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Abstract

This paper focuses on the construction of an expo-
nential observer for an age-structured model of an ex-
ploited fish population in order to get an estimation of
the number of fishes by age class. The considered model
is nonlinear and involves a stock-recruitment function
which is not well known. The observer that we con-
struct is independent of this function.

Key words: discrete-time systems, estimation, non-
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1 Introduction

We consider a population of exploited fish which is
structured in n age classes (n ≥ 2); under some as-
sumptions on the population, we can represent the dy-
namics of the population by the following system of
difference equations:



















x1(t+ 1) = f(
∑n

i=1 bixi(t))
x2(t+ 1) = x1(t) exp(−M1 − q1E(t))

...
...

xn(t+ 1) = xn−1(t) exp(−Mn−1 − qn−1E(t))
(1)

where f : IR+ → IR+ is the stock-recruitment function.
It is a continuous map such that f(0) = 0 and

• bi is the number of individuals produced by indi-
viduals of the ith age class;

• Mi is the natural mortality of the individuals of
the ith age class;

• qi is the catchability of the individuals of the ith

age class;
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• E(t) is the fishing effort at time t and is regarded
as an input.

Several authors have proposed different kind of func-
tions f (see [1, 4, 6, 7]. The most quoted mathematical
expressions of the nonlinear recruitment function f are
(β being a positive parameter):

Beverton and Holt f(x) =
x

1 + βx
;

Ricker f(x) = e−βx ;

Powerfunction f(x) = x−β ;

Shepherd f(x) =
x

1 + βxc
, (c > 0).

Our aim is to construct an observer, that is to say,
an auxiliary system of difference equations whose state
z(t) gives an estimate of the state x(t) of system (1).
More precisely we shall have lim

t→+∞

(z(t)− x(t)) = 0

with an exponential rate of convergence, i.e, there ex-
ists α < 1 such that, for all t ∈ IN and for all initial
conditions (x(0), z(0)), one has

| z(t)− x(t) |≤ αt | z(0)− x(0) | .

We wish to do this job without using a precise expres-
sion of the function f : we shall use only some mini-
mal assumption on this function. One can notice that
although the theory of observer design for linear sys-
tems is a well developped field, its analogous part for
nonlinear systems is an intriguing subject, and is still
receiving considerable attention by many researchers.
The design of state observers for discret-time systems
has been studied in many articles. One can cite, for
example, [2, 3] where the problem has been addressed
for general systems but the given observers are only
local and here we rae interested in the construction of
a global observer. In [5], the observer design is done
in the context of solving simultaneous nonlinear equa-
tions by using Newton’s algorithm. Here we give a new
procedure that simplifies the observer design for the
considered system.



2 Design of an exponential observer

System (1) can be rewritten with standard control no-
tations:







x(t + 1) = F
(

x(t), u(t)
)

;

y(t) = h
(

x(t), u(t)
)

;
(2)

where x(t) ∈ Ω = IRn
+, is the state of the system, u(t) =

E(t) ∈ IR+, is the control (here it is the fishing effort)
and y(t) ∈ IR+, is the measurable output of the system.

We assume that we can measure the quantity of catched
fishes which is expressed by :

y(t) =

n−1
∑

i=1

xi(t) e
−Mi(1 − exp(−qiE(t))).

We suppose that the fishing effort is subject to the
constraints:

0 < Em ≤ E(t) ≤ EM

(this assumption is reasonable because if we don’t catch
any fish, we can’t get any information on the popula-
tion).

Below, we expose a system that we claim to be an ob-
server for (1), for simplicity of exposition, the construc-
tion is made in the 3-dimensional case (3 age classes).


















z1(t+ 1)=
y(t+ 1)− (e−M2 − v2(t+ 1))v1(t)z1(t)

e−M1 − v1(t+ 1)
z2(t+ 1)=v1(t)z1(t)

z3(t+ 1)=v2(t)z2(t)
(3)

where we put vi(t) = exp(−Mi − qiE(t)).

Proposition 2.1 Assume that Em ≥ ln 2/q1, then
system (3) is an observer for system (1).

Proof. Letting e(t) = x(t)− z(t), we have:































e1(t+ 1) = x1(t+ 1)− z1(t+ 1)

= −
e−M2 − v2(t+ 1)

e−M1 − v1(t+ 1)
v1(t)e1(t)

e2(t+ 1) = v1(t)e1(t)

e3(t+ 1) = v2(t)e2(t)

(4)

thus:

| e1(t+ 1) | =
1− e−q2E(t+1)

1− e−q1E(t+1)
v1(t) | e1(t) |

≤
1− e−q2EM

1− e−q1Em

e−M2e−M1−q1Em | e1(t) |

now since Em ≥ ln 2/q1, e−q1Em/(1 − e−q1Em) ≤ 1
which implies

| e1(t+ 1) | ≤ α | e1(t) |

where α = e−M2(1 − e−q2EM) < 1. This proves the
exponential convergence of e1(t) to zero and from (4),
it is clear that the same is true for e2(t) and e3(t).

Remark. There is an alternative proof which uses the
following candidate Lyapunov function V (e) = eTPe,
with:

P =











3
1−α2 0 0

0 2 0

0 0 1











Where, α = e−M2(1− e−q2EM) < 1.
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