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ABSTRACT
The role of the extracellular matrix (ECM) in the evolution of
certain diseases (e.g. fibrosis, cancer) is generally accepted
but yet to be completely understood. A numerical model that
captures the physical properties of the ECM, could convey
certain connections between the topology of its constituents
and their associated biological features. This study addresses
the analysis and modeling of fibrillar networks containing Fi-
bronectin (FN) networks, a major ECM molecule, from 2D
confocal microscopy images. We leveraged the advantages
of the fast discrete curvelet transform (FDCT), in order to ob-
tain a multiscale and multidirectional representation of the FN
fibrillar networks. This step was validated by performing a
classification among the different variants of FN upregulated
in disease states with a multi-class classification algorithm,
DAG-SVM. Subsequently, we designed a method to ensure
the invariance to rotation of the curvelet features. Our results
indicate that the curvelets offer an appropriate discriminative
model for the FN networks, that is able to characterize the
local fiber geometry.

Index Terms— FN networks, ECM, curvelets, DAG-
SVM classification

1. INTRODUCTION

The ECM represents a molecular scaffold used by cells to ad-
here, migrate and communicate in tissues. One of its major
components is the Fibronectin (FN) molecule, a large multi-
domain protein which is assembled by cells into fibrillar net-
works. It is known that the fibrillar organization of the cellular
FN is a key feature of the ECM and can take various confor-
mations depending on the presence of alternatively spliced
variants [1]. FN variants differ by the inclusion (or exclu-
sion) of two FN Type III Domains (Extra Domains A and B).
In this study, we focused on the analysis and modeling with
curvelets of four variants: FN A-B-, FN A+, FN B+ and FN
A+B+ illustrated in Fig. 1.

A significant number of methodologies have been pro-
posed in the literature to extract highly discriminative features

out of images. We are interested in multiresolution analytical
tools that are able to capture the geometrical properties (e.g.
scale, orientation) of the anisotropic fibers in a multiscale-
based fashion. Several studies on multi-resolution analysis
show that curvelet basis is suitable to represent curvilinear
features [2]. A fast discrete curvelet transform [3] was used
in order to capture and describe the geometry of the FN net-
works with curvelets. However, the extracted features are
not invariant to rotation. For example, two images that have
different main orientations but correspond to the same FN
variant will be assigned to two different classes.

(a) A+ (b) B+

(c) A+B+ (d) A-B-

Fig. 1: Different variants of FN. Scale bar = 1 µm

In this paper, we describe a method to align images in a
given direction before computing the discrete curvelet coeffi-



cients. Our approach was validated by performing a classifi-
cation among the four variants, with a DAG-SVM classifier.
In order to obtain an alternative representation of the image
in the feature space, called image signature, we built a Bag
of Features model of the curvelet coefficients. The results of
signature classification were compared to those of a special-
ist. We, therefore, show that our feature extractor model can
outperform a trained biologist in terms of classification accu-
racy.

2. THE CURVELET TRANSFORM AND FEATURE
EXTRACTION

In the field of image processing, multiscale/multiresolution
tools have been extensively used for anisotropic feature ex-
traction (points, lines, edges) and detection, compression etc.
Among existing methods, the wavelets can detect features
such as point singularities [4] but do not constitute a well-
suited technique to represent curvilinear features, such as
those that describe the FN fibers.

The curvelet transform is a family of frames that is pro-
posed as a means to tackle this inconvenience. We chose the
second generation of curvelets, which is a multiscale pyramid
allowing the representation of a certain number of possible
directions at multiple scales [4].

2.1. Fast Discrete Curvelet Transform

The output of the linear transform is a collection of coef-
ficients cj,l,k evaluated in Fourier domain (real-valued), in-
dexed by discrete-valued scale j, orientation l and location
k. Usually, a finer scale is associated with a higher num-
ber of possible orientations. This property allows for highly
anisotropic elements being represented at a fine scale.

Conceptually, the transformation implements a tight
frame, meaning that every function f ∈ L2(R2) can be
represented as follows [3]:

f =
∑
j,l,k

cj,l,kψj,l,k (1)

where

ψj,l,k is the discrete curvelet waveform

and
cj,l,k = 〈f, ψj,l,k〉 (2)

The Parseval identity then holds:∑
j,l,k

cj,l,k
2 = ||f ||2L2(R2), ∀f ∈ L2(R2) (3)

Regarding the digital implementation of the curvelet
transform, there are multiple options for the construction
of cartesian arrays, instead of polar tiling, in the frequency

plane. We chose the wrapping method implemented in
Curvelet Toolbox [3] for its simplicity in the handling of
the discretization grid.

2.2. Curvelet feature extraction

Each image of size N ×N is decomposed into (log2(N)−3)
dyadic scales and the number of angular sectors for each scale
differs according to the following example: for N = 512, the
curvelet transform returns 6 scales with 1, 16, 32, 32, 64, 64
possible orientations from coarse to fine scales respectively.
Fig. 2 illustrates the curvelet coefficients amplitude matrices
for 3 levels of decomposition corresponding to coarsest scale
1, 2, and finest scale 6. The multiple matrices at each level
belong to different orientations. A certain fiber will be re-
constituted by a linear combination of curvelet coefficients at
different scales and orientations.

Fig. 2: Curvelet scale decomposition of a sample image at 3
scales, from coarse to fine: 1, 2, 6.

Related studies consider different statistical properties of
the curvelet coefficients for texture characterization, such as
energy [5], entropy or curvelet subband distribution [6]. As
our main interest is to perform geometrical modeling of the
fibers rather than a pure assessment of their discriminative
power, instead of computing average statistical features to
facilitate the classification, we have worked with the coeffi-
cients themselves.

However, we chose to reduce the vast number of coeffi-
cients taken into account for the classification, and thus keep
the most significant ones. To do so, we selected the largest
curvelet coefficients that contain a suitable percentage of the
total energy. A percentage of 85% seems to be a good com-
promise between the speed of the training and classification
algorithm and the fidelity of image reconstruction, as illus-
trated in Fig. 3. Finally, the coefficients that belong to the



finest scale, susceptible of capturing the eventual acquisition
noise present in the images, were not taken into account.

(a) Input sample (b) Reconstructed sample

Fig. 3: Reconstruction of a sample image after keeping 85%
of total curvelet coefficients energy.

2.3. Invariance to rotation

The curvelets that are described above are not invariant to ro-
tation. In a discriminating context, this aspect can be quite
problematic, as it can impact the accuracy of the classifica-
tion. What is important in the FN images is the presence of
multiple dominant orientations, relative to each other. Dur-
ing the acquisition process, the samples of the ECM may also
be differently oriented. Hence we needed to ensure that the
images follow the same main privileged direction.

To do so, we estimated the dominant orientation of the
fibers and rotated every image according to its own dominant
orientation. Since this different information is hidden in the
energy distribution over the subbands, we opted for an es-
timation of the dominant orientation using the gradient vec-
tor of the images. For a function f ∈ R2, we consider its
gradient vector ∇f = (fx, fy) with magnitude defined by

|∇f | = 2

√
f2x + f2y and orientation θ = arctan(

fy
fx

). We can
now estimate the dominant orientation Θ as:

Θ =

∑
i

|∇fi|2 θi∑
i

|∇fi|2
(4)

where |∇fi| is the magnitude and θi is the orientation of the
image gradient at pixel i.

Subsequently, the images were aligned to the same direc-
tion, after performing a rotation by interpolation with the cor-
responding Θ.

3. BAG OF FEATURES MODEL

In order to validate the assumption that curvelets can provide
a suitable model for the characterization of FN fibers, we first
needed to show their ability to describe the fiber geometry in
terms of physical characteristics (e.g. scale, orientation, loca-
tion). In addition to that, we were interested in determining

the discriminating capacity of the curvelet features (i.e. abil-
ity to discriminate among the different FN variants). There-
fore a bag of features model [7], adapted to our data, was
developed in order to analyze the classification results of the
four FN variants, as detailed below.

The curvelet features that describe the fibers are the col-
lection of coefficients cj,l,a with scale j, orientation l and
magnitude a. We performed a K-means clustering of the
curvelet coefficients after the curvelet decomposition of the
image database, referred to as the training dataset. In order
to determine an appropriate number of clusters, we used a
heuristic elbow method [8] and found K = 400 number of to-
tal clusters. The normalized feature histogram was computed
as the rate of the number of its curvelet coefficients assigned
to each cluster, as shown in Fig. 4. Also referred as image
signature, it is stored as a K-dimension vector of real-positive
values. The image signature constitutes the input data for the
chosen classifier.

We decided to use a non-exhaustive k-fold cross valida-
tion technique with k = 4 to evaluate the classification perfor-
mance and its generalization capabilities. The classification
of the feature histograms is performed using a DAG-SVM
classifier, using LibSVM [9], as described below.

Fig. 4: Bag of features pipeline (from left to right): K-means
clustering in curvelet feature space, image signature (feature
histogram) and classification of the image signatures.

3.1. DAG-SVM classifier

In terms of classification of the previous curvelet feature his-
tograms, we are faced with a supervised non-linear problem.
Support vector machine (SVM) constitutes a standard statis-
tical learning technique to solve binary classification and re-
gression problems. An extension of SVM to multi-class tech-
niques, DAG-SVM [10], was used in this study for the classi-
fication of the image signatures corresponding to the FN vari-
ants. For a 4-class problem, we built and trained 4(4 − 1)/2
binary SVM classifiers, arranged in a tree structure [7] with
4 layers and 4(4 − 1)/2 nodes. The classification was hence
performed by evaluating a decision function in each node, re-
sulting in (4− 1) decisions to be made for a test sample. The
classification process with DAG-SVM is therefore relatively
fast.



4. SIMULATION RESULTS

This section describes the implementation of the proposed
method for the classification of the four FN variants. We de-
ployed a database of 280 images of 3128 × 3128 pixels with
a lateral resolution of 0.27 µm/pixel, acquired with a Zeiss
710 confocal system. Each class contains 70 images corre-
sponding to the four FN variants. For speed convenience, we
selected a representative region of 512×512 pixels from each
image and used those regions for feature extraction and clas-
sification. The classification results were compared to those
of a trained specialist, in terms of general classification accu-
racy, as well as confusion matrices.

Table 1 indicates the values of the confusion matrix for the
automatic classification, while Table 2 shows the results of the
specialist. The confusion matrix indicates that the classifier is
highly capable of distinguishing the FN images belonging to
variant A-B- from the rest of the others. Additionally, the
classifier is presented with a greater challenge when it comes
to distinguishing among classes B+ and A+. A similar pat-
tern was noted in the confusion matrix that corresponds to the
classification performed by the specialist.

Actual
Predicted

A+ A-B- B+ A+B+

A+ 64.3 2.9 25.7 7.1
A-B- 0 90 0 10
B+ 25.7 4.3 45.7 24.3

A+B+ 0 15.7 8.6 75.7

Table 1: Confusion matrix in percentage form - automatic
classification

Actual
Predicted

A+ A-B- B+ A+B+

A+ 77.2 0 18.5 4.3
A-B- 0 65.7 5.7 28.6
B+ 34.3 0 48.6 17.1

A+B+ 2.9 5.7 37.2 54.2

Table 2: Confusion matrix in percentage form - Trained spe-
cialist

The fiber geometry associated to the A-B- FN variant,
characterized by short filaments without a specific pattern,
seems to be represented by a more discriminative geometric
model. On the other hand, the topological properties of the
fibers corresponding to FN A+, and FN B+ (i.e. fiber length
and the presence of an apparent directionality) are quite sim-
ilar, thus increasing the difficulty in differentiating between
them. FN variant that incorporate the B+ domain is the least
distinguishable, both in automatic and manual classification.

Regarding the general accuracy of classification, the clas-

sification scheme that is proposed in this paper (68.92%) out-
performs the results obtained by a trained specialist (61.42%).

5. CONCLUSION

FN network fibers exhibit local geometric properties that can
be captured by curvelet features. We can reconstruct the fibers
as a linear combination of curvelet coefficients at multiple
scales and orientations. In addition, we are able to classify
among the four variants of interest, with a similar perfor-
mance to that of a trained specialist. Future studies will focus
on the development of generative models of the 2D/3D FN
variants, as well as the generation of a model based on differ-
ences in FN architecture caused by tumor-like cells.

Acknowledgements. This work was supported by the French
Government (National Research Agency, ANR) through the ”In-
vestments for the Future” LABEX SIGNALIFE: program reference
ANR-11-LABX-0028-01.

6. REFERENCES

[1] Van Obberghen-Schilling E., Tucker R.P., Saupe F., Gasser I.,
Cseh B., and Orend G., “Fibronectin and tenascin-c: Accom-
plices in vascular morphogenesis during development and tu-
mor growth,” Int J Dev Biol, vol. 55, pp. 511–25, 2011.

[2] Jianwei Ma and Gerlind Plonka, “A review of curvelets and re-
cent applications,” in IEEE Signal Processing Magazine, 2009.

[3] Emmanuel Candès, Laurent Demanet, David Donoho, and
Lexing Ying, “Fast discrete curvelet transforms,” SIAM Jour-
nal on Multiscale Modeling and Simulation, vol. 5, 09 2006.

[4] M.J. Fadili and J.-L. Starck, “Curvelets and ridgelets,” Ency-
clopedia of Complexity and Systems Science, vol. 3, pp. 1718–
1738, 2009.

[5] Yan Shang, Yan-Hua Diao, and Chun-Ming Li, “Rotation in-
variant texture classification algorithm based on curvelet trans-
form and svm,” in 2008 International Conference on Machine
Learning and Cybernetics, July 2008, vol. 5, pp. 3032–3036.

[6] F. Gmez and E. Romero, “Rotation invariant texture character-
ization using a curvelet based descriptor,” Pattern Recognition
Letters, vol. 32, no. 16, pp. 2178 – 2186, 2011.

[7] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta
Willamowski, and Cédric Bray, “Visual categorization with
bags of keypoints,” in Workshop on Statistical Learning in
Computer Vision, ECCV, 2004, pp. 1–22.

[8] Trupti M. Kodinariya and Prashant R. Makwana, “Review on
determining number of cluster in k-means clustering,” Interna-
tional Journal of Advance Research in Computer Science and
Management Studies, vol. 1, 2013.

[9] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A library
for support vector machines,” ACM Transactions on Intelligent
Systems and Technology, vol. 2, pp. 27:1–27:27, 2011.

[10] Pheng Shen and Shiang Liu, “An improved dag-svm for multi-
class classification,” 2009 Fifth International Conference on
Natural Computation, vol. 1, pp. 460 – 462, 2009.


