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Abstract: In this paper we investigate the stabi-
lizability problem of a class of multi-input multi- out-
put nonlinear systems which linearization at the origin is
controllable and observable. Under assumptions on the
nonlinear part we prove : (a) the system is globally expo-
nentially stabilizable (G.E.S) by means of linear feedback
law. (b) the system can be G.E.S using a state estimation
given by an observer.

Keywords: exponential stabilization, feedback, non-
linear systems, Lyapunov functions, observer.

1 Introduction

We consider a nonlinear system of the form :{
ẋ = Ax + Bu + g(x, u)

x ∈ IRn, u ∈ IRr, A ∈ Mn,n(IR), B ∈ Mn,r(IR)
(1)

where Mn,m(IR) is the set of matrices with n rows and m
columns and the map

f = (f1, .., fn)T : IRn × IRm → IRn

is Lipschitz continuous such that f(0, 0) = 0. We assume
that the pair (A,B) is controllable and is in Brunovsky
canonical form, i.e.

• A is a block–diagonal matrix of the form

A =


Ak1 0 . . . 0
0 . . .
. . . . .
. . . . .
. . . 0
0 . . . 0 Akr



where Aki
, 1 ≤ i ≤ r, is a matrix in Mki,ki

(IR) given
by

Aki
=


0 1 0 . . 0
. . . . .
. . . . .
. . . 0
0 . . . 0 1
0 . . . . 0



• B is a block–diagonal matrix of the form

B =


bk1 0 . . . 0
0 . . .
. . . . .
. . . . .
. . . 0
0 . . . 0 bkr



where bki
, 1 ≤ i ≤ r, is a column–vector in IRki given

by

bki
=


0
.
.
0
1



In this paper, we study nonlinear systems of the form (1)
which have the following property :

(H1) There exists a positive constant K such that for
any i = 1, . . . , n the following holds :{ |gi(x, u)| ≤ K ‖(x1, . . . , xi, 0, . . . , 0)‖

∀x = (x1, . . . , xn) ∈ IRn , ∀u ∈ IRr
(2)

where ‖ ‖ is the usual Euclidean norm on IRn.

In section 2, we shall see that if condition (H1) is satis-
fied , then system (1) is globaly exponentially stabilizable



(G.E.S.) at the origin by means of a linear feedback. This
is a generalization of a result of Tsinias [3] who studied
the single input systems, our proof is different from its
one and it is based on an idea from [1].

In section 3, we suppose in addition
(H2) gi(x, u) = gi(x1, . . . , xi, 0, . . . , 0, u)
so we can construct an observer for system (1) with the
output

y = Cx (3)

where

C =


Ck1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 Ckp


Cki = ( 1 0 . . . 0 )

This observer is of the form :

˙̂x = Ax̂ + Bu + g(x̂, u)− Ẽ(Cx̂− y) (4)

We show that the error will tend to zero with an expo-
nential rate of convergence and we construct a dynamic
feedback which globally exponentially stabilizes system
(1-3).

2 Stabilization

Before given our main result we recall some basic notions
about exponential stability. Let us consider a system of
ordinary differential equations

ẋ = X(x) , x ∈ IRn (5)

We supoose that the origin is an equilibrium point for
the vector field X i.e, X(0) = 0 and we denote Xt(x)
the solution of (5) starting from the point x at t = 0
(X0(x) = x). We say that (5) is globally exponentially
stable at the origin if there exist positive constants M
and α such that

‖Xt(x)‖ < M‖x‖e−αt

for any initial condition x in IRn and any t > 0. To prove
exponential stability we shall use the following Lyapunov
theorem [2] :
Theorem The solution xt ≡ 0 of the equation (5) is glob-
ally exponentially stable if there exist a Lyapunov func-
tion V and three positive constants k1, k2, k3 such that
for any x ∈ IRn one has :

k1‖x‖2 ≤ V (x) ≤ k2‖x‖2

and

V̇ (x) = X.V (x) = 〈∇V (x), X(x)〉 ≤ −k3‖x‖2

We shall say that a control system{
ẋ = f(x, u) , x ∈ IRn , u ∈ IRr

f(0, 0) = 0

is globally exponentially stabilizable (G.E.S) at the origin
of IRn if there exists a continuous feedback

u : IRn → IRr

x 7→ u(x)

such that the closed loop system ẋ = f(x, u(x)) is glob-
ally exponentially stable at the origin.

The aim of this section is to prove that system (1)
is G.E.S and to give explicitly the stabilizing feedback
provided that assumption (H1) is satisfied. To this end
let α ∈ IR , α > 1 and introduce the following matrix :

Φ =


α−1 0 . . . 0

0 α−2 . . .
...

...
. . . . . . 0

0 . . . 0 α−n


One can write

Φ =


Φk1 0 . . . 0

0 Φk2

. . .
...

...
. . . . . . 0

0 . . . 0 Φkr


where r is the number of the blocs of matrix A and

Φki =


α−(ki−1+1) 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 α−(ki−1+ki)


with k0 = 0

Using the above decomposition, a simple computation
can prove the following :

lemma 1 Matrices A, B and Φ defined above satisfy :

i) α Φ−1A Φ = A

ii) ∀F ∈ Mr,n(IR) there exists F̃ ∈ Mr,n(IR)
such that

BF̃ = α Φ−1BF Φ
and F̃ is given by the following formula :

F̃ = α BT Φ−1BF Φ

iii) ∀x ∈ IRn : α−n ‖x‖ ≤ ‖Φx‖ ≤ α−1 ‖x‖

We can now prove the main result of this section.

Theorem 1 If the assumption (H1) holds then the sys-
tem (1) is G.E.S. at the origin by means of a linear feed-
back

u = F̃ x

where F̃ is defined by (ii) and F is such that (A + BF )
has all its eigenvalues with negative real part.



Proof
Since the pair (A,B) is controllable there exists a matrix
F ∈ Mr,n(IR) such that (A + BF ) has all its eigenvalues
with negative real part. Let M = A + BF , there exists
a symmetric positive definite matrix S such that MT S +
SM = −Q, Q symmetric positive definite .

Now consider the function :

V (x) = xT Φ S Φ x

V is positive definite and proper (V is a quadratic Lya-
punov function). Let us evaluate its derivative along the
trajectories of the closed-loop system

ẋ = (A + BF̃ )x + g(x, F̃x) = M̃x + g(x, F̃x) (6)

V̇ (x) = xT ( ΦS Φ M̃ +M̃T Φ S Φ )x+2xT Φ S Φ g(x, F̃ x)
where M̃ = A + BF̃

Taking into account (i) and (ii) we have

M̃ = A + BF̃ = αΦ−1AΦ + αΦ−1BFΦ

M̃ = αΦ−1(A + BF )Φ = αΦ−1MΦ

Therefore :

V̇ (x) = α xT (Φ S M Φ + Φ MT S Φ) x

+2xT Φ S Φ g(x, F̃x)

V̇ (x) = −α xT Φ QΦ x + 2 xT Φ S Φ g(x, F̃x)

The matrix Q is symmetric definite positive so there ex-
ists a positive constant a such that :

xT ΦQΦx ≥ a ‖ Φx ‖2

where

a = inf
{
zT Qz / z ∈ Sn−1 the unit sphere in IRn

}
And then :

V̇ (x) ≤ −α a ‖Φx‖2 + 2 ‖Φx‖ ‖S ‖
∥∥∥Φg(x, F̃x)

∥∥∥
According to (H1) we have∥∥∥Φg(x, F̃x)

∥∥∥2

=
n∑

i=1

1
α2i

g2
i (x, F̃x)

≤ K2
n∑

i=1

1
α2i

(x2
1 + · · ·+ x2

i )

≤ K2
n∑

j=1

(xj

αj

)2

(1 +
1
α2

+ · · ·+ 1
α2(n−j)

)

≤ nK2 ‖Φx‖2

So
V̇ (x) ≤ (−α a + 2

√
n K ‖S‖) ‖Φx‖2

If we choose α > Max

(
1 ,

2
√

n K ‖S‖
a

)
then

V̇ ≤ −c ‖Φx‖2

where c is a positive constant.

Since ‖Φx‖ ≥ 1
αn

‖x‖ it follows that :

V̇ (x) ≤ −c′ ‖x‖2

where c′ is a positive constant , and this completes the
proof of theorem 1.

Example 1. The three dimensional system
ẋ1 = x2 + x1cos(u(x2

2 + x1 + x3))

ẋ2 = x3 +
x1 + x2

1 + x2
3

ẋ3 =
√

x2
1 + x2

2 + x2
3 e−u2

+ u

(7)

has the form (1) with

g(x, u) =


x1cos(u(x2

2 + x1 + x3))
x1 + x2

1 + x2
3√

x2
1 + x2

2 + x2
3 e−u2


which satisfies condition (H1), so system (7) is G.E.S
and s stabilizing feedback can be computed according
to theorem 1 as follows : We choose F = (−1,−3,−3),
Q = −IdIR3 and we solve MT S + SM = Q :

S =



37
16

31
16

1
2

31
16

13
4

13
16

1
2

13
16

7
16


We compute F̃ = α BT Φ−1BF Φ. The feedback law

u = −α3x1 − 3α2x2 − 3αx3

globally exponentially stabilizes system (7) if we choose

α > Max

(
1 ,

2
√

n K ‖S‖
a

)
' 10

√
3

.

3 Construction of the observer
and stabilization using a state
estimation

Theorem 2 If the condition (H1) and (H2) are satisfied
then there exists Ẽ ∈ Mn,p(IR) such that the system (4)
is an exponential observer for (1-3).



Proof
The error e = x̂− x satisfies the following equation :

ė = (A− ẼC)e + g(x̂, u)− g(x, u) (8)

since (A,C) is observable, there exists E ∈ Mn,p(IR) such
that (A − EC) has all its eigenvalues with negative real
part.
Remark that :

|gi(x, u)− gi(x̂, u)| ≤ K ‖pi(x− x̂)‖ = K ‖(e1, .., ei)‖

where pi : IRn → IRi is the canonical projection.
So if we take

Ẽ = α Φ−1EC ΦCT

then , according to the proof of theorem 1, there exists
a quadratic Lyapunov function W such that for α large
enough :

Ẇ (e) ≤ −b ‖e‖2
, b > 0

This proves that ‖e(t)‖ ≤ M‖e0‖e−αt so (4) is an expo-
nential observer for (1-3).

Now we use the above results to achieve the stabiliza-
tion of system (1) with the state estimation given by the
observer (4). Consider the following system defined on
IRn × IRn :{

ẋ = Ax + BF̃ x̂ + g(x, F̃ x̂)

ė = (A− ẼC)e + g(x̂, F̃ x̂)− g(x, F̃ x̂)
(9)

Theorem 3 If the assumption (H1) and (H2) hold then
(9) is globally exponentially stable i.e. the closed- loop
system (1-3), with the state estimation given by the ob-
server (4) is G.E.S.

Proof
Since e = x̂− x, system (9) becomes :{

ẋ = (A + BF̃ )x + BF̃e + g(x, F̃ x̂)

ė = (A− ẼC)e + g(x̂, F̃ x̂)− g(x, F̃ x̂)
(10)

According to the proofs of theorem 1 and theorem 2, there
exist two quadratic Lyapunov functions V and W such
that :

〈∇V (x), (A + BF̃ )x + g(x, F̃ x̂)〉 ≤ −c′ ‖x‖2

〈∇W (e), (A− ẼC)e + g(x̂, F̃ x̂)− g(x, F̃ x̂)〉 ≤ −b ‖e‖2

where 〈., .〉 is the usual Euclidean inner product on IRn.

Let U be the function defined on IRn × IRn by :

U(x , e) = β V (x) + W (e) , β > 0

U is a quadratic positive definite function and we have :

U̇(x, e) = β〈∇V (x), (A + BF̃ )x + g(x, F̃ x̂)〉

+β〈∇V (x), BF̃ e〉

+〈∇W (e), (A− ẼC)e + g(x̂, F̃ x̂)− g(x, F̃ x̂)〉

So

U̇(x , e) ≤ −β c′ ‖x‖2 + 2 β K ′ ‖x‖ ‖e‖ − b ‖e‖2

where K ′ is a positive constant defined by :

〈∇V (x) , B F̃ e 〉 ≤ 2 K ′ ‖x‖ ‖e‖

If we choose β such that 0 < β <
c′ b

K ′2 then U̇(x , e) is
negative definite on IRn×IRn and so theorem 3 is proved.
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