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Abstract. This extended abstract is about an effort to build a formal
description of a triangulation algorithm starting with a naive description
of the algorithm where triangles, edges, and triangulations are simply
given as sets and the most complex notions are those of boundary and
separating edges. When performing proofs about this algorithm, ques-
tions of symmetry appear and this exposition attempts to give an account
of how these symmetries can be handled. All this work relies on formal
developments made with Coq and the mathematical components library.

1 Introduction

Over the years, proof assistants in higher-order logic have been advocated as
tools to improve the quality of software, with a wide range of spectacular results,
ranging from compilers, operating systems, distributed systems, and security and
cryptography primitives. There are now good reasons to believe that any kind
of software could benefit from a formal verification using a proof assistant.

Embedded software in robots or autonomous vehicles has to maintain a view
of the geometry of the world around the device. We expect this software to rely
on computational geometry. The work described in this extended abstract con-
centrates on an effort to provide a correctness proof for algorithms that construct
triangulations.

2 An Abstract Description of Triangulation

Given a set of points, a triangulating algorithm returns a collection of trian-
gles that must cover the space between these points (the convex hull), have no
overlap, and such that all the points of the input set are vertices of at least one
triangle. When the input points represent obstacles, the triangulation can help
construct safe routes between these obstacles, thanks to Delaunay triangulations
and Voronoi diagrams.



The formal verification work starts by providing a naive and abstract view
of the algorithm that is later refined into a more efficient version. Mathemati-
cal properties are proved for the naive version and then modified for successive
refinements. When the proof is about geometry and connected points, it is nat-
ural to expect symmetry properties to play a central role in the proofs. In this
experiment, we start with a view of triangles simply as 3-point sets. We expect
to refine this setting later into a more precise graph structure, where each trian-
gle is also equipped with a link to its neighbors and costly operations over the
whole set of triangles are replaced by low constant time operations that exploit
information that is cached in memory.

From the point of view of formal verification, the properties that need to be
verified for the naive version are the following ones: all triangles have the right
number of elements, all points inside the convex hull are in a triangle, the union
of all the triangles is exactly the input, and there is no overlap between two
triangles.

The naive algorithm relies on the notion of separating edges of a triangle
with respect to a point: for a triangle {a, b, ¢} and a fourth point d, the point ¢
is separated from d if ¢ and d appear on different sides of the edge {a,b}. At this
point, it appears that life is much easier if we take the simplifying assumption
that three points of the input are never aligned. This assumption is often taken
in the early literature on computational geometry and we will also take it.

The point d is inside the triangle {a,b,c} exactly when no element of the
triangle is separated from the point d. When the point d is outside the triangle,
for instance when c is separated from d, the edge {a,b} will be called red. An
edge that is not red will be called blue.

Another important notion is the notion of boundary edge. An edge of the
triangulation is a 2-point subset of one of the triangles in the triangulation, a
boundary edge is an edge that belong to exactly one triangle. Boundary edges
are triangle edges, and as such they can be blue or red with respect to a new
point.

The algorithm then boils in the following few lines:

Take three points from the input: they constitute the first triangle, then take
the points one by one.

— If the new point is inside an existing triangle, then remove this triangle from
the triangulation and then add the three triangles produced by combining
the new point and all edges of the removed triangle.

— If the new point is outside, then add all triangles obtained by combining the
new point with all red boundary edges.

This algorithm terminates when all points from the input have been consumed.

3 Specifying the Correctness of the Algorithm

This algorithm is so simple that it seems proving it correct should be extremely
simple. However, geometry properties play a significant role, as is already visible
in the specification.



That the triangulation only contains 3-set seems obvious, as soon as the
input set does contain three points. When there are more than 3 points, say n
points, we can assume by induction that the triangulation of the first n-1 points
contains only-3 sets. Then, whether the new point is inside an existing triangle
or outside, the new elements of the triangulation are obtained by adding the
new point to edges of the previous triangulation. These operation always yield
3-point sets.

To verify that the union of all triangles is the input set, we need to show that
at least one triangle is created when including a new point. This is surprising
difficult, because it relies on geometry properties. If the new point is inside
an existing triangle, the algorithm obviously includes in the triangulation three
triangles that contain the new point. However, when the point is not inside a
triangle, there is no simple logical reason for which there should exist a boundary
edge that is also red. This requires an extra proof with geometrical content. Such
a proof was already formally verified by Pichardie and Bertot [I7].

With respect to boundary edges, when the triangulation is well-formed, all
boundary edges should form the convex hull of the input set. In other words, for
every point inside the convex hull, all boundary edges should be blue.

4 Formal Proof

When performing the proofs, it is interesting to exploit all the symmetry that
can be found. In paper proofs, it is often enough to explicit one configuration
and state rapidly that many other configurations can be proved similarly by
Symimetry.

4.1 Combinatorial Symmetries of Triangles

One example is the natural symmetry of triangles. When considering triangles,
Knuth [13] proposed that they should be viewed as ordered triplets abe, such
that one turns left when following the edges from a, b and then to c. Of course, if
one views triangles simply as sets, it does not make sense to distinguish between
oriented and non-oriented triangles. Thus, we need to add structure to the set,
which we do by giving names to the elements. Now, when giving these names,
we can do it in a way that ensures the obtained triangle to be oriented. When
doing our formalization work, it becomes natural to name tq, ts, t3 the three
points of ¢.

In practice, we don’t use integers for indexing the elements, because this
means we would have to give a meaning to t15. Instead, we use the type of inte-
gers smaller than 3 and we use the fact that this set can be given the structure
of a group. The mathematical component library already provides such a struc-
ture, noted >I_3. We profit from it and call 0, 1, and —1 the three elements.
A characteristic property in our development will be that ¢;, ¢;41, ;-1 form an
oriented triangle, of course with the convention that i+3 = ¢ and 0—1 = 2 when



dealing with elements of >I_3. This is a first way in which we attempt to deal
with symmetry. This is supported by the finite group concepts in the library.

We define a function three_points that maps any set of type {set P} (this
is the mathematical components’ notation for sets of elements of P) to a function
from °I_3 to P. This function is defined in such a way that it is injective and
its image is included in its first argument as soon as this set has at least three
points and the images of 0, 1, and —1 form an oriented triplet.

4.2 Geometric Symmetries of Triangles

Other symmetries come up when considering oriented triangles in the plane. In
his study of convex hull algorithms [I3], Knuth expresses that the following 5
properties are to be expected from the orientation predicate, when the 5 points
a, b, ¢, d, and e are taken to be pairwise distinct, and noting simply abc to
express that one turns left when following the path from a to b and then c.

abc = bea

abc = —bac

abc V bac

abd N\ bed N cad = abe

abc N\ abd A abe N\ acd A ade = ace

Cri Lo

Knuth calls these properties axioms of the orientation predicate and we will
follow his steps, even though from the logical point of view, these properties
are not really axioms because we can prove them for a suitable definition of the
orientation predicate (using the points’ coordinates and determinants).

The first axiom essentially says that from the geometrical point of view,
triangles exhibit a ternary symmetry. The second one makes it slightly more
precise by expressing that not any order sequence of three points forms an ori-
ented triangle. The third one states that we are working under the assumption
that no three points in the data set are aligned. The fourth axiom expresses that
the combination of three adjacent oriented triangles lead to fourth one. It also
has a natural ternary geometric symmetry, which is perhaps easier to see in the
following drawing:

C

b

a

Axiom 5 describes relations of four points relative to a pivot, in this case a.
It can be summarized by the following figure, where the topmost arrow (in blue)
is a consequence of all others.



To have a symmetric collection of axioms, we would actually need a similar
statement, but with all points pivoting around b. Knuth also recognizes this
need and actually shows that the symmetric picture (an axial symmetry) is a
logical consequence of all other axioms.

Using these axioms, we should be able to prove a statement like the following
if all vertices of a triangle {c,d,e} lay on the left of a segment [a,b], then any
point f inside the triangle also lays on the left of the segment. This should also
be true when one or both of a and b is element of {c,d, e}.

A human readable form of this proof works by first studying the case the
where sets {a,b} and {c,d, e} are disjoint, noting that there should be at least
one edge of the triangle that is red with respect to both a and by supposing,
without loss of generality that this edge is [¢,d]. This proof already relies on 9
uses of Knuth'’s fifth axiom or its symmetric.

For a human reader, the exercise of renaming points is easily done, but for a
computer, the three points ¢, d, and e are not interchangeable and performing the
“without loss of generality” step requires a technical discussion with three cases
to consider, where Knuth’s fifth axiom is used once again. In total, if no step
was taken to exploit the symmetry, this means that the proof would require 28
uses of Knuth’s fifth axiom and since this proof has 5 premises, this corresponds
to a proof complexity that it really cumbersome for the human mind.

More uses of symmetry have to be summoned to treat the cases when a and
b may appear among the vertices ¢, d, and e, depending on whether it is a, b, or
both that belongs to the triangle when ¢, d, or e are all on the left of the [a, b]
segment.

4.3 Symmetries with respect to the Convex Hull

In two dimensions, the boundary edges of the convex hull form a loop where
no edge plays a more significant role than the other. It is natural to think that



the ternary symmetry of triangles should generalize to such a loop, but with
the added ingredient that the size of the loop is an arbitrary number n, larger
than 3. To cope with this source of symmetry, we did not choose to exhibit a
mapping from ’I_n to the type of points, but rather to indicate that there exists
a function f, such that [z; f(x)] is always a boundary edge when z is taken from
the union of the boundary edges, of the triangulation and all the other points of
the triangulation are always on the left side of the segment [z; f(z)].

To handle this point of view, the mathematical components library provides
a notion of orbit of a point for a function.

When one considers the operation of adding a new point outside the convex
hull, it is not true anymore that all boundary edges are equivalent. Some edges
are red, some edges are blue. In fact, it is possible to show that all red boundary
edges are connected together, so that there are exactly two points, which we can
call the purple points that belong to two edges of different color. The role of these
two points is symmetric, but they can be distinguished: for one of them, which
we call py, the edge [p1, f(p1)] is a red boundary edge and [f"~(p;1), p1] is a blue
boundary edge, for the other, which we call py, the edge [ps, f(p2)] is blue and
[f"~1(p2),po] is red. In fact, there exists a number n, such that f*~(p;) = po,
all segments [f*(py), f**1(p1)] are red boundary edges when 0 < k < n,. and all
segments [f*(p1), f¥T1(p1) are blue when 0 < n,. < n.

In principle, all statements made about p; are valid for ps, mutatis mutandi.
In practice, performing the proofs of the symmetric statement formally often
relies on copying and pasting the proofs obtained for the first case, and guessing
the right way to exploit the known symmetries, for example by replacing uses of
Knuth’s fifth axiom by its symmetric. The alternative is to make the proof only
once and make the symmetry explicit, but the last step is often as difficult as
the first one.

The existence of a cycle for the function f, so that f**™ = f* also plays
a role in the proof. Reasoning modulo n appears at several places during the
proof, but for now we have not found a satisfactory way to exploit this fact.

5 Related Work

The formal verification of computational geometry algorithms is quite rare. A
first attempt with convex hulls was provided by Pichardie and Bertot [I7] where
the only data structure used was that of lists but the question of non general
positions (where points may be aligned) was also studied. Notable work is pro-
vided by Dufourd and his colleagues [3I5/6/T]. In particular, Dufourd advocated
the use of hypermaps to represent many of the data-structures of computational
geometry. In this work, we prefer to start with a much more naive data struc-
ture, closer to the mathematical perspective, which consists only of viewing the
triangulation as a set of sets. Of course, when considering optimisations of the
algorithm, where some data is pre-computed and cached in memory, it becomes
useful to have more complex data-structure, but we believe that the correspon-
dence between the naive algorithm and the clever algorithm can be described as



a form of refinement which provides good structuring principles for the whole
study and for the formal proof. In the end, the refinement will probably converge
towards the data-structure advocated by Dufourd and his colleagues. It should
be noted that the hypermap data-structure was also used by Gonthier in his
study of the four-color theorem [7], but with a different formal representation.
While Dufourd uses a list of darts and links between these darts, Gonthier has
a more generic way to represent finite sets.

The computation of convex hulls was also studied Meikle and Fleuriot, with
the focus on using Hoare logic to support the reasoning framework [16] and by
Immler in the case of zonotopes, with applications to the automatic proof of
formulas [12].

The algorithm we describe here is essentially the first phase of the one de-
scribed in sections 3-4 of Lawson’s report [14].

In the current state of our development, we benefit from the description of
finite sets and finite groups provided by the mathematical components library
[9/15]. This library was initially used for the four colour theorem [7] and further
developed for the proof of the Feit-Thompson theorem [g].

Because it deals with the relative positions of points on a sphere, it is probable
that the Flyspeck formal development also contains many of the ingredients
necessary to formalize triangulations [I0]. For instance, Hales published a proof
of the Jordan Curve theorem [I1] that has many similarities with the study of
convex hulls and subdivisions of the plane.

6 Conclusion

The formal proofs described in this abstract have been developed with the Coq
system [2] and the mathematical components library [I5] and are available from

https://gitlab.inria.fr/bertot/triangles

This is a preliminary study of the problem of building triangulations for a variety
of purposes. The naive algorithm is unsatisfactory as it does not provide a good
way to find the triangle inside of which a new point may occur. This can be
improved by using Delaunay triangulations, as already studied formally in [6]
and a well-known algorithm of “visibility” walk in the triangulation [4], which
can be proved to have guarantees to terminate only when the triangulation
satisfies the Delaunay criterion. This is the planned future work.

Delaunay triangulations, and their dual Voronoi diagrams can be useful for
practical problems concerning the motion of a device on a plane. It will be
useful to extend this work to three dimensions and of course there already exists
triangulation algorithms in three dimensions. At first sight, the naive algorithm
described here can be used directly for arbitrary dimensions, as long the notion
of separating facet is given a suitable definition. However, it seems that the proof
done for the 2-dimensional case does not carry directly to a higher dimension d:
the boundary facets do not form a loop but a closed hyper-surface (of dimension
d—1), there is not just a pair of purple points but a collection of purple facets of


https://gitlab.inria.fr/bertot/triangles

dimension d—2. Still some properties are preserved: the red facets are contiguous,
and there are probably equivalents to Knuth’s axioms for the higher dimensions.

References

1.

10.

11.

12.

13.

14.

Christophe Brun, Jean-Francois Dufourd, and Nicolas Magaud. Designing and
proving correct a convex hull algorithm with hypermaps in coq. Comput. Geom.,
45(8):436-457, 2012.

. Coq development team. The Coq Proof Assistant Reference Manual, version 8.8,

2018.

Christophe Dehlinger and Jean-Frangois Dufourd. Formalizing generalized maps
in coq. Theor. Comput. Sci., 323(1-3):351-397, 2004.

Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation.
International Journal of Foundations of Computer Science, 03 2001.
Jean-Frangois Dufourd. An intuitionistic proof of a discrete form of the jordan
curve theorem formalized in coq with combinatorial hypermaps. J. Autom. Rea-
soning, 43(1):19-51, 20009.

Jean-Francois Dufourd and Yves Bertot. Formal study of plane delaunay triangu-
lation. In Matt Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem
Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11-14,
2010. Proceedings, volume 6172 of Lecture Notes in Computer Science, pages 211—
226. Springer, 2010.

Georges Gonthier. The Four Colour Theorem: Engineering of a Formal Proof.
In Deepak Kapur, editor, Computer Mathematics, ASCM 2007, volume 5081 of
Lecture Notes in Computer Science, 2007.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
Frangois Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould
Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, and Laurent
Théry. A machine-checked proof of the odd order theorem. In Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Prov-
ing - 4th International Conference, ITP 2013, Rennes, France, July 22-26, 20183.
Proceedings, volume 7998 of Lecture Notes in Computer Science, pages 163—179.
Springer, 2013.

Georges Gonthier and Assia Mahboubi. An introduction to small scale reflection
in coq. J. Formalized Reasoning, 3(2):95-152, 2010.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison,
Le Truong Hoang, Cezary Kaliszyk, Victor Magron, McLaughlin Sean, Tat Thang
Nguyen, and et al. A formal proof of the kepler conjecture. Forum of Mathematics,
Pi, 5, 2017.

Thomas C. Hales. The jordan curve theorem, formally and informally. The Amer-
ican Mathematical Monthly, 114(10):882-894, 2007.

Fabian Immler. A verified algorithm for geometric zonotope/hyperplane intersec-
tion. In Xavier Leroy and Alwen Tiu, editors, Proceedings of the 2015 Conference
on Certified Programs and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015,
pages 129-136. ACM, 2015.

Donald Knuth. Azioms and Hulls. Number 606 in Lecture Notes in Computer
Science. Springer-Verlag, 1991.

C. L. Lawson. Software for ¢! surface interpolation. JPL Publication 77-30, NASA
Jet Propulsion Laboratory, 1977. https://ntrs.nasa.gov/archive/nasa/casi.
ntrs.nasa.gov/19770025881 . pdfl


https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770025881.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770025881.pdf

15.

16.

17.

Assia Mahboubi and Enrico Tassi. Mathematical components, 2018. https://math-
comp.github.io.

Laura I. Meikle and Jacques Fleuriot. Mechanical theorem proving in computa-
tional geometry. In Automated Deduction in Geometry, Lecture Notes in Computer
Science, pages 1-18. Springer Berlin Heidelberg, 2006.

David Pichardie and Yves Bertot. Formalizing convex hull algorithms. In
Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in Higher Or-
der Logics (TPHOLs 2001), volume 2152 of LNCS, pages 346-361. Springer-Verlag,
2001.



	Formal Verification of a Geometry Algorithm:  A Quest for Abstract Views and Symmetry  in Coq Proofs

