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Abstract. This work proposes a new representation learning technique
called convolutional transform learning. In standard transform learning,
a dense basis is learned that analyses the image to generate the represen-
tation from the image. Here, we learn a set of independent convolutional
filters that operate on the images to produce representations (one corre-
sponding to each filter). The major advantage of our proposed approach is
that it is completely unsupervised; unlike CNNs where labeled images are
required for training. Moreover, it relies on a well-sounded minimization
technique with established convergence guarantees. We have compared the
proposed method with dictionary learning and transform learning on stan-
dard image classification datasets. Results show that our method improves
over the rest by a considerable margin.

Keywords: Representation learning ; Transform learning ; Convolutive
models ; Image classification ; Alternating optimization ; Proximal ap-
proaches.

1 Introduction

Learning representations from the data has always been an interesting problem
for the machine learning community. A model is trained from the data to repre-
sent it in some other domain, and the learned coefficients in the other domain are
used as features for solving tasks such as classification and reconstruction. There
has been extensive research on learning good representations from data using
well-known techniques like auto-encoders [1–3], convolutional neural networks
(CNN) [4, 5], dictionary learning [6–12], and more recently transform learning
[13–20].

The key idea behind CNN is to reduce drastically the number of connections
to be learned by assuming that only a few learnt convolutional filters are enough

‹ This work was supported by the CNRS-CEFIPRA project under grant NextGenBP
PRC2017.
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to analyse the entire image. This automatically leads to improved generalization
performance, and to a reduction of over-fitting effects. Nowadays, the success of
CNNs have become so pervasive that in top tier conferences more than half of the
papers are based on it. However there are some stark shortcomings. First, CNNs
cannot be learned without supervision since they are based on backpropagation.
Getting large volumes of labeled data is a challenge in many application fields
outside digital imaging, e.g. medical imaging and remote sensing. Secondly, there
is no guarantee that the learned filters are mutually different; CNN just initial-
izes them randomly and depends on the non-convergence of backpropagation
algorithm to maintain the mutual difference.

In dictionary learning, a dictionary is learned from the data such that it can
synthesize the data from the learned coefficients [6, 7]. Inspired by the success
of CNN models, there has been recently an increased interest for convolutional
dictionary learning models, where the sought dictionary is expressed as convo-
lutive operators associated to kernels with various sizes and shapes [10–12]. The
field is still nascent and the performance of such techniques have yet to reach
those of CNNs.

Transform learning can be viewed as the analysis equivalent of dictionary
learning, where a basis (transform) is learned such that it analyzes the data to
generate the coefficients [13–15]. Such formulation has been mainly used for the
solution of inverse problems arising in image and signal processing; there are
only a handful of studies that use it for machine learning tasks. In [8], transform
learning (dubbed as analysis sparse coding) was used for unsupervised feature
extraction. A later work [9] imposed discriminative penalties on it. In [17], a
kernelized version of transform learning has been proposed. Deep versions of
transform learning are also getting developed [18, 19].

A possible issue with the dictionary learning formulation is its synthesis na-
ture; in neural network terms, this would correspond to a feed-backward neu-
ral network. On the other hand, transform learning based techniques are inter-
pretable as a feed-forward neural network. Motivated by this observation, and by
the promising results obtained by convolutional models (either based on CNNs or
dictionary learning), we introduce in this work a novel transform learning strat-
egy, called convolutional transform learning. To understand our proposal, one
needs to rethink transform learning as a neural network. Instead of looking at a
transform as a basis, one can think of it as connections from the input (data) to
the representation (coefficient). With this interpretation, a conceptual extension
to a convolutional formulation is then natural. The learning of filters/weights
will be unsupervised which is an additional advantage in contrast to CNN. A
spectral barrier penalty will be employed, in order to promote the diversity of
the learned filters, expecting improved performance in terms of analysis met-
rics. Our learning procedure will be sufficiently versatile so that the proposed
formulation can easily be extended to any machine learning problem.

In the following sections, we describe the proposed formulation, the associ-
ated optimization algorithm, we present experimental results on several image-
based datasets, and finally we draw conclusions.
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2 Background

In this section, we recall the concepts of dictionary and transform learning.

2.1 Dictionary Learning

Dictionary learning is a popular approach to learn a representation from the data
in an unsupervised fashion. From the given input data S, a dictionary/basis D
and coefficients/features X are learned in such a way that the data S can be
reproduced from the learned dictionary and coefficients. Mathematically, this is
represented as

S “ DX. (1)

For learning the sparse representations pD,Xq, the most popular technique is
probably K-SVD [7], which aims to solve the following problem:

minimize
D,X

}S ´DX}2F such that }X}0 ď τ, (2)

with τ ą 0 the desired level of sparsity. Other techniques, based on more sophis-
ticated priors can also be used [9–12].

2.2 Transform Learning

Dictionary learning can be seen as the task of inferring a synthesis transform from
the data. The dual task of inferring an analysis transform from the data is called
transform learning. Mathematically, this concept is expressed as ST « X, where
T is the analysis transform, S is the data, and X the corresponding coefficients.
For instance, in [13], the following formulation was proposed to estimate the
matrices T and X:

minimize
T,X

}ST ´X}2F ` λp}T }
2
F ´ log detT q ` β}X}1, (3)

with λ ą 0 and β ą 0. Hereabove, the ´ log det term imposes a full rank on
the learned transform; this prevents the degenerate solution T “ 0, X “ 0. The
additional penalty }T }2F is to balance scale; without this the ´ log det term can
keep on increasing and producing degenerate results in the other extreme. Both
of these additional constraints promote the good conditioning of the learned
transform. Finally, the term }X}1 imposes a sparsity constraint on the learned
coefficients.

Transform learning model is expected to be more general than dictionary
learning in its notion of compressibility. It also leads to a faster learning scheme as
the sparse coding step is simply one step of thresholding as contrast to dictionary
learning, where the sparse coding step typically involves the inversion of a linear
system. Our proposal is to extend the above formulation to the case when matrix
T encodes a convolutive structure, mimicking one layer of CNN.
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3 Proposed approach

We now introduce our formulation of convolutional transform learning in Section
3.1, the associated optimization algorithm in Section 3.2, and the mathematical
derivations in Sections 3.3–3.4.

3.1 Convolutional Transform Learning

Let us consider a dataset
 

spkq
(

1ďkďK
with K entries in RN . Our convolutional

transform learning formulation relies on the key assumption that matrix T gath-
ers a set of M kernels t1, . . . , tM with M entries, i.e.

T “ rt1 | . . . | tM s P RMˆM . (4)

The proposed model then reads:

p@k P t1, . . . ,Kuq SpkqT « Xk. (5)

Hereabove,
`

Spkq
˘

1ďkďK
P RNˆM are Toeplitz matrices associated to pspkqq1ďkďK

such that:

p@k P t1, . . . ,Kuq SpkqT “
“

Spkqt1 | . . . | S
pkqtM

‰

“
“

t1 ˚ s
pkq | . . . | tM ˚ spkq

‰
(6)

where ˚ is a discrete convolution operator with suitable padding, and

p@k P t1, . . . ,Kuq Xk “
“

x
pkq
1 | . . . | x

pkq
M

‰

, (7)

contains the coefficients associated to each entry k P t1, . . . ,Ku of the dataset.
Let us denote:

X “ rXJ1 | . . . | X
J
Ks
J P RNKˆM . (8)

The goal is then to estimate pT,Xq from
 

spkq
(

1ďkďK
. To this aim, we propose

to solve the following optimization problem generalizing (3) to our convolutional
learning framework:

minimize
TPRMˆM ,XPRNKˆM

F pT,Xq (9)

where the objective function F is defined, for every T P RMˆM and every X P

RNKˆM as:

F pT,Xq “
1

2

M
ÿ

m“1

K
ÿ

k“1

}tm ˚ s
pkq ´ xpkqm }22

`

M
ÿ

m“1

K
ÿ

k“1

´

β}xpkqm }1 ` ιr0,`8rpx
pkq
m q

¯

` µ}T }2F ´ λ log detT (10)

“
1

2

K
ÿ

k“1

}SpkqT ´Xk}
2
F ` µ}T }

2
F

´ λ log detT ` β}X}1 ` ιr0,`8rNKˆM pXq. (11)



Convolutional Transform learning 5

Hereabove, function ιr0,`8r denotes the indicator function of the positive or-
thant, equals to 0 for nonnegative entries, `8 elsewhere. Moreover, pλ, µ, βq P
s0,`8r3 are regularization parameters.

3.2 Optimization algorithm

The resolution of Problem (9) requires an efficient algorithm for dealing with
nonsmooth functions and hard constraints. In the optimization literature, prox-
imal algorithms constitute one of the most efficient approaches to tackle such
problems [22–24]. The key tool in those methods is the proximity operator [25,
26] of a proper, lower semi-continuous, convex function ψ : RN ÞÑs ´ 8,`8s
defined as:1

p@rx P RN q proxψprxq “ arg min
xPRN

ψpxq `
1

2
}x´ rx}2. (12)

Problem (9) fits nicely into the framework provided by the alternating prox-
imal algorithm from [24, 27]. For any initialization T r0s P RMˆM and Xr0s P
RNKˆM , its iterations are as follows:

For n “ 0, 1, . . .
Z

T rn`1s “ proxγ1F p¨,Xrnsq
`

T rns
˘

Xrn`1s “ proxγ2F pT rn`1s,¨q

`

Xrns
˘

(13)

where γ1 and γ2 are some positive constants. The convergence of sequence
pT pnq, XpnqqnPN to a minimizer of F is guaranteed, as a consequence of the
convergence properties of the proximal regularization of Gauss-Seidel method
algorithm established in [24]. In the remaining of this section, we show that the
updates on both variables T and X have closed form expressions, and thus can
be computed with high precision in an efficient manner.

3.3 Update of T

Let n P N. Then, by definition,

T rn`1s “ proxγ1F p¨,Xrnsq

´

T rns
¯

(14)

“ argminTPRMˆM
1

2

K
ÿ

k“1

}SpkqT ´X
rns
k }2F

` µ}T }2F ´ λ log detT `
1

2γ1
}T ´ T rns}2F . (15)

Using [28], we deduce that:

T rn`1s “
1

2
Λ´1{2V

´

Σ ` pΣ2 ` 2λIM q
1{2

¯

UJ, (16)

1 See also http://proximity-operator.net/
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with

Λ “
K
ÿ

k“1

pSpkqqJSpkq ` γ´1
1 IM ` 2µIM , (17)

the singular value decomposition:

UΣV J “

˜

K
ÿ

k“1

pX
rns
k qJSpkq ` γ´1

1 T rns

¸

Λ´1{2, (18)

and IM the identity matrix of RM .

Remark for rectangular T : Let us emphasize that our approach, and the
above update can easily be generalized to the case when matrix T is rectangular,
that is T P RM1ˆM2 with non necessarily equality between M1 and M2. Then,
the penalization term on T should be replaced by:

p@T P RM1ˆM2q RpT q “

#

µ}T }2F ´ λ
řM
m“1 logpλmq if T P S``M ,

`8 otherwise,
(19)

with M “ minpM1,M2q, pλmq1ďmďM are the singular values of T and S``M
indicates the set of matrices T P RM1ˆM2 with strictly positive singular values
(i.e. T has rank equals to M). The gradient of (19) on its definition domain
reads:

p@T P S``M q ∇RpT q “ 2µT ´ λT :, (20)

with p¨q: the pseudo-inverse operation (equivalent to inverse, when M1 “M2 “

M). Using Proposition 24.68 from [21], we can determine the new update for
variable T in our algorithm: Let n P N. Then:

T rn`1s “ proxγ1F p¨,Xrnsq

´

T rns
¯

(21)

“ argminTPRM1ˆM2

1

2

K
ÿ

k“1

}SpkqT ´X
rns
k }2F ` µ}T }

2
F ` λRpT q

`
1

2γ1
}T ´ T rns}2F (22)

“
1

2
Λ´1UDiag

´”

σ1 ` pσ
2
1 ` 2λq1{2, . . . , σM ` pσ2

M ` 2λq1{2, 0, . . . , 0
ı¯

V J

(23)

with

ΛJΛ “
K
ÿ

k“1

pSpkqqJSpkq ` γ´1
1 IM1

` 2µIM1
, (24)

and the singular value decomposition:

UΣV J “

˜

K
ÿ

k“1

pX
rns
k qJSpkq ` γ´1

1 T rns

¸

Λ´1, (25)
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with U P RM1ˆM1 , V P RM2ˆM2 orthogonal matrices and

Σ “ Diag prσ1, . . . , σM , 0, . . . , 0sq .

The impact of log-det term in (10) is straight-forward. Such penalty allows
to ensure that the kernels are diverse enough to capture good correlations and
hence generate good features. Changing the penalty parameter associated to the
log-det term has an important impact on the learned kernels. When the kernel
size equals the number of its elements (i.e., square case), then a full rank property
is enforced on T , and in the limit case when µ tends to infinity, the operator T
is such that T´1 “

2µ
λ T .

3.4 Update of X

Let n P N. Then, using the definition of the proximity operator,

Xrn`1s “ proxγ2F pT rn`1s,¨q

´

Xrns
¯

(26)

“ argminXPRKNˆM
1

2

K
ÿ

k“1

}SpkqT rn`1s ´Xk}
2
F

` β}X}1 ` ιr0,`8rKNˆM pXq `
1

2γ2
}X ´Xrns}2F . (27)

By relying on the useful properties of the proximity operator listed in [26], we
obtain that, for every k P t1, . . . ,Ku,

X
rn`1s
k “ max

˜

S γ2β
γ2`1

˜

X
rns
k ` γ2S

pkqT rn`1s

γ2 ` 1

¸

, 0

¸

(28)

where Sθ denotes the soft thresholding operator with parameter θ ě 0, i.e.:

p@u P Rq Sθpuq “

$

’

&

’

%

u` θ if u ă ´θ

0 if u P r´θ, θs

u´ θ if u ą θ.

(29)

4 Numerical results

To assess the performance of the proposed approach, we considered the following
datasets of small-to-medium size, on which we performed feature extraction.

YALE [29]. The Yale dataset contains 165 images of 15 individuals, down-
scaled to 32-by-32 pixels. There are 11 images per subject, one per different
facial expression or configuration. For our experiments, we shuffled all the sam-
ples, and took 70% for training and 30% for testing. Moreover, we generated
different train/test splits: YALE-2,. . . ,YALE-8. In a YALE-p dataset, p images
per subject are kept in train set, and 11´p images are kept in test set. So doing,
train set contains 15p images and test set contains 15p11´ pq images.
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E-YALE-B [30]. The Extended Yale B database contains 2432 images with 38
subjects under 64 illumination conditions. Each image is cropped to 192-by-168
pixels, and downscaled to 48-by-42 pixels. For our experiments, we shuffled all
the samples, took 70% for training and 30% for testing.

AR-Face [31]. This database contains more than 4000 images of 126 different
subjects (70 male and 56 female). The images have various facial expressions,
the lighting varies, and some of the images are partially occluded by sunglasses
and scarves. For our experiments, we selected 2600 images of 100 individuals
(50 males and 50 females), that is 26 different images for each subject. Train set
contains 2000 images and 600 images are kept in test set. Each image has 540
features.

4.1 Classification Accuracy

We compared the proposed feature extraction approach (ConvTL – convolutional
transform learning) with transform learning (TL) [8] and dictionary learning
(DL) [7]. Since our method is unsupervised, it is only fair to compare with other
unsupervised representation learning tools. As these are all unsupervised learning
methods, we evaluated their performance by feeding the extracted features to
a supervised classifier and then computing the classification accuracy. We also
performed the classification directly on raw images (Raw). For the classification
task, we used two popular techniques: nearest neighbor (NN) and support vector
machine (SVM). Our algorithm was ran until convergence (typically 10 iterations
are sufficient), with parameters γ1 “ γ2 “ 1. For every tested method, the hyper-
parameters were cross-validated. The results are reported in Table 1.

We found that the proposed method (ConvTL) yields better results than
regular transform learning (TL) for all the considered datasets and classifiers,
while being better than dictionary learning (DL) on all the datasets when using
nearest neighbor classifier, and on YALE, E-YALE-B, YALE-2, YALE-6, YALE-
7, and YALE-8 when using SVM classifier.

To complete our analysis, we also compared to a convolutional neural network
(CNN) trained on raw images through a standard supervised classification pro-
cedure. We used a custom CNN composed of the following layers: Conv[64ˆ3ˆ3]
Ñ ReLUÑ Pool[2ˆ 2]Ñ BNormÑ Conv[128ˆ 3ˆ 3]Ñ ReLUÑ Pool[2ˆ 2]
Ñ BNorm Ñ Dropout Ñ FC[256] Ñ ReLU Ñ FC[classes] Ñ Softmax.

According to the results reported in Table 1, the proposed ConvTL compares fa-
vorably with the CNN. This may be related to the fact that CNNs are known to
require large training sets in order to achieve breakthrough performance, whereas
the considered datasets are small.

Another important observation is that in most of our experiments on down-
sampled data, we have observed that SVM outperforms KNN. Intuitively, when
we have a limited set of points in many dimensions, SVM tends to be very
good because it should be able to find the linear separation that should exist.
Moreover, SVM is expected to be robust to outliers since it only uses the most
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Table 1: Classification accuracy on benchmark datasets.

Dataset Raw TL DL ConvTL

N
N

cl
a
ss

ifi
er

YALE 58.00 68.00 54.00 70.00
E-YALE-B 71.03 72.28 71.72 84.00
AR-Faces 55.00 53.50 54.50 56.00
YALE-2 43.40 49.63 43.70 51.85
YALE-3 49.40 48.33 47.50 55.83
YALE-4 52.38 50.48 44.76 54.28
YALE-5 51.11 53.33 44.44 54.44
YALE-6 53.33 50.67 50.67 57.33
YALE-7 60.20 61.67 53.33 66.67
YALE-8 63.60 57.78 57.78 71.11

S
V

M
cl

a
ss

ifi
er

YALE 68.00 78.00 80.00 88.00
E-YALE-B 93.24 94.21 95.58 97.38
AR-Faces 87.33 84.33 97.67 88.87
YALE-2 58.52 51.11 58.52 62.22
YALE-3 62.50 60.83 66.67 64.17
YALE-4 60.95 53.33 64.76 64.52
YALE-5 66.67 57.78 68.89 66.67
YALE-6 73.33 61.33 81.33 82.67
YALE-7 80.00 66.67 78.33 83.33
YALE-8 80.00 71.11 80.00 84.44

C
N

N
cl

a
ss

ifi
er

YALE 84.00 - - -
E-YALE-B 98.60 - - -
AR-Faces 95.50 - - -
YALE-2 62.96 - - -
YALE-3 64.17 - - -
YALE-4 67.60 - - -
YALE-5 74.44 - - -
YALE-6 76.00 - - -
YALE-7 81.67 - - -
YALE-8 82.22 - - -

relevant points to find the linear separation (support vectors). In general, if we
have large dataset in a low dimensional space then KNN is probably a suitable
choice. If we have few points in the dataset, lying in a high dimensional space,
then a linear SVM is probably better.

Our classification accuracy is comparable to the one obtained with CNN. It
should however be emphasized that the upvote for the proposed methodology is
its unsupervised way of learning convolved features in contrast to CNN, where
convolved features are learned in a supervised manner.

The learned features by the proposed method are general enough to be used
for other image processing tasks by making small changes in the formulation.
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4.2 Computational Time

The proposed method is tested on small size images which are downsampled
from the original full size images. While the DL and TL methods take one to ten
seconds for learning representations, the proposed approach takes around one
minute. The difference in terms of computational time is simply related to the
fact that, in case of TL and DL, the transform requires a matrix-vector product
while in the proposed approach, convolution and deconvolution operations are
needed.

4.3 Analysis of the learned kernels

A given number M2 of kernels with M1 “ M2
2 coefficients is learned to ideally

represent the dataset. Each kernel tm is convolved with the image s to generate
a different feature vector xm. The intra-kernel diversity is taken care by the
penalties in the proposed formulation.

Figure 1 shows the kernels learned on YALE dataset, for different sizes M2 P

t3, 5, 7, 9u. One can observe that the proposed algorithm is capable of learning
nontrivial and nonidentical kernels, thanks to the regularization on T present in
(9). In particular, the results reported in Table 1 were obtained by fixing M2 “ 5,
which corresponds to a good trade-off between model accuracy and complexity.

Since M1 ąM2 here, the estimated T is rectangular and over-complete. The
retrieved kernels are distinct from each other, as soon as µ ą 0. In contrast, if
we had considered a large number of small size kernels (i.e., rectangular case
with M1 ăM2), T would have been under-complete and the number of distinct
kernels would be equals to the smallest dimension of T , that is M1; the others
being some linear combination of each other. The results for this scenario are
not presented here due to the lack of space.

Note that the initialization of T plays no role in the learning process, since
the optimization problem in (9) is convex.

5 Conclusion

This paper introduces a novel representation learning technique, named convo-
lutional transform learning. Comparison was performed with the off-the-shelf
dictionary learning and transform learning formulations on image classification
tasks. In the future, we plan to compare with several other representation learn-
ing techniques, namely autoencoder and its convolutional version, restricted
Boltzmann machine and its convolutional version discriminative variants of dic-
tionary and transform learning.

Our current formulation relies on an efficient alternating optimization tech-
nique with sounded theoretical guarantees. When applied to large scale problems,
the approach can nonetheless be quite time consuming, so that, in the future we
plan to parallelize portions of the algorithm with the aim to improve its com-
putational efficiency. This will allow us to compare with deeper versions of the
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(a) M2 “ 3

(b) M2 “ 5

(c) M2 “ 7

(d) M2 “ 9

Fig. 1: Kernels learned on YALE dataset.

aforesaid techniques on larger datasets. The next possible extension to the pro-
posed method could be making it multilayered architecture involving various size
and number of kernels in each layer. One can expect the multilayer formulation
to scale well with large number of full size images.
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