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Abstract: In this paper, we study the global stabilization, by means of smooth state feedback, of partially
linear composite stochastic systems.
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1 Introduction

Many recent papers (see [1, 2, 3] and references therein) addressed the problem of The global stabilization, by
means of state feedback, of deterministic nonlinear control systems of the form :{

ẋ = f(x, y) x ∈ IRn

ẏ = Ay +Bu y ∈ IRp (1)

where u ∈ IRk is the control, A ∈Mp,p(IR), B ∈Mp,k(IR) and f is a smooth vector field such that :

(h1) The pair (A,B) is stabilizable.

(h2) The equilibrium x = 0 of ẋ = f(x, 0) is globally asymptotically stable (G.A.S).

In [3], the authors assumed that the dependence of f(x, y) on y is of the form :

(h3) f(x, y) = f(x, 0) +G(x, y).Cy.

with C ∈Mk,p(IR). They gave conditions on the linear subsytem{
ẏ = Ay +Bu

ỹ = Cy , ỹ ∈ IRk

under which there exist a matrix K ∈ Mk,p(IR) and a symmetric positive definite matrix P ∈ Mp,p(IR)
satisfying the following three conditions :

(H1) P (A+BK) + (A+BK)TP = −Q , with Q symmetric positive ( T = transpose).

(H2) (Q1/2, A+BK) detectable.

(H3) BTP = C.

Using the above assumptions, they proved that the system (1) is globally asymptotically stabilizable and they
gave the stabilizing feedback

u(x, y) = Ky − 1

2

(
G(x, y)

)T∇V (x)

where V is a smooth Lyapunov function satisfying

〈 ∇V, f(x, 0) 〉 < 0, ∀x ∈ IRn , x 6= 0 (2)
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The goal of our work is to show that the result of [3] can be extended when the nonlinear part of the
system (1) is corrupted by a noise which satisfies the same hypothesis (h3) as f . We prove that the stochastic
system {

dxt = f(xt, yt)dt+ g(xt, yt)dwt

dyt = (Ayt +Bu)dt

where both f and g are of the form (h3), is globally asymptotically stabilizable in probability, if (H1), (H2),
(H3) and the condition

(h’2) the solution xt ≡ 0 of dxt = f(xt, 0)dt+ g(xt, 0)dwt is globally asymptotically stable in probability,

hold.
Notice that the systems of the form{

dxt = f(xt, yt)dt+ g(xt)dwt

dyt = (Ayt +Bu)dt
(3)

have been studied in [4]. Under conditions on the dependence on y of the vector field f , the authors proved
that (3) is exponentially stabilizable in mean square if

(h”2) the solution xt ≡ 0 of dxt = f(xt, 0)dt+ g(xt)dwt is exponentially stable in mean square.

Remark that (h”2) is stronger than (h’2).

2 Stochastic stability

The aim of this section is to recall the main definitions and results proved by Has’minskii (see [5], chapter V)
for the zero state of a stochastic differential equation to be stable in probability.

Let (Ω,F , P ) be an usual probability space and denote by w a standard IRm–valued Wiener process defined
on this space. Denote by (Ft)t≥0 the complete right–continuous filtration generated by the standard Wiener
process w. Let xt ∈ IRn be the stochastic process solution of the stochastic differential equation written in the
sense of Itô,

xt = x0 +

∫ t

o

b(xs) ds+

m∑
k=1

∫ t

0

σk(xs) o dw
k
s (4)

where b and σk, 1 ≤ k ≤ m, are Lipschitz functions mapping IRn into IRn such that

1. b(0) = 0 , σk(0) = 0 , 1 ≤ k ≤ m.

2. There exists a non–negative constant K such that

|b(x)|+
m∑

k=1

|σk(x)| ≤ K(1 + |x|)

for every x in IRn.

Furthermore, for any t ≥ 0 and x0 ∈ IRn, denote by xt(x0), t ≤ t, the solution at time t of the equation (4)
starting from the state x0 .

Then, the main notions of stochastic stability we are dealing with in this paper may be defined by

Definition 1 The solution xt ≡ 0 of the stochastic differential equation (4) is said to be stable in probability
if for any ε > 0 there exists δ > 0 such that

|x0| < δ ⇒ P

(
sup
t>0
|xt(x0)| > ε

)
= 0.

If, in addition, there exists a neighbourhood D of the origin such that

P

(
lim

t→+∞
|xt(x0)| = 0

)
= 1, ∀x0 ∈ D

the solution xt ≡ 0 of the stochastic differential equation (4) is said to be asymptotically stable in probability.
It is globally asymptotically stable in probability (G.A.S.P) if

P

(
lim

t→+∞
|xt(x0)| = 0

)
= 1, ∀x0 ∈ IRn
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Therefore, denoting by L the infinitesimal generator associated with the stochastic differential equation (4)
defined for any function Ψ in C2(IRn) by

LΨ(x) =

n∑
i=1

bi(x)
∂Ψ

∂xi
(x) +

1

2

n∑
i,j=1

ai,j(x)
∂2Ψ

∂xi∂xj
(x) (5)

where ai,j(x) =
∑m

k=1 σ
i
k(x)σj

k(x), 1 ≤ i, j ≤ n, one can prove the following stochastic Lyapunov Theorem
(see [5], [6]).

Theorem 1 Let D be a neighbourhood of the point x = 0 which is contained in IRn together with its boundary,
and assume that there exists a Lyapunov function V defined in D (i.e. a proper function V positive definite
mapping D into IR) such that

LV (x) ≤ 0 (respectively LV (x) < 0), ∀x ∈ D, x 6= 0

Then, the solution xt ≡ 0 of the stochastic differential equation (4) is stable (respectively asymptotically stable)
in probability. It is G.A.S.P if

LV (x) < 0, ∀x ∈ IRn, x 6= 0

In this paper, we shall make use of the latter Theorem and a stochastical version of Lassalle’s invariance
principle (see [7]), in order to prove that the class of nonlinear stochastic control systems introduced in the
following section is globally asymptotically stabilizable in probability.

3 Main result

The systems considered here are of the form
xt = x0 +

∫ t

0

f(xs, ys) ds+

∫ t

0

g(xs, ys) dws

yt = y0 +

∫ t

0

(Ays +Bu) ds

(6)

where the dependance of g on y is analogous to the one of f given by (h3), that is

g(x, y) = g(x, 0) +H(x, y)Cy (7)

We assume that the solution xt ≡ 0 is G.A.S.P for

xt = x0 +

∫ t

0

f(xs, 0) ds+

∫ t

0

g(xs, 0) dws

and a positive definite and proper function satisfying

L.V (x) = 〈 f(x, 0),∇V (x) 〉+
1

2
Tr

(
g(x, 0)

(
g(x, 0)

)T ∂2V

∂x2
(x)

)
< 0

is known. Then we can state :

Theorem 2 If there exist a matrix K ∈ Mk,p(IR) and a symmetric positive definite matrix P ∈ Mp,p(IR)
such that (H1), (H2) and (H3) hold then the system (6) is globally asymptotically stabilzable in probability
thanks to the following feedback

u = Ky − (G(x, y))T ∇V (x)− 1

2

(
H(x, y)

)T (∂2V
∂x2

(x)

)T

H(x, y)Cy (8)

Proof Let W (x, y) = V (x)+
1

2
yT P y. Denoting by L the infinitesimal generator associated with the stochas-

tic differential equation (6-8), and setting z =

(
x
y

)
, Z(z) =

(
f(x, y)

Ay +Bu(x, y)

)
and g̃(z) =

(
g(z)

0

)
, one

has

L.W (z) = Z.W (z) +
1

2
Tr

(
g̃(z)

(
g̃(z)

)T ∂2W

∂z2
(z)

)
= Z.W (z) +

1

2
Tr

(
g(z)

(
g(z)

)T ∂2V

∂x2
(x)

)
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According to the decomposition of f given by (h3) and the one of g given by (7), one get

Z.W (x, y) = 〈 f(x, 0) , ∇V (x) 〉 − 1

2
yT Qy + 〈∇V (x) , G(x, y)Cy 〉

+

〈
y , −PB

((
G(x, y)

)T ∇V (x) +
1

2

(
H(x, y)

)T (∂2V
∂x2

(x)

)T

H(x, y)Cy

)〉
and

1

2
Tr

(
g(z)

(
g(z)

)T ∂2V

∂x2
(z)

)
=

1

2
Tr

(
g(x, 0)

(
g(x, 0)

)T ∂2V

∂x2
(x) +H(z)Cy yTCT

(
H(z)

)T ∂2V

∂x2
(x)

)
So, from PB = CT one has

L.W (z) = 〈 f(x, 0) , ∇V (x) 〉 − 1

2
yT Qy +

1

2
Tr

(
g(x, 0)

(
g(x, 0)

)T ∂2V

∂x2
(x)

)

− 1

2

〈
y , CT

(
H(x, y)

)T (∂2V
∂x2

(x)

)T

H(x, y)Cy

〉
+

1

2
Tr

(
H(z)Cy yTCT

(
H(z)

)T ∂2V

∂x2
(x)

)
and using the fact that

Tr

(
H(z)Cy yTCT

(
H(z)

)T ∂2V

∂x2
(x)

)
=

〈
H(z)Cy ,

(
∂2V

∂x2
(x)

)T

H(z)Cy

〉

=

〈
y , CT

(
H(z)

)T (∂2V
∂x2

(x)

)T

H(z)Cy

〉
it follows

L.W (z) = L.V (x)− 1

2
yT Qy ≤ 0

According to the stochastical version of Lassale’s invariance principle (see [7]), the processus zt converges
in probability to Ω the largeste invariant set whose support is contained in the locus L.W (zt) = 0. Let
(xt, yt) be a complete solution of the closed-loop system (6) along which L.W (xt, yt) = 0, we must show that
(xt, yt) = (0, 0) for all t ≥ 0. Since L.W (x, y) = 0 ⇔ x = 0 and yTQy = 0, xt must be zero for all t ≥ 0
and yt will be a solution of ẏt = (A + BK)yt and must satisfy yTt Qyt = 0 for all t ≥ 0. By the detectability
assumption (H2) this implies yt = 0 for all t ≥ 0 and, hence, (xt, yt) = (0, 0). This completes the proof.
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