate-peru 0.90 0.91 0.93 0.85 0.87 0.84
prate-sahel 0.53 0.52 0.52 0.58 0.59 0.54
prate-southafr 0.72 0.68 0.72 0.71 0.69 0.71
prate-useast 0.72 0.64 0.73 0.63 0.61 0.69
prate-uswest 0.62 0.62 0.62 0.56 0.57 0.53
prate-weurope 0.47 0.48 0.38 0.42 0.41 0.41
avg prate 0.64 0.62 0.64 0.62 0.62 0.61
avg air 0.66 0.66 0.64 0.59 0.62 0.61

the best in the air temperature experiments. The increase in
accuracy from using these versus other measures is minimal,
as the second place measure in all experiments but especially
in the averages was usually less than a tenth worse. There
are no real clear trends in which measure prevails - looking
purely at win counts, Euclidean won once, Manhattan won six
times, Mutual Information won three times, Spearman’s Rho
won four times, Kendall’s Tau won one time, and Pearson
correlation won four times. Every measure was the best in
at least one experiment, and there was no dominant measure
across the board at a statistical significance. In the averages,
the differences were even smaller, as bad performances in one
category were cancelled out by good performances in another.

VI. SOFTWARE

We have developed software that allows users to create
their own networks using our method of construction. We
are releasing it open source on our website along with this
paper. The software is a command line utility that can be
configured to run on local systems or SGE scheduler front
ends. It is possible to make any of the networks that our
experiments have produced or to take other datasets from
the NCEP/NCAR Reanalysis project and create other net-
works. The software currently allows users to create univariate
or multivariate networks from formatted data files and to
prune network files that have already been created. Univariate
networks can be made using Euclidean distance, Manhattan
distance, Pearson correlation, Spearman’s Rho, Kendall’s Tau,
and, if the user has Matlab installed, Mutual Information.
Multivariate networks can be constructed with a number of
different experimental methods, described in Section 7. The
software is in constant development and we are trying to
eventually include the whole framework, from preprocessing
data to clustering to predictive experiments, in the software.

VII. MULTIVARIATE EDGE WEIGHTING EXTENSION

As alluded to in our software section, we experimented with
some multivariate edge weighting techniques in addition to
univariate ones. Our multivariate methods mainly come from
two separate categories: pure multivariate measures that took
all variables into account and produced an edge weight be-
tween locations, and multivariate methods that took completed
univariate methods and combined their weights into an edge
weight between locations.

Pure multivariate methods that we experimented with in-
clude Euclidean distance, Manhattan distance, and Cross
Correlation function. Euclidean and Manhattan distances are
simply the multivariate corollaries of the univariate methods
we used in our univariate experiments. The Cross Correlation
function is a way of extending the Pearson correlation to
multiple dimensions. It computes univariate Pearson corre-
lation between each possible set of variables, then finds the
Euclidean distance between the points where each possible set
of variables is one dimension.

Multivariate methods, where we combined univariate net-
works, included simple addition and Borda voting. Simple ad-
dition simply combines the edge weights from each provided
network into one result network by adding them. Borda voting
is a more interesting method, as it really penalizes being well
correlated in one variable but not correlated at all in another.
Borda voting is similar to the method used in college football
polls, in which each voter ranks their top 25. The first ranked
team gets 25 points, the second ranked 24, and so on all the
way to the 25th place team, which gets one point. In our
implementation, each network is a voter, and the edge’s rank
in that network garners them (size of network - rank) points
in the Borda method.

It is unfortunately very difficult to interpret our results from
these experiments, particularly in the domain. What does it
mean if two edges have a strong correlation in a multivariate
network? It could mean that they are highly related in temper-



ature, but not at all in pressure, or vice versa. It could mean
that they are slightly related in all variables. While this work
is beyond the scope of this paper, these questions motivate
future work, especially since we have features in software to
build multivariate networks.

VIII. CONCLUSION

We have previously shown that complex networks are an
effective descriptive and predictive framework for climate
variables. This paper sought to analyze the impact of different
edge-weighting mechanisms. The question that we studied in
this paper was: can the predictability of the network clusters
improve if the network edges are weighted differently? While
we found that network statistics and structure were noticeably
affected by different methods of edge weighting, we did not
find a significant change in the predictive power of the network
clusters. This is a compelling observation, as it indicates that
the network structure carries the power, and less comes from
different weighting mechanisms. However, these observations
are largely on univariate networks. There is still a lot of room
for future work in this field, most notably in the creation and
interpretation of multivariate networks from disparate climate
variables.
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