
&p.1:Abstract It has been shown that it is possible to read,
from the firing rates of just a small population of neu-
rons, the code that is used in the macaque temporal lobe
visual cortex to distinguish between different faces being
looked at. To analyse the information provided by popu-
lations of single neurons in the primate temporal cortical
visual areas, the responses of a population of 14 neurons
to 20 visual stimuli were analysed in a macaque per-
forming a visual fixation task. The population of neurons
analysed responded primarily to faces, and the stimuli
utilised were all human and monkey faces. Each neuron
had its own response profile to the different members of
the stimulus set. The mean response of each neuron to
each stimulus in the set was calculated from a fraction of
the ten trials of data available for every stimulus. From
the remaining data, it was possible to calculate, for any
population response vector, the relative likelihoods that it
had been elicited by each of the stimuli in the set. By
comparison with the stimuli actually shown, the mean
percentage correct identification was computed and also
the mean information about the stimuli, in bits, that the
population of neurons carried on a single trial. When the
decoding algorithm used for this calculation approximat-
ed an optimal, Bayesian estimate of the relative likeli-
hoods, the percentage correct increased from 14% cor-
rect (chance was 5% correct) with one neuron to 67%
with 14 neurons. The information conveyed by the popu-
lation of neurons increased approximately linearly from
0.33 bits with one neuron to 2.77 bits with 14 neurons.
This leads to the important conclusion that the number of
stimuli that can be encoded by a population of neurons
in this part of the visual system increases approximately

exponentially as the number of cells in the sample in-
creases (in that the log of the number of stimuli increases
almost linearly). This is in contrast to a local encoding
scheme (of “grandmother” cells), in which the number of
stimuli encoded increases linearly with the number of
cells in the sample. Thus one of the potentially important
properties of distributed representations, an exponential
increase in the number of stimuli that can be represented,
has been demonstrated in the brain with this population
of neurons. When the algorithm used for estimating
stimulus likelihood was as simple as could be easily im-
plemented by neurons receiving the population’s output
(based on just the dot product between the population re-
sponse vector and each mean response vector), it was
still found that the 14-neuron population produced 66%
correct guesses and conveyed 2.30 bits of information, or
83% of the information that could be extracted with the
nearly optimal procedure. It was also shown that, al-
though there was some redundancy in the representation
(with each neuron contributing to the information carried
by the whole population 60% of the information it car-
ried alone, rather than 100%), this is due to the fact that
the number of stimuli in the set was limited (it was 20).
The data are consistent with minimal redundancy for suf-
ficiently large and diverse sets of stimuli. The implica-
tion for brain connectivity of the distributed encoding
scheme, which was demonstrated here in the case of fac-
es, is that a neuron can receive a great deal of informa-
tion about what is encoded by a large population of neu-
rons if it is able to receive its inputs from a random sub-
set of these neurons, even of limited numbers (e.g. hun-
dreds).&kwd:&bdy:

Introduction

The visual pathways project by a number of cortico-cor-
tical stages from the primary visual cortex until they
reach the temporal lobe visual cortical areas (Seltzer and
Pandya 1978; Maunsell and Newsome 1987; Baizer et al.
1991; Rolls 1991, 1992a). Neurons with different types
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of sensitivity to visual stimuli tend to be found in differ-
ent parts of these temporal cortical areas (Baylis et al.
1987). In some areas neurons respond to stimulus prop-
erties such as shape, orientation, texture and colour
(Baylis et al. 1987; Tanaka et al. 1991), and in other ar-
eas, especially areas in the cortex in the superior tempo-
ral sulcus, up to 20% of the neurons with visual respons-
es have selectivity for faces (Desimone and Gross 1979;
Bruce et al. 1981; Rolls 1981a, b, 1984, 1992a, b; Perrett
et al. 1982; Desimone et al. 1984; Gross et al. 1985;
Desimone 1991). Some of the temporal cortical areas
provide a representation of objects and faces that is rela-
tively invariant with respect to retinal position, size, rota-
tion and even view (Rolls 1994, 1995), and such invari-
ant representations form appropriate inputs to associative
neuronal networks in structures to which the temporal
cortical areas project such as the hippocampus and
amygdala (see, e.g. Rolls 1992a–c; Treves and Rolls
1994). Consistent with this, lesions of the inferior tem-
poral visual cortex impair the ability of monkeys to re-
spond to objects irrespective of changes in size, lighting
and viewing angle (Weiskrantz and Saunders 1984).

A fundamental issue then arises of how the informa-
tion about objects and faces is represented by the activity
of temporal cortical neurons. Important questions are:
how selective and “information-bearing” (Suga 1989) the
neurons are for different classes of stimulus such as face
compared with non-face; how selective or information-
bearing the neurons are for individual items within a
class; whether the neurons use “local” or “grandmother”
cell encoding, with strong or even great selectivity of a
single neuron for a particular object in the environment
(Barlow 1972), or fully distributed representations in
which all the neurons participate (Hinton et al. 1986;
Churchland and Sejnowski 1992), or sparse representa-
tions in which the distributed encoding is not fully dis-
tributed (Rolls and Treves 1990; Treves and Rolls 1991).
In a series of previous investigations, we have shown that
single neurons in the temporal lobe visual cortex tuned
to faces do not respond to only one face in a set of faces,
but instead typically respond to several members of the
set, with each cell having its own characteristic firing
rate response profile to the different members of the set
(see Rolls 1984, 1992a; Baylis et al. 1985; Rolls and To-
vee 1995). The representation provided by these faces
may be described as sparsely distributed, and not as local
(Rolls and Tovee 1995).

Distributed representations, in which many of the neu-
rons that participate in the representation of each stimu-
lus or event (see, e.g. Hinton et al. 1986) have a number
of advantages over local or grandmother cell encoding,
for which there is strong or even great selectivity of the
neuron for a particular environmental stimulus (Barlow
1972). The advantages of distributed representations in-
clude generalisation as the nature of the input changes
and graceful degradation or fault tolerance if the network
in which the representation is present is incomplete or
damaged. If the distributed representation is not fully dis-
tributed (with, e.g. half the neurons active for any one

stimulus), but is a sparse distributed representation, then
this allows large numbers of representations to be stored
and retrieved in associative neural networks (Rolls and
Treves 1990; Treves and Rolls 1991). Another potential
advantage of distributed representations is that large
numbers of different stimuli or events can be encoded.
Consider the number of stimuli that can be encoded by a
population of C neurons without noise. If local encoding
is used and the representation is binary (e.g. the neuron is
either active or not), then C different representations can
be encoded (one different neuron is “on” for each stimu-
lus). If (fully) distributed encoding is used, then 2C dif-
ferent representations can be encoded (2C is the number
of different combinations of C binary variables). The
fundamental question addressed in this paper is the ex-
tent to which the brain can utilise the potential advantage
of distributed representations to encode a very large (ex-
ponentially large) number of different stimuli in a popu-
lation of neurons. The potential advantage will only be
usefully realised to the extent that: each member of the
population of neurons has different responses to each
stimulus in a set of stimuli (with, e.g. different combina-
tions of neurons firing to each stimulus); and the re-
sponses of a neuron on a given trial are not too noisy, that
is, the standard deviation of the responses of a neuron to
the same stimulus on different trials must not be too
great, and the responses to different stimuli must be reli-
ably different to each other. Evidence on this issue can
thus only be obtained by examining the response proper-
ties of real neurons in the brain, and this is what is de-
scribed in this paper. We analysed the responses of face-
selective neurons to 20 different faces, obtaining at least
ten trials of data to each stimulus (presented in random
order). We were able to repeat this experiment for 14 dif-
ferent face-selective neurons and then analyse the infor-
mation about which of the 20 stimuli had been presented.

The crucial feature of distributed representations ex-
amined here is that they have the potential, if different
representations are provided by different cells, for a very
large representational capacity over a cell population.
This large-capacity situation is attained when the infor-
mation coded by a population of cells increases linearly,
or close to linearly, with the size of the population, in
which case the number of stimuli coded grows exponen-
tially with population size. This is in contrast to local
representations, in which each stimulus is allocated one
or a set of neurons to represent it; and thus the number of
stimuli coded grows only linearly with the size of the
population or, in terms of information, the information
conveyed by the response of a population grows, on av-
erage, only logarithmically with population size. We em-
phasize that the potential advantage of distributed repre-
sentations is realised only if different neurons code for
different things: if the representations provided by sever-
al cells in a population were strongly correlated (i.e.
largely the same), there would be no strong increase in
representational capacity with population size, no matter
how distributed the representations. Large populations
would just provide more redundancy.
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It is therefore very important to extend previous quan-
titative analyses based on the responses of single cells
(or pairs of cells; Gawne and Richmond 1993) and to ad-
dress directly the question of how much information is
conveyed by the responses of populations of cells. This
is the goal of the present analysis, which considers, at
the population level, the responses of 14 face-selective
temporal cortical cells that had been previously analysed
at the single-cell level (Rolls et al. 1995). In carrying out
the information-theoretic analysis, great care was devot-
ed to extracting information measures, to monitoring the
values obtained as they vary as a function of cell popula-
tion size, and to taking ceiling effects into proper ac-
count. It is to these three factors that we ascribe the dif-
ference between our results and those of a previous study
in inferior temporal cortex with similar goals (Gochin et
al. 1994). We note from the outset two potential limita-
tions of the data used here, to be discussed later. First,
the cells were not recorded simultaneously, which pre-
vented our analysis from detecting potential effects stem-
ming from correlations between neurons in their trial-to-
trial variability (see Gawne and Richmond 1993; Gochin
et al. 1994). Second, the number of trials per stimulus
available for each cell was low (ten), which again made
it vital to use novel techniques, developed in order to al-
low correction for limited sampling, when extracting ac-
curate information measures (see Optican et al. 1991;
Treves and Panzeri 1995; Panzeri and Treves 1996).

This investigation is one of a series (Rolls 1992a,
1994, 1995; Rolls et al. 1994; Hornak et al. 1996) de-
signed to investigate the normal functions of the tempo-
ral lobe visual cortical areas and how damage to these
brain regions may underlie the perceptual and related
deficits found in patients with disruption of function of
these and connected regions. The neurons described
here with responses that occur mainly in faces, but that
within that class convey information about which face
has been seen (see Tovee et al. 1993, 1994; Rolls and
Tovee 1995; Tovee and Rolls 1995), form a useful popu-
lation of neurons for this kind of investigation, for neu-
rons of this type can frequently be found in the temporal
cortical areas, so that sufficient data can be obtained in
repeated tracks for analyses such as those described
here.

Materials and methods

Neurophysiology

The responses of single neurons in the temporal cortical visual ar-
eas were measured to a set of 68 visual stimuli in macaques per-
forming a visual fixation task. The stimuli included 20 monkey
and human faces (S=20). The neurons were selected to meet the
previously used criteria of face selectivity by responding more
than twice as much to the optimal face as to the optimal non-face
stimulus in the set (Rolls 1984, 1992a-c). The responses of each
neuron to the same set of 20 faces provided the set of neuronal re-
sponses for the analyses described here. Ten trials for each stimu-
lus were available. The set of stimuli were shown once in random
order, then a second time in a new random sequence, etc. The neu-
rons were not recorded simultaneously, but were recorded from

the same brain region. The neurophysiological protocol was de-
signed to provide data for the investigations described here and for
measurement of the sparseness of the representation (see Rolls and
Tovee 1995, where the neurophysiological methods are described
in more detail). The recordings were made in two rhesus ma-
caques (Macaca mulatta), but the 14 neurons described in this pa-
per were all recorded from the first macaque, partly because we
wished to ensure that whatever information was shown to be en-
coded by the set of neurons included in the study was present in an
individual animal. The sites at which the neurons were recorded
are shown by Rolls and Tovee (1995), and the majority were in the
cortex in the anterior part of the superior temporal sulcus.

Data analysis and decoding algorithms

Response quantification

From the response of each neuron c to each stimulus in the set, we
extracted a single mean firing rate (rc, in spikes per second), calcu-
lated from the number of spikes recorded between 100 and 600 ms
after the presentation of the stimulus. Because most of the infor-
mation about which stimulus is shown is made evident by measur-
ing the firing rate of the neuron, and temporal encoding adds rela-
tively little additional information for this population of neurons
(Tovee et al. 1993; Tovee and Rolls 1995), the analyses described
here were based on the information available from the firing rate,
and the period in which this was measured was the post-stimulus
period 100–600 ms with respect to the onset of the visual stimu-
lus, as most of the information about which stimulus was seen is
available in this period (Tovee et al. 1994; Tovee and Rolls 1995).
For comparison, we repeated all the analyses for the much shorter
analysis period of 100–150 ms post-stimulus.

Cross-validation

In general, the analyses we then performed involved constructing
pseudosimultaneous population response vectors (r) , occurring in
what were labelled as “test” trials (r is a vector with one element,
or component, for each of the C cells considered). Each response
vector was compared with the mean population response vector to
each stimulus, as derived from a different set of “training” data, in
order to estimate, by means of one of several decoding algorithms
described below, the relative probabilities [P(s′|r )] that the re-
sponse r had been elicited by any one stimulus s′ in the set. Sum-
ming over different test trial responses to the same stimulus s, we
could extract the probability that by presenting stimulus s the neu-
ronal response would be interpreted as having been elicited by
stimulus s′, and from that the resulting measures of percentage
correct identification and of the information decoded from the re-
sponses. Separating the test from the training data is called cross-
validation, the details of which follow.

In part of the analyses the conventional cross-validation proce-
dure was used of allocating a proportion (1-x) of the ten trials
available for each cell for each stimulus as training data, to com-
pute the mean response by that cell to that stimulus. Then 10x test
trial population responses to each stimulus were constructed by
randomly selecting, cell by cell, one from the remaining number
of trials. No trial was used twice. In this procedure, each trial was
used either for training or for testing. Different values for x were
tried, but the most reliable results were obtained by using a differ-
ent procedure, which allows effective use of all available data both
for training and as test trials. In this second procedure, only one of
the ten trials was used for testing, the remaining nine for training,
allowing better decoding, as shown under Results. The resulting
probability that s is decoded as s′ is, however, averaged over all
choices of test trials, thus alleviating finite sampling problems
more effectively than with the first procedure. Finally, we also
compared the results with those obtained in the absence of cross-
validation, i.e. when all trials were used both as test and as train-
ing trials.
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Algorithms for likelihood estimation

Several different decoding algorithms were used for estimating the
likelihood of each stimulus from the recorded response. In the fi-
nal analysis reported here, two are selected. The first algorithm,
the “probability estimator” (PE), tries to reconstruct the correct
Bayesian probabilities from the data, extracting from the data it-
self as much information as is possible by any decoding proce-
dure. The second algorithm, based on a simple “dot product”
(DP), tries to emulate the processing that could be performed by
neurons receiving the output of the neuronal population recorded,
thus extracting that portion of the information theoretically avail-
able that could be extracted with simple neurophysiologically
plausible operations by receiving neurons.

The PE algorithm extracts P(s′|r ) from an estimate of the prob-
ability P(r ,s′) of a stimulus-response pair, by normalizing so that
Σs′ P(s′|r )=1 (see Foldiak 1993). The probability P(r ,s′) is estimat-
ed for this purpose as P(s′)ΠcP(rc|s′), where rcis the firing rate of
cell c. Finally, P(rc|s′) is derived from the responses of cell c in the
training trials. Those are fitted with a Gaussian distribution, whose
amplitude at rc gives P(rc|s′), except when rc=0, in which case
P(rc|s′) is the best estimate of the fraction of training trials yield-
ing zero firing.

The DP algorithm computes the normalized DPs between the
current firing vector r on a test trial and each of the mean firing
rate response vectors in the training trials for each stimulus s′.
(The normalized DP is the dot or inner product of two vectors di-
vided by the product of the length of each vector. The length of
each vector is the square root of the sum of the squares.) Thus,
what is computed are the cosines of the angles of the test vector of
cell rates with, in turn for each stimulus, the mean response vector
to that stimulus. The highest DP indicates the most likely stimulus
that was presented, and this is taken as the best guess for the per-
centage correct measures. For the information measures, it is de-
sirable to have a graded set of probabilities for which of the differ-
ent stimuli was shown, and these were obtained from the DPs as
follows. The S DP values were cut at a threshold equal to their
own mean plus 1 SD, and the remaining non-zero ones were nor-
malized to sum to 1. It is clear that in this case each operation
could be performed by an elementary neuronal circuit (the DP by
a weighted sum of excitatory inputs, the thresholding by activity-
dependent inhibitory subtraction, and the normalization by divi-
sive inhibition). The resulting relative probabilities are cruder esti-
mates than those obtained with the PE algorithm, and a precise
quantitative assessment of the price paid for using a simpler and
neurophysiologically plausible algorithm can be derived from a
comparison of the amounts of information extracted in both cases.

Note that no attempt was made to optimize the DP algorithm.
The PE algorithm had a rather fixed structure, too, in which the
only “free” choice was that of a convenient distribution with
which to fit P(rc|s′). The truncated Gaussian was then chosen over
a Poisson distribution (with an additional weight at rc=0), because
it produced higher values for both percentage correct and informa-
tion (this does not necessarily hold for other cell populations; our
unpublished observations). In contrast, the neural network decod-
ing procedure developed by Hertz et al. (1992) is optimized exten-
sively, albeit only across the parameters describing a fixed class of
neural network decoders.

Procedures for extracting information measures

Probability and frequency tables

Having estimated the relative probabilities that the test trial re-
sponse had been elicited by any one stimulus, the stimulus that
turned out to be most likely, i.e. that which had the highest (esti-
mated) probability, was defined to be the predicted stimulus, sP.
The fraction of times that the predicted stimulus sP was the same
as the actual stimulus s is directly a measure of the percentage cor-
rect for a given data set. In parallel, the estimated relative proba-
bilities (normalized to 1) were averaged over all test trials for all

stimuli, to generate a table PR
N(s,s′) describing the relative proba-

bility of each pair of actual stimulus s and posited stimulus s′. We
also generated a second (frequency) table PF

N(s,sP) from the frac-
tion of times an actual stimulus s elicited a response that led to a
predicted (most likely) stimulus sP. The difference between the ta-
ble PR

N and the table PF
N can be appreciated by noting that each

vector comprising a pseudosimultaneous trial contributes to PR
N a

set of numbers (one for each possible s′) whose sum is 1, while to
PF

N it contributes a single 1 for sP and zeroes for all other stimuli.
Obviously each contribution was normalized by dividing, in both
cases, by the total number N of (test) trials available (N=10×x×20
for the conventional cross-validation procedure, and N=10×20 for
the more efficient procedure with one test trial and the remaining
trials used for training).

Information measures

From any probability table P(s,r ) embodying a relationship be-
tween the variable s (here, the stimulus) and r (here, the response
rate vector), one can extract the mutual information 

When the probability table has to be estimated as the frequency ta-
ble of a limited data sample, however, it becomes crucial to evalu-
ate the effects of limited sampling on the information estimate.
When r is a multidimensional quantity (a vector, r ), as it necessar-
ily is if it represents the firing rate of several cells, the minimum
number of trials required to sample sufficiently the response space
grows exponentially with the dimensionality of that space, i.e. the
number of cells considered (Treves and Panzeri 1995). This rules
out, in our case, any attempt to evaluate directly the quantity I(s,r ).
A standard procedure is then to derive from the original frequency
table of stimuli and responses an auxiliary table, of stimuli and ad-
ditional variables, spanning a limited set, which are derived from
the responses by any arbitrary algorithm. These additional vari-
ables can be chosen, in particular, to coincide with the stimuli
themselves, which comprise the minimum set with the potential
still for full correlation, or maximal information. In general,
though, the information content of the auxiliary table will be less
than that of the original table, by an amount that depends on the
severity of the manipulation performed. Two types of auxiliary ta-
bles were derived here, called PR

N and PF
N.

In deriving PF
N, each response is used to predict its stimulus.

While sP spans only Svalues compared with the very large number
of possible (multidimensional) rate responses, the auxiliary table
is otherwise unregularized, in that each trial of a limited total
number produces a relatively large “bump” in PF

N(s,sP). The result
of this is that a raw estimate of I(s,sP) [which can be denoted as
IN(s,sP) to point out that it is obtained from a total of N trials] can
still be very inaccurate, in particular, overestimated. Sophisticated
methods have been devised (Panzeri and Treves 1996) to correct
raw information estimates for limited sampling, by subtracting out
the mean of the error. These methods are safely applicable when
the subtracted term [IN(s,sP)]–I(s,sP) is smaller than approximately
1 bit. With the present data (and only a handful of trials per stimu-
lus) the subtracted term turns out to be large when few cells are
considered and to become sufficiently small only when more than
about ten cells are included (the reason for this is just that more
cells produce more accurate predictions and therefore more con-
centrated tables). The conclusion is that the (corrected) estimate of
I(s,sP) is reliable only when most of the 14 cells in the total popu-
lation are considered, which makes it impossible to discuss effec-
tively how I(s,sP) depends on C, the number of cells.

PR
N, on the other hand, can be conceived of as being more reg-

ularized than PF
N, because each trial contributes not a relatively

large bump to just one bin (sP), but smaller additions to several
bins (s′). The consequence is that the distortion in the information
estimate due to limited sampling (small N) is smaller, and the sub-
traction of a suitable correction term [IN(s,s′)]–I(s,s′) is enough to
produce accurate corrected estimates of information. The correc-
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tion term to be used differs from that appropriate to correct I(s,sP);
it takes the form:

where QR
N(s,s′) is the table obtained analogously to PR

N(s,s′), but
averaging over all test trials P2(s′|r) instead of P(s′|r), and where
care has to be taken in performing the sums over s′, to avoid in-
cluding stimuli posited to have zero probability. For a derivation of
this and other correction terms and for a fuller discussion of the
difference between various information estimates, we refer to Pan-
zeri and Treves (1996), where the advantages of this correction
procedure over the earlier regularization procedure of Kjaer et al.
(1994) are also described (see also the explicit comparison in Go-
lomb et al. 1996). Here it is sufficient to note that I(s,s′) (as best
estimated with the present correction procedure) will in any case
tend to a “true” value that, being based on a regularized probabili-
ty distribution, is less than the value (unmeasurable except with
few cells) attained by I(s,r). The same applies to I(s,sP). I(s,s′) is
the quantity that can be measured more accurately for any number
of cells with the present data, and comparisons across data sets
should only be performed using the same quantities.

Averaging

To generate the results quoted in the paper, i.e. percentage correct
and information as a function of number of cells in the population,
means were taken over ten different partitions between test and train-
ing trials for any set of cells, and over a large number of different sets
of C cells randomly selected from the total population of 14 cells.

Results

Comparison between measures obtained 
with different procedures

The values for the mean information, I(s,s′), available in
the responses of different numbers of these neurons in

each trial, about which of a set of 20 face stimuli have
been shown, are displayed in Fig. 1a. The PE algorithm
was used for estimating the relative probability of posit-
ed stimuli s′, and different cross-validation procedures
were used. The same data produced the percentage cor-
rect predictions reported in Fig. 1b. It can be seen that,
whatever the procedure, both the information and the
percentage correct rise initially linearly with population
size from their baseline level (which is zero for the infor-
mation and 1/S=0.05 for the percentage correct) and then
tend to slow down as the population gets close to includ-
ing all 14 cells. This essentially linear rise in information
as the number of cells in the sample is increased is the
first major result described in this paper. In addition,
both graphs show a small dependence on the cross-vali-
dation procedure adopted, the details of which are con-
sidered in the next paragraph.

In the absence of cross-validation, the percentage cor-
rect and information rise to higher levels, which is just a
spurious effect due to the use of the same data for both
training and testing, or in other words to trials being
compared with themselves in the extraction of relative
probabilities (“overfitting”). The results with the cross-
validation procedure using x=1 test trial and the remain-
ing (9) trials as training trials, repeated in turn using a
different test trial from the dataset each time and averag-
ing the results (crosses in Fig. 1a), were more efficient
than the conventional cross-validation procedure (in
Fig. 1a: diamonds for x=3/10, and triangles for x=5/10)
in that it resulted in a higher percentage correct. This is
expected, because the mean percentage correct depends
on the quality of the decoding, which is better if based
on 9 training trials (for the efficient procedure) than if
based on, respectively, 10×(1–x)=7 or 5 training trials.
The information obtained with the one test trial proce-

153

I s s I s s N P s Q s s
P s s

P s s
P sN s s

RN
RN

RN( , ) ( , ) log ( ) ( , )
( , )

( , )
( )( )

′ − ′ ≈ ′
′

− ′
′

1
2 2

Σ Σ

N
Q s
P s

P ss

RN
RN

RNlog
( )
( ) ( )

( )
− ′

′
− ′′

1
2 2

Σ

a b

Fig. 1a The values for the
mean information available in
the responses of different num-
bers of these neurons in each
trial, about which of a set of 20
face stimuli have been shown.
The decoding method was
probability estimation, and the
effects were obtained with
cross-validation procedures ut-
ilising 30% of the trials as test
trials (diamonds) and 50% (tri-
angles), with the remainder of
the trials in the cross-validation
procedure used as training tri-
als, are compared with those
obtained with the more effi-
cient procedure explained in
the text (+), and with those ob-
tained without cross-validation
(squares). b The percentage
correct for the corresponding
data to those shown in a&/fig.c:



dure is a little lower than that from the conventional
cross-validation procedure, but this is just due to under-
correction with effectively three or five test trials with
the conventional procedure, so that this latter procedure
actually is a slight overestimate of the information. The
undercorrection is due to the fact that with very limited
numbers of trials, such as three or five, the correction

procedure gives a result which is biased upwards a little
(see Panzeri and Treves 1996 for full analysis). The un-
dercorrection applies particularly to the conventional
procedure, for which there are three or five test trials and
does not occur when there are as many as ten test trials,
as there effectively are with the efficient procedure (one
test trial repeated for ten different test trial choices).
Conventional cross-validation is thus suboptimal with
the relatively few trials (ten) available, because, with this
number of trials, separating out a fixed subset to be used
for training leaves so few trials for the testing set that the
information estimates are slightly overestimated. The ef-
ficient cross-validation procedure in which one trial at a
time is used as a test trial and the remaining (nine) trials
are used for the training set appears, on the other hand,
to afford both the best decoding and the least limited
sampling bias and is therefore the one used from now on.

Measures of the information I(s,sP) were also taken,
as mentioned under Materials and methods, in order to
compare the effect of using the tables PR

N and PF
N. Fig-

ure 2 shows, for the efficient cross-validation procedure,
both I(s,sP) and I(s,s′) and their corresponding raw mea-
sures, before the correction term has been subtracted out.
While the corrected measures do not differ by much, the
raw measures for the information I(s,sP) based on the fre-
quency table PF

N are very high, resulting in a correction
term so large (1.16 bits for single cells) as to be really at
the border of the region where subtracting it is enough to
remove finite sampling biases (Panzeri and Treves 1996).
Therefore I(s,sP) is somewhat less reliable a measure
than I(s,s′), at least for small populations, which is also
where they differ proportionally the most.

Having analysed the small dependence of the results
on the cross-validation procedure and on the exact infor-
mation quantity being measured, we focus for simplicity
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Fig. 2 For the efficient cross-validation procedure and probability
estimation decoding, I(s,sP) after correction (×) and its corre-
sponding raw, uncorrected, measure (triangles) is contrasted with
I(s,s′) after correction (+) and its corresponding raw, uncorrected,
measure (diamonds) &/fig.c:

a b

Fig. 3a The information val-
ues obtained for the full set of
20 stimuli (+) are compared
with those obtained for two ex-
amples of reduced stimulus
sets, comprising nine (×) and
four (stars) stimuli. The contin-
uous lineis a fit to the informa-
tion C cells provide about 20
stimuli, calculated as
(1–ΦC)log2(20), as explained in
the text. b The percentage cor-
rect for the corresponding data
to those shown in a&/fig.c:



on I(s,s′) and on the more efficient cross-validation pro-
cedure, although all of the following points can easily be
seen to be valid in general.

Ceiling effects and redundancy

As shown in Figs. 1 and 2, both the information and the
percentage correct show what amounts to a ceiling effect
as the number of cells is increased towards 14. For per-
centage correct the ceiling is of course at 100%, and for
information it is at log2(S)=20 (i.e. ≈4.3 bits) for our stim-
ulus set. These ceilings correspond to the top of the re-
spective figures. The deviation from a linear rise, in both
measures, as more cells are included in the population,
appears to be entirely due to the measures approaching
their ceilings. This is shown in Fig. 3 by repeating the
analysis with fewer stimuli than included in the full set.
The multiplication signs correspond to information
(Fig. 3a) and percentage correct (Fig. 3b) calculated for a
subset (randomly chosen) of nine stimuli, and the stars
for one of just four stimuli. The ceiling for information
must be correspondingly lowered to log2(9)=3.17 and
log2(4)=2 bits, and the baseline for percentage correct
raised to 1/S=11.11% and 25%. Note that the initial slope
in the rise of both measures depends on the particular
subset of stimuli, not on its size alone. For example, the
mean information per cell with four face stimuli was
found to range from 0.04 to 0.57 bits with these cells and
choosing an assortment of different random subsets of the
20 stimuli available. Sooner or later, depending on the
initial slope, the increase with population size must slow
down and saturate to stay below the ceiling value.

As for the rate of slowing down, it is intriguing that
the way information depends on the number of cells in

the population is fairly close to what would be predicted
by a simple model (Gawne and Richmond 1993) of the
relation between the information provided by different
cells. In this model, each cell provides a fraction of the
information required to discriminate the 20 stimuli per-
fectly [1–Φ=I1/log2(20)], and the information provided
by any one cell has a random overlap with that provided
by any other cell. Then, if a fraction Φ of the informa-
tion is missing when looking at just one cell, a fraction
Φ2 is missing, on average, when looking at two cells, and
so on. The mean fraction of information provided by C
cells is 1–ΦC, and this is the curve plotted with the data
in Fig. 3a, where Φ has been chosen as a fit parameter.
The curve is seen to be a reasonable match to the trend in
the data, except perhaps at the higher numbers of cells.

The degree to which the rise of information with the
number of cells considered is below linearity has been
linked in the literature to the notion of redundancy. For
example, Gawne and Richmond (1993) took as a mea-
sure of redundancy the overlap between the information
provided by pairs of nearby cells, an overlap that, when
using the model above to fit results for single cells and
for pairs, turns out to be just 1–Φ. For our three sets of
stimuli this mean overlap (as extracted by fitting the
model to the three data sets) would be roughly 8% for 20
stimuli, 9% for nine and 19% for four, but widely differ-
ent values are obtained by selecting different subsets of
stimuli. In fact, to the extent that the model provides a
good fit, the value of the mean overlap is the same as the
fraction of information provided by single cells, out of
the maximum at the ceiling, and this fraction depends
very strongly, as stated above, on both the size and the
composition of the stimulus set. The implications of
these results for the notion of redundancy is considered
in the Discussion.

155

a b

Fig. 4a The values for the
mean information available in
the responses of different num-
bers of these neurons in each
trial, about which of a set of 20
face stimuli have been shown.
The decoding method was dot
product (×) or probability esti-
mation (+). b The percentage
correct for the corresponding
data to those shown in a&/fig.c:



Biologically plausible decoding

The results of analyses to compare DP decoding and PE
decoding are shown in Fig. 4. The percentage correct
achieved with the DP algorithm comes progressively
closer to that obtained with the PE algorithm (used in all
previous analyses), as the number of cells increases from
2 to 14 (Fig. 4b). Thus, the DP decoding algorithm func-
tions about as well, in indicating the actual stimulus, as
the PE algorithm, and possibly would have functioned
even better if larger numbers of cells had been included
in the sample. The information extracted by the DP algo-
rithm, instead, only comes to approximately 80-85% of
that extracted by the PE algorithm. The information
measure reflects the full range of estimated probabilities
for all stimuli, and one should bear in mind that the DP
algorithm does not really attempt to perform this estima-
tion correctly. The reason that the measures are, respec-
tively, zero and chance with one cell for DP decoding is,
obviously, that then the DP of the test trial vector of cell
responses with any of the mean response vectors to the
stimuli is essentially meaningless.

Information encoded by an ensemble of neurons 
in a short time window

It is interesting to analyse whether considerable informa-
tion is available from the population of neurons in short
post-stimulus time periods, as has been found for single
neurons (Tovee et al. 1993; Tovee and Rolls 1995). The
values for the mean information [I(s,s′), extracted with
the PE algorithm] available in a 50-ms period starting
100 ms post-stimulus, are displayed in Fig. 5a, together
with those for the longer 500-ms windows. The same da-

ta produced the percentage correct predictions reported
in Fig. 5b. It can be seen that both the information and
the percentage correct rise more linearly with population
size from their baseline level than those measured over
500 ms. The more linear increase with the short analysis
period of 50 ms is because the information provided by
the 14 cells, although quite high at 1.49 bits, has not ap-
proached the ceiling of 4.32 bits required to encode the
set of 20 stimuli. The population of 14 cells provides, in
the 50-ms period, 54% of the information it provides in
the 500-ms period (1.49 vs 2.77 bits). Part of the reason
this proportion is so high is that the information ceiling
given the stimulus set size is being approached with the
500-ms period. For this reason, and because in principle
apart from such a ceiling effect the information increases
in proportion to the number of neurons in the ensemble,
we report also that single cells on average provide
0.13 bits, or 40%, in 50-ms time periods, of what they
provide over the 500-ms window, which is 10 times lon-
ger.

Relationship between information and percentage correct

One can see from Fig. 1 that the rise of information with
population size parallels very closely that of percentage
correct. This is made explicit in Fig. 6, where the infor-
mation values are plotted against percentage correct. The
information axis (ordinate) is normalized so that it reach-
es full scale when full information about the stimulus
set, i.e. log2(20)≈4.3 bits is obtained from the population
responses. The percentage-correct axis (abscissa) ex-
tends from chance level (which in our case is at
1/20=0.05) to 1. The fact that the data points are very
close to the 45° line has some implication for the struc-
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a b

Fig. 5a The values for the
mean information available in
the responses measured in the
usual 500-ms period (+), and in
a shorter 50-ms period (×),
both starting 100 ms after stim-
ulus onset. The decoding meth-
od was probability estimation.
b The percentage correct for
the corresponding data to those
shown in a&/fig.c:



ture of the stimulus set as coded by these cells (Treves
1997; Treves et al. 1996). This is because, while percent-
age correct is a measure that is not affected by how good
the estimated probabilities were, apart from the highest
one, information is affected and thus reflects the struc-
ture of perceived similarities and differences between
different stimuli. To understand this point, the two lines
shown with the data points illustrate the dependence of
I(s,s′) on P(sP=s) in two simple, idealized cases. In one,
which yields the upper curve, stimuli are supposed to
group naturally, as perceived by this population, into
classes of equal size Z; different classes are perfectly dis-
criminated by the cells, whereas in each class there is
such similarity that individual stimuli are not at all dis-
criminated one from the other. Obviously Z is taken to
vary to give the required percentage correct, which in
this case is just 1/Z; the information is log2(20/Z). In the
second case, which yields the lower curve, no class
structure exists, and stimuli are either discriminated indi-
vidually (with probability q) or confused with all the oth-
ers (with probability 1–q). The parameter q is taken to
give the required percentage correct, which is
q+(1–q)/20; the information results in:
(q+(1–q)/20)log2(20q+1–q)+(19/20)(1–q)log2(1–q). The
fact that the experimental relationship turns out to be in-
termediate between these two extremes indicates that the
stimuli are coded by these cells as having a structure of
similarity to each other that is slightly more complex
than in the two trivial situations mentioned. Not much
more can be inferred, as an infinite number of different
structures would generate identical intermediate relation-
ships; for example, one still very simple situation in
which the fraction of information available equals the
fraction of percentage correct above chance (close to
what the data show) is when classes exist but also each
stimulus can be discriminated, with a certain probability,
within its class. It would be interesting to find out wheth-
er the extensive averaging that underlies our numerical
results in itself might tend to produce data very close to
the 45° line, because for example that is where the high-
est density of similarity structures may be packed. Pre-
liminary results, however, (unpublished observations) in-
dicate a very different relationship between percentage
correct and information when analysing the responses of
cells in different brain areas and to different external cor-
relates.

Discussion

The analyses described here elucidate a quantitative ap-
proach to analysing the representation provided by a
population of neurons. First, the mean information about
a set of 20 equiprobable stimuli, available on any trial
[I(s,s′)], was found to increase approximately linearly
with the number of cells from which the best estimate
was made: from 0.33 bits, with one neuron, up to
2.77 bits, available from all 14 neurons. To be able to an-
alyse in detail this quasi-linear dependence with the lim-

ited number of trials available in this experiment (and in
many similar experiments with mammals), we have
shown that it is important to select with great care the
exact type of information quantity and the procedure to
measure it from the data. We showed that failure to
cross-validate, failure to apply a correction for limited
sampling (i.e. the limited number of trials available) and
calculation of the information contained in the frequency
table of PF

N could all result in unreliable estimates of the
information encoded by the ensemble of neurons. Over-
coming these difficulties has been responsible for the
slower development of information-theoretic analyses of
mammalian neuronal recordings, relative to their use
with invertebrate recordings, in which very many trials
of data can be obtained (Bialek et al. 1991). In the next
four paragraphs we discuss the central aspects of this
quasi-linear relationship before returning to the more
general issues.

Most of the deviation from a simple linear increase
was shown, utilising subsets of the complete stimulus
set, to be due to a simple ceiling effect. The ceiling effect
occurs because with the total information in the stimulus
set being limited (to 4.32 bits, that required to code the
20 stimuli in the set), larger numbers of cells in the pop-
ulation considered are forced to be more redundant, that
is, to have greater overlaps. When the limit on the
amount of information is lowered by including fewer
stimuli, obviously the information tends to saturate at
lower values. Conversely, if single cells carry, on aver-
age, a smaller proportion of the maximal information,
then values close to saturation are approached only for
larger populations, and the increase in information is
much more linear as cells are added to the sample. This
is exactly what is shown in Fig. 5, in which the analysis
period for the neuronal response was 50 ms, the informa-
tion available from one cell was 0.13 bits (and 9.4% cor-
rect for the 20 stimuli) and the information increased
more linearly to 1.49 bits (and 41% correct) as the num-
ber of cells in the population was increased to 14. This
supports the explanation for the ceiling effect and sug-
gests that, were the stimulus set much larger (so that
much more information could be extracted from it), and
if the absolute amount provided by individual cells were
to stay roughly the same (this being dependent on the
choice of stimuli), then the information would continue
to increase almost linearly over a wider range of popula-
tion sizes. This issue is also addressed in a separate pa-
per based on computer simulations (Abbott et al. 1996),
and the results of those simulations support the hypothe-
sis based on the neurophysiological results described
here: that the number of stimuli that can be encoded by a
population of neurons in this part of the visual system in-
creases approximately exponentially as the number of
cells in the sample increases. That is, the log of the num-
ber of stimuli increases approximately linearly as the
number of cells in the sample is increased. This is in
contrast to a local encoding scheme (of grandmother
cells), in which it is the number of stimuli encoded that
increases linearly with the number of cells in the sample.
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The conclusion based on the neurophysiological data de-
scribed here is subject to the limits of the actual stimulus
set (20 stimuli) and cell population (14 neurons) avail-
able from real experiments; and the study by Abbott et
al. (1996) extends the conclusions to much larger stimu-
lus sets by simulation.

The hypothesis that the deviation from linearity is due
entirely to the ceiling effect is supported by the reason-
able fit to the data provided by the simple model intro-
duced by Gawne and Richmond (1993), which requires
as a fitting parameter only the mean information from
single cells (the initial slope in the rise). The model is
that in which each cell provides a mean fraction
1–Φ=I1/log2(S) of the total information required to dis-
criminate Sstimuli perfectly, any element of information
has therefore a “chance” (Φ) to be missed by a cell, and,
being what is coded by one cell in a random relation to
what is coded by other cells, it has a chance ΦC to be
missed by C cells. IC=(1–ΦC)log2(S) is therefore the in-
formation provided by C cells. The crucial aspect of the
model (which appears to have been overlooked by
Gawne and Richmond 1993, in their discussion of the
correlations between cell pairs) is that it predicts zero re-
dundancy in the limit of very large S, provided the infor-
mation provided by single cells does not grow propor-
tionally to the ceiling. This is because the overlap, or de-
gree of redundancy, is, again, just 1–Φ (1–Φ=y in the no-
tation of Gawne and Richmond 1993), which would tend
to zero for very large sets of stimuli. The model may
well not be exact, but it remains true that the observed
redundancy should in no way be taken to characterize the
absolute information processing capabilities of single
temporal lobe visual cortex cells or of groups of cells,
but only their performance given the stimulus set. In
quasi-real-life conditions, it may be that the absolute
amount of information provided by one cell could be ap-
proximately constant, as the stimulus set is greatly en-
larged to include a naturalistic set of stimuli. This would
happen if, when stimuli are added, the overall statistics
of the responses remained relatively constant, as in the
simulations of Abbott et al. (1996). However, in that case
the fraction of the maximum (and with it, presumably,
the redundancy overlap, which in the model is numeri-
cally identical) will not be a constant, but rather will de-
crease as the inverse log of the size of the stimulus set.

Another point to note in relation to previous work
with similar goals (Gochin et al. 1994) is that failure to
take ceiling effects into account, to select the appropriate
information quantities and to measure them by correct-
ing for limited sampling easily results in artifactual find-
ings, such as the postulated tendency of novel informa-
tion to decrease with the inverse square root of the popu-
lation size (Gochin et al. 1994; the novel information is
the information provided by a population of C cells di-
vided by C times the mean information provided by sin-
gle cells). In the simple model used above, the novel in-
formation is (1–ΦC)/[C(1–Φ)]=(1/C)Σk=0

C–1Φk; that is, it
scales in a different way from an inverse square root. We
note that, with only five stimuli in their set, Gochin et al.

(1994) had a rather low ceiling on the amount of infor-
mation required to encode the set, and the failure to take
this into account, together with the very few population
sizes considered, makes their conclusions subject to arte-
fact.

To conclude with the implications of the present data
for exponential encoding and redundancy in the brain,
we stress again some of the important limitations in our
findings. First, the responses of only 14 cells to only 20
face stimuli formed the basis of the analysis. More face
cells were recorded, in part also with larger sets of face
stimuli, and qualitatively the data looked similar, but
these additional cells either were in a second monkey or
were not recorded for enough trials per stimulus to be
part of the present quantitative analysis. Coding for a few
thousand faces (of the order of the number that humans
may feel confident at discriminating) presumably in-
volves an order of magnitude more face cells. The appli-
cability of our conclusions to face encoding remains thus
an extrapolation, although it is an extrapolation support-
ed by very plausible simulation results, as shown by Ab-
bott et al. (1996). Second, the cells recorded were all lo-
cated in a restricted portion of cortex and were all face
cells responding to face stimuli. It is thus in principle
possible that face encoding may display rather different
features in other parts of cortex, and it is quite likely and
entirely natural that the encoding of very different cate-
gories of visual stimuli may proceed along different prin-
ciples. Seemingly different types of population encod-
ings have, for example, been discussed for arm move-
ments in three-dimensional (3D) space (by motor cortex
neurons; Georgopoulos et al. 1988) and for the prevail-
ing (1D) direction of motion of random dots (by visual
cells of the middle temporal area; Zohary et al. 1994).
We regard our face cell data as more indicative of popu-
lation encoding of classes of stimuli spanning a high-di-
mensional space, as, e.g. discussed by Tanaka (1993).
Third, the cells were not recorded simultaneously, and
thus trial-to-trial correlations in their responses were not
included in the analysis. Including such correlations
might result in either higher or lower information values,
depending on the type of correlations found. It is easy to
construct response structures that would lead to either re-
sult. Significant correlations in the firing of small groups
of cells have been found, e.g. in the early visual cortex
stimulated with moving bars (Gray et al. 1989) or in the
frontal cortex in relation to behavioural state (Abeles et
al. 1995). We are aware of no positive evidence for such
correlations, however, directly relevant to stimulus en-
coding in higher visual cortices. The findings of Gawne
and Richmond (1993) and Gochin et al. (1994) indicate
weak correlation effects, and similarly shuffling the si-
multaneously recorded responses of rat hippocampal
place cells to control for such effects made little differ-
ence (our unpublished observations on data kindly pro-
vided by the McNaughton laboratory). It remains very
important, as noted below, to supplement the present an-
alyses with analyses performed on simultaneously re-
corded responses from a similar population of face cells
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responding to a similar set of face stimuli. Finally, we
note the possibility that the details of the experimental
paradigm used here (the level of attention required, the
degree of familiarity with the stimuli used, etc.) might
have had an influence on the results obtained.

The second general issue arising from the present in-
vestigation is that it was found that the percentage cor-
rect behaved fairly similarly to the information in the
way it increased as the number of neurons from which
the best estimate was made increased from 1 to 14 (see
Fig. 6). Performance with one neuron was approximately
14% correct (chance was 5% correct) and with 14 neu-
rons was 67% correct. The nearly identical behaviour of
information and percentage correct indicates that the
stimulus set is coded by these neurons as having a struc-
ture of mutual similarities (an intrinsic metric) in which
at least two cluster sizes are present. More generally it
suggests the use of specific choices of stimulus sets that
might generate results at variance with the present ones.
The point here is that the percentage correct measure
takes into account only the best estimate of which stimu-
lus was presented; it is unaffected by how good the sec-
ond best, third best, etc. guesses might have been. If the
best guess was wrong and the second best guess would
have been right, then the percentage correct measure
does not reflect this. On the other hand, the information
measure does reflect structure of this type. The fact that
the percentage correct and information measures are
above the lower line in Fig. 6, and below the upper line,
thus has interesting implications for the way in which
these neurons categorise stimuli: for example it could in-
dicate that second-best guesses are better than chance.
More detailed analysis (Treves 1996) is required, though,

to make these implications explicit, because averaging
by itself could produce a behaviour intermediate between
extremes.

Third, alternative algorithms were used to estimate
which of the mean response vectors (one for each stimu-
lus) most closely matched the vector of cell responses
being produced by a test stimulus. The PE algorithm,
which approximates a theoretically correct estimate of
the relevant probabilities (that a given response had been
elicited by any one stimulus), may not be the way the
(next population of neurons in the) brain would decode
the neuronal responses. It was found that, with a neurally
plausible algorithm (the DP algorithm) that calculates
which mean response vector the neuronal response vec-
tor was closest to by performing a normalized DP
(equivalent to measuring the angle between the test and
the mean response vector), the same generic results were
obtained, with similar percentage correct and only a
15–20% reduction in information compared with the
more efficient (PE) algorithm. This is an indication that
the brain could utilise the exponentially increasing ca-
pacity for encoding stimuli as the number of neurons in
the population increases. For example, by using the rep-
resentation provided by the neurons described here as the
input to an associative or autoassociative memory, which
computes effectively the DP on each neuron between the
input vector and the synaptic weight vector, most of the
information available would in fact be extracted (see
Rolls and Treves 1990; Treves and Rolls 1991). One of
the important points made here is that, because the repre-
sentational capacity of a set of neurons increases expo-
nentially, neurons in the next brain region would each
need to sample the activity of only a reasonable number
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Fig. 6 The corrected values for
the information I(s,s′) (with PE
decoding and the efficient
cross-validation procedure)
shown as a function of percent-
age correct when both are esti-
mated from the responses of
subsets of the 14 neurons to the
20 face stimuli&/fig.c:



(e.g. a few hundred) of what might be a much larger cell
population and yet still obtain information about which
of many thousands of stimuli had been shown. In partic-
ular, the characteristics of the actual cells described here
indicate that the activity of: 15 neurons would be able to
encode 192 face stimuli (at 50% accuracy); 20 neurons,
768 stimuli; 25 neurons, 3072 stimuli; 30 neurons,
12288 stimuli; and 35 neurons, 49152 stimuli (Abbott et
al. 1996. The values are for the optimal decoding case
and are derived using somewhat different methods from
the present ones; they are given here for the purpose of
illustration.)

Fourth, the results shown in Fig. 5 with 50-ms decod-
ing highlight the value of having large numbers of neu-
rons of the type described here, for they make it clear
that part of the value is that information can be made
available very rapidly about which stimulus is present if
the responses of a population of neurons, rather than just
a single neuron, are considered. Moreover, the fact that
the representation provided by each neuron is apparently
in a random relation to that provided by other neurons
means that the information is available very rapidly from
whichever subset of neurons is taken. This rapid avail-
ability of information from a population of neurons is
one factor that contributes to the very rapid processing of
information from stage to stage in the visual cortical ar-
eas (see Rolls 1994; Rolls and Tovee 1994), for it means
that the information from one cortical area can be ex-
tracted very rapidly (in, e.g. 20 ms) by the next.

Fifth, it is of great interest that the information about
which stimulus is present can now be read off from the
end of the visual system to identify what is being seen,
and that this read-out of information can be performed
excellently if only the firing rates of the neurons are tak-
en into account. The results in this paper thus provide
good evidence that the temporal relationships between
the spike times of different neurons are not at all a neces-
sary part of the neural code used at the end of the visual
system (cf. Engel et al. 1992). It is of course possible
that if the temporal relationships between the spike fir-
ings of the neurons in the ensemble were taken into ac-
count more information would be available about which
stimulus was shown. However, the results described in
this paper show that a very great deal of information can
be read out from the responses of an ensemble of neu-
rons about which stimulus was shown without taking in-
to account the relative timing of the spikes in the differ-
ent neurons. The results described here show that using
just the firing rates would be sufficient for the good oper-
ation of at least this part of the temporal visual cortex.

However, a point that certainly merits further investi-
gation is the effect of generating pseudosimultaneous tri-
als, rather than recording simultaneously from large pop-
ulations of cells (Wilson and McNaughton 1993). Partic-
ularly in exploring fine points such as the presence of tri-
al-to-trial correlations in the responses, it is important
that the present studies be integrated with new ones once
simultaneously recorded data become available for these
cells. However, we believe it likely that, if the present

data had been recorded simultaneously, then, if anything,
more information would have been available in the neu-
ronal responses of the population, because any general
shift in excitability of the cell population from trial to tri-
al – a particularly simple and common type of correla-
tion – would be compensated for by a neurophysiologi-
cally plausible decoding procedure such as computing
the DP, whereas the same shift would increase the noise
level when pseudosimultaneous trials are constructed. It
would only be in more unlikely situations of small sets
of cells having rather idiosyncratic variability in their ac-
tivity that the current procedure might overestimate the
information available from a simultaneously recorded
population of neurons. Further, we have been able to ap-
ply the same kind of analyses to data recorded simulta-
neously in the rat and kindly provided by the laboratories
of Bruce McNaughton and Gabriele Biella (unpublished
observations). With simultaneously recorded data, it is
possible to control for the effects of generating pseudosi-
multaneous trials by simply shuffling trials independent-
ly for each cell. Such a control procedure resulted in
very small differences, if any, thus indirectly supporting
the assumption that also with our data the effect of gen-
erating pseudosimultaneous trials is minimal. A further
point is that simultaneous recordings from the thalamus
provide a counterexample of a case in which there ap-
pears to be no linear increase of information with popu-
lation size (Panzeri et al. 1995; this is true both before
and after shuffling), therefore removing the doubt that
the near-linear increase found for the visual cortex cells
described here might have been an almost automatic
consequence of either the decoding procedure or the gen-
eration of pseudosimultaneous trials.

The results described here thus provide evidence that
when real neuronal responses in the brain are considered,
so that the trial to trial variability of individual neuronal
responses is taken into account, and also the degree to
which each stimulus produces a somewhat different set
of responses in a population of neurons from other stim-
uli, then the essentially exponential increase in coding
capacity that is potentially a property of distributed rep-
resentations can be realised.

It has been argued elsewhere (Rolls and Tovee 1995)
that the rather widely distributed encoding found in this
population of neurons allows a relatively large amount of
information about a set of stimuli to be provided by such
a population, provided of course that they do not have
the same profile of responsiveness to the set of stimuli.
Such a representation would be ideal for discrimination,
for the maximum information suitable for comparing
fine differences between different stimuli would be made
available across the population. However, a representa-
tion as distributed as this would not be appropriate for a
memory system, in which the aim is to store a large
number of memories. In an associative memory contain-
ing neurons with continuously variable firing rates, such
as the autoassociative memory believed to be implement-
ed in the hippocampus (Rolls 1989; Treves and Rolls
1994), the maximum number of firing patterns that can
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be retrieved increases approximately with the inverse of
the sparseness (a) of the neuronal representation (Treves
1990; Treves and Rolls 1991). It is therefore proposed
that these fundamentally different constraints, represen-
tational capacity versus storage capacity, account for the
different sparsenesses of representations found in the
high-order sensory cortices such as the temporal cortical
areas described here and by Rolls and Tovee (1995), and
in memory systems such as the hippocampus (Treves and
Rolls 1994), amygdala, and orbitofrontal cortex (Rolls
1989, 1992a, c). In the sensory cortex, a relatively dis-
tributed representation may be used in order to optimize
discriminative ability. In memory systems, much more
sparse representations may be used in order to maximize
the number of memories that can be stored. We note that
many of the cells described here have other properties
that make them suitable for discrimination between fac-
es, including invariance with respect to size, spatial fre-
quency, translation and even view in some cases (see
Rolls 1992a, 1994, 1995; Rolls and Tovee 1995).
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