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Abstract—In the domain of Opportunistic Networking, just
like in any other domain of computer science, the engineering
process should span all stages between an original idea and
the validation of its implementation in real conditions. Yet most
researchers often stop halfway along this process: they rely on
simulation to validate the protocols and distributed applications
they design, and neglect to go further. Their algorithms are
thus only rarely implemented for real, and when they are, the
validation of the resulting code is usually performed at a very
small scale. Therefore, the results obtained are hardly repeatable
or comparable to others.

LEPTON is an emulation platform that can help bridge the gap
between pure simulation and fully operational implementation,
thus allowing developers to observe how the software they develop
(instead of pseudo-code that simulates its behavior) performs in
controlled, repeatable conditions.

In this paper we present LEPTON, an emulation platform we
developed, and we show how existing opportunistic networking
systems can be adapted to run with this platform. Taking two
existing middleware systems as use cases, we also demonstrate
that running demanding scenarios with LEPTON constitute
an excellent stress test and a powerful tool to improve the
opportunistic systems under test.

I. INTRODUCTION

Opportunistic networks constitute a category of mobile ad
hoc networks in which the sparse or irregular distribution of
mobile devices (or nodes) yield frequent link disruptions and
network partitions [1]. In such conditions, the store, carry and
forward principle of Delay Tolerant Networking (DTN [2],
[3]) helps bridge the gap between non-connected parts of the
network. Whenever a transient contact occurs between two
nodes, this contact can be exploited opportunistically by these
nodes to exchange messages. The messages received by a node
during a contact are stored in a local cache, so they can be
carried physically as the node is moving, and forwarded later
to other mobile nodes.

Developing middleware and applications for opportunistic
networks is a challenge, because message delivery is often
not guaranteed, and because this delivery can be delayed by
minutes, hours, or days, as it depends on the wanderings of
benevolent mobile carriers. In order to meet this challenge
developers must follow a rigorous procedure, that ideally
should involve all the steps shown in Figure 1.

First comes the initial idea, the conception of the mecha-
nisms. After this initial phase, the idea must be reified into a

particular model, which can then be analyzed formally. During
this analysis, the mechanisms and procedures can be checked,
some theoretical results can be obtained, and limitations can
be identified. The next stage is typically simulation. In a
simulator, the system can be tested in a given set of scenarios.
Even if these scenarios involve datasets that come from the
real world (e.g., traces of real taxi cabs, or positions of
real people evacuating a stadium), or even if the simulator
is assumed to simulate very accurately all the layers of the
protocol stack, the system under evaluation is usually executed
based on pseudo-code. This does not prove that the system
being designed can eventually be deployed and used for
real. Results obtained through simulation can be deceptive,
creating a misleading feeling of scientific correctness. Indeed,
as observed in [4], the credibility of simulation results tends to
decrease as the use of simulation increases. The final validation
of an opportunistic networking system should thus always be
based on real full-featured code (accounting for example for
memory management or concurrency issues), rather than on
the pseudo-code used in simulations.

Testing real code in real conditions can be painstaking,
or even impossible, especially when these real conditions
involve the mobility [5] of hundreds of nodes over hundreds
of hours. Emulation is an approach that can help with this
respect, as it makes it possible to run real code in tightly
controlled (and repeatable) conditions. The emulation stage
can be seen as the missing link in the engineering process of
most existing opportunistic networking systems. This stage is
crucial to make sure that the code under test —with its bugs
and limitations— is scalable, and that it can correctly integrate
and interact with the other components of the system (such as
users, for instance). Using an emulator, these properties can
be verified under the desired conditions, and results can be
reproduced and compared to others at convenience [6].
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Figure 1. Engineering process of an opportunistic networking system.

Briefly put, we could say that emulation is more apt than
simulation to evaluate real code, and easier and cheaper than
full-scale field experimentation. Therefore, we propose to
complement (not to substitute) simulation and experimentation
with emulation, hence putting the emphasis on an engineering
step in the development of an opportunistic system that could
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reveal itself especially useful as the complexity of this system
grows.

In this paper we present LEPTON (Lightweight Emulation
PlatTform for Opportunistic Networking), an emulation plat-
form that has been primarily designed to allow the developers
of opportunistic networking software (i.e., middleware and/or
applications) to run their real software systems with simulated
mobility. With LEPTON, an implementation can run in real
time, either on a real device (e.g. smartphone, tablet, laptop)
or on a virtual one.

LEPTON also constitutes an interesting demonstration tool,
since participants in a demo session can use an opportunis-
tic application deployed on smartphones or tablets, while a
display screen shows the simulated mobility of all devices.

In this paper our main contribution is the description of
LEPTON, our lightweight emulation platform for opportunis-
tic networking. In order to show its usefulness, we also use it
to compare two existing Opportunistic Networking (OppNet)
middleware systems, using the same scenario and mobility
traces.

The remainder of this paper is organized as follows. Related
work is discussed in Section II. In Section III we provide an
overview of LEPTON and of its salient features. In Section IV
we present briefly the two OppNet systems we considered as
use-cases for our proof of concept, and we explain how each
system was adapted to be used with LEPTON. Experimental
results are presented in Section V, and Section VI concludes
this paper.

II. RELATED WORK

Simulation is the lightest approach to observe how oppor-
tunistic networking protocols or applications can perform at
runtime. General-purpose discrete event network simulators
such as ns-2 [7], ns-3 [8], OMNeT++ [9], QualNet [10] or
Riverbed Modeler [11] include modules that can simulate the
mobility of nodes in a wireless network. Most of these sim-
ulators implement standard wireless MAC layers (e.g., IEEE
802.11, 802.15.1, 802.15.4), and they can optionally simulate
physical phenomena observed on the wireless medium, such
as shadowing, free space path loss, fading, co-channel inter-
ference, etc.

Because of its ease of use, the simulator ONE [12], [13]
has become the tool of choice for simulating opportunistic
networks. It supports a variety of mobility models, and contact
or mobility traces such as those available in the CRAWDAD
database [14] can be imported with little effort. Unlike many
other simulators, ONE does not attempt to simulate the
PHY and MAC protocol layers accurately. Communication
is message-based, rather than packet-based or frame-based.
A message is transferred between two nodes if these nodes
are considered as neighbours at the time the message is sent.
Optionally, the delivery of a message can be delayed so as
to account for a set transmission bitrate. A commonly praised
feature of ONE is that several of the major DTN routing pro-
tocols (e.g., First Contact, Epidemic dissemination, Spray and
Wait, MaxProp, Prophet) have already been implemented for
this simulator, so they are immediately available for running

simulations. Yet these protocols are implemented in such a
way that no control messages are ever exchanged between
nodes during a simulation run. Comparing the results obtained
in such conditions therefore makes little sense, as the overhead
induced by control traffic is simply ignored.

A simulator is indeed a convenient tool for the developer of
a new protocol or distributed algorithm, as simulation makes
it possible to observe how this protocol or algorithm performs
in a virtual setup in which everything is fully repeatable and
controllable. This setup can include hundreds or thousands
of nodes, which would hardly be practical in real settings.
Yet the validity of results obtained with a simulator is always
debatable, for every single part of a simulated system can
be deemed as being not realistic enough. For example, the
mobility models used in simulators can hardly reproduce the
diversity of real mobility patterns. Usually, this is mitigated by
using contact or mobility traces instead of pure algorithmic
models, but these traces have often been captured in very
specific conditions (e.g., people moving around in a conference
building, taxi cabs roaming city streets, etc.). Radio channel
modeling is also debatable, as models cannot mimic all
the complexity of real wireless medium characteristics, such
as radio wave reflection on obstacles (e.g., walls, furniture,
etc.) or interferences due to neighbouring electronic devices.
However, the main drawback is that the protocols or distributed
algorithms tested in simulators are often coded as pseudo-code
(it is not possible to execute the real code in a discrete event-
driven simulation), and are thus significantly simpler than the
real code that could be deployed on real mobile devices.
With discrete event simulators, the time required to react
to an event is neglected, for event processing is performed
atomically. When developing code for real execution, though,
attention must be paid to ensuring that concurrent events can
be processed as smoothly and efficiently as possible.

Since simulation results can only provide an indication of
how a system should perform in real life, testing this system
in real conditions is the ultimate way to confirm that it indeed
performs as expected. Yet running experiments in real con-
ditions requires deploying testbeds, possibly at a large scale.
While everything is virtual in a simulation, everything is –or at
least should be– real in a testbed. Indeed, a testbed is simply a
perfectly normal instance of the system that is under study in
a particular experiment [15]. Running experiments in a testbed
offers the greatest degree of realism (since everything is
running “for real”), but deploying and managing hardware and
software in a testbed is a costly and time-consuming endeavor.
To the best of our knowledge no large testbed has ever been
deployed specifically for opportunistic networking, besides
DieselNet, which itself was part of the DOME testbed [16].
Some general-purpose large-scale network testbeds such as
ORBIT [17] can support mobile nodes, though.

Simulation and testbeds lie on opposite ends of the ex-
perimentation spectrum. Simulation allows repeatability, tight
control, large scale, and cost-effective tests. But because of
the high level of abstraction it offers, most results it produces
should only be considered as qualitative assessments [18]. In
contrast, the drawbacks of experiments conducted in testbeds
are the lack of repeatability and tight control, as well as limited
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scalability.
Emulation fits between simulation and testbeds, as it in-

volves real elements used along with simulators. Several
emulation systems for mobile ad hoc networks have been
proposed during the last decade. As a general rule, the mobility
of network nodes and transmissions on the wireless medium
are simulated, and network nodes are either physical nodes
([19], [20]) or virtual nodes ([21], [22]), or a mix of both
kinds of nodes.

Using node virtualization makes it possible to run experi-
ments involving large populations of nodes. For this reason,
virtualization is also used in many testbeds (which thus cease
to be pure testbeds) as a means to provide scalability.

With node virtualization, the code that should normally be
executed on a pool of real distinct mobile devices is instead
executed in virtual (fixed) machines. The TUNIE emulation
testbed [21] thus uses a XEN virtual machine hypervisor
to coordinate virtualized OppNet nodes. Similarly, EmuS-
tack [22] uses the Docker container technology, MoViT [23]
uses KVM (Kernel-based Virtual Machine), and HYDRA [24]
uses VirtualBox.

Whether using real or virtual nodes, the code running on
each node includes application code, possibly some mid-
dleware implementing high-level protocols and services, and
the OS with its entire protocol stack. Instead of sending
and receiving frames directly through a wireless interface,
though, a virtual interface is created (using for example the
TUN/TAP driver) in order to intercept traffic at either packet
or frame level. This traffic is then tunneled to a centralized
controller whose role is to simulate the wireless medium.
This controller drives the communication between all network
nodes according to their simulated mobility. In EmuStack,
standard Unix utilities such as Netfilter (iptables) and Traffic
Control (tc) are used to control and shape the traffic between
pairs of nodes, thus simulating network connectivity and radio
channel conditions. In MoViT and HYDRA, traffic shaping
is not performed by a centralized controller, but each virtual
node processes its own outgoing traffic locally, based on di-
rectives received from a coordination system [23]. In TUNIE,
traffic flows through OpenFlow-enabled Ethernet switches and
wireless access points, that delegate forwarding decisions to a
remote controller [21], [24]. In TWINE [25], which is focused
on studying cross-layering techniques, an emulation layer is
inserted directly in the Linux kernel, between the network
layer and the device driver. This additional layer includes
several components that simulate for example mobility and
wireless propagation. In [26], a static-grid testbed is used, and
it is application code that moves from node to node in the grid
in order to simulate the mobility of devices.

In TROWA [20], APIs are provided at application, transport
and network layers. Using these APIs, applications or proto-
cols running on real or virtual devices can send all traffic
to a mobile network simulator, this traffic being tunneled via
TCP. HINT [27] uses a quite similar approach, as it defines
a User Link Layer (ULL) that abstracts communication be-
tween applications (running on real devices) and a centralized
mobile network simulator. In both cases, the code that must
be tested must be modified, since instead of using standard
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Figure 2. LEPTON’s main deployment modes: a) Demonstration session
using real devices; b) Small-scale experiment on a single workstation; and c)
Large-scale experiment on a cluster of workstations.

communication APIs (such as TCP or UDP sockets) it must
use those provided with the emulation system.

All the above-mentioned emulation systems, except
TROWA and HINT (that require to use their specific communi-
cation API), require either specific hardware (e.g., OpenFlow-
enabled devices), a specific software environment (e.g., virtual
machines or containers, or a modified OS kernel), and some-
times a combination of specific hardware and software. In fact
most of these systems are actually testbeds extended with node
and link virtualization. For the developer of an opportunistic
networking protocol or algorithm, accessing one of these
testbeds or deploying an equivalent platform for testing his/her
code is hardly an option, at least not for early experimentations
while the code is still under development. A lighter solution
is needed, even if using this solution implies trading off a bit
of transparency and accuracy, against availability and ease of
use.

The LEPTON emulation platform is meant to provide
this solution. LEPTON is a lightweight, easily deployable
emulation platform that does not require exotic networking
equipment, and that does not even require deploying and
managing virtual machines on one or several hosts. Besides, it
is openly distributed and documented, so it is readily available
for any interested user. A simple laptop or desktop workstation
running Linux can easily support emulation-based experiments
involving up to a couple hundred nodes, and larger experi-
ments can be run on any cluster of Linux machines.

III. THE LEPTON EMULATION PLATFORM

LEPTON is implemented as Java code, and it is distributed
under the terms of the GNU General Public License. Its prime
function is to simulate the mobility of nodes in an oppor-
tunistic network while conducting transmissions between these
nodes based on their relative positions. Being an emulator
rather than a simulator, LEPTON drives the communication
between full-featured instances of an OppNet system, each
instance determining the behaviour of one node during the
simulation. In the remainder of this paper we will use the
term System Node (SN) to refer to an instance of the OppNet
system. SNs are not a part of LEPTON, but of the system
under evaluation. An SN is typically composed of application
code combined with communication middleware, which itself
requires to run on top of a standard protocol stack. An
SN can be executed on real devices, such as smartphones,
tablets, or wireless sensors (see Fig. 2.a). The ability to
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Figure 3. Multiple nodes interacting with LEPTON. Nodes interact through
the software hub, which itself is controlled by the simulation engine that
models the mobility of the nodes.

run experiments involving real devices makes it possible to
confirm that the software being tested can indeed run smoothly
on such devices. It also comes in handy in demo sessions, since
attendees can then use real devices that implement the system
that is being presented, while observing on a display screen
what would be the effects of mobility... if they were actually
moving.

When an experiment must involve a large number of SNs,
running the system under test on real devices is often imprac-
ticable. Multiple SNs can then be executed concurrently on
a single desktop workstation (Fig. 2.b), or on the nodes of a
computer cluster (Fig. 2.c). The important point here is that
the code implementing each SN is not pseudo-code, but full-
featured code that would run equally well on a real mobile
device.

In any case, the role of LEPTON is to simulate the mobility
of the SNs and to control the communication between them
accordingly.

Since interacting with real instances of an opportunistic
system cannot be done in a discrete-event simulator, LEPTON
has been designed to emulate the mobile network in real time,
moving nodes either according to a given mobility policy, or
based on mobility or contact traces.

A. General architecture

Every LEPTON’s experiment involves the network emulator
and System Nodes (SNs), as shown in Fig. 3. The SNs are not
part of LEPTON: they are implementations of the system to
be tested (more details in Section IV). The emulator itself
is structured in two main parts: a simulation engine and a
software hub. The simulation engine determines if any pair
of nodes should be considered as neighbours at any specific
time during an experimentation run. The software hub plays
approximately the same role as a switched hub in an Ethernet
LAN: it relays every message it receives from an SN to its
destination, and to that destination only. Yet in order to decide
whether this destination is indeed accessible, the hub must
consult the simulation engine.

...
st 8500 // Time step (ms)
an N1 x=87.90 y=50.20 // Add N1
an N2 x=87.80 y=51.60 // Add node N2
ae E1-2 N1 N2 // Add edge N1-N2
...
st 13200 // Time step (ms)
cn N1 x=76.00 y=50.20 // Change node (N1 has moved)
cn N2 x=69.80 y=50.40 // Change node (N2 has moved)
...
st 27600 // Time step (ms)
cn N1 x=66.40 y=47.20 // Change node (N1 has moved)
cn N2 x=64.20 y=37.40 // Change node (N2 has moved)
de E1-2 // Delete edge N1-N2
...
st 120600 // Time step (ms)
dn N1 // Delete node N1
...

Figure 4. Illustration of the DGS file format.

B. The simulation engine

The role of the simulation engine is to model the wireless
network as a dynamic graph, whose nodes represent SNs, and
whose edges represent radio links between SNs. The imple-
mentation of this dynamic graph in the simulation engine relies
on facilities offered in the GraphStream library [28], which
provides elaborate data types and algorithms for dynamic
graph modelling, analysis, and visualization. The simulation
engine is also responsible for driving the dynamics of the
graph according to a given mobility model, or based on
mobility and/or contact traces.

Several traditional mobility models (Random Waypoint,
Levy Walk, Map-based mobility, etc.) have already been
implemented for LEPTON, and new models can be included as
and when needed. A manual mobility model is available, that is
especially useful in demo sessions. With this model, nodes do
not move spontaneously, but the dynamic graph that represents
the connectivity between nodes can be adjusted manually by
dragging and dropping nodes and edges on a display screen.

LEPTON can also run experiments based on pre-defined
mobility or contact scenarios. In that case, the simulation
engine simply reads a DGS file, whose format is described
in the next section.

The simulation engine can calculate radio contacts at run-
time (i.e., while running an experiment). Alternatively, these
contacts can be calculated in advance and be inserted in the
DGS file that will be played during an experiment. Radio
contact between two mobile nodes is determined by a user-
defined function. The default function is very simple: two
nodes are in radio contact if they are within a fixed distance
of each other. Yet this simple function can be replaced by a
more accurate one (accounting for obstacles for example) as
desired.

A file format for dynamic graphs : The GraphStream
library defines an event-oriented file format called DGS (Dy-
namic Graph Stream) for describing dynamic graphs. With
this format the evolution of a graph is described using events
such as adding, deleting or changing a node or an edge, as
illustrated in Figure 4. Reading a DGS file, therefore, comes
down to reading a stream of such events.

When an experiment is run according to a given mobil-
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ity model, rather than by reading a pre-defined DGS file,
LEPTON can record all graph events in DGS format, thus
recording how nodes have appeared or disappeared during the
experiment, how they have moved, and how radio contacts
have been established and lost between neighbour nodes. The
resulting DGS file can then be used to repeat the experiment
as and when needed.

C. The software hub

In a real mobile network, neighbour SNs can exchange mes-
sages directly with one another. When running an experiment
with LEPTON, each message sent by an SN must be directed
through the software hub. Interfacing an existing opportunistic
system with LEPTON therefore requires:

1) Making sure that all SNs explicitly redirect their traffic
to the software hub, which from their viewpoint will be
seen as some kind of a proxy.

2) Developing an appropriate software hub for that system,
and making sure that this hub will consult the simulation
engine in order to decide what to do about each message
received.

The first requirement is usually easy to meet. Instead of
sending beacons to a multicast group, and gossiping with
peers through unicast communication, each SN must redirect
its transmissions explicitly to the software hub. Depending on
the opportunistic system considered, this may require changing
slightly the code of SNs, or simply changing a parameter in
a configuration file.

Developing a dedicated software hub for a system may
require a little more work, but since most existing systems rely
on UDP and TCP for their transmissions1, LEPTON comes
with Java templates that can be easily adapted to fit the needs
of a particular system. These templates are presented briefly
below and illustrated in pseudo-code.

LEPTON can also support opportunistic systems that use
non-IP transmissions (e.g., Bluetooth, XBee, ZigBee). How-
ever, interfacing with such a system requires developing a
specific software hub for the transmission technology.

Forwarding UDP traffic: The general behaviour of the
software hub regarding UDP traffic (which is often used for
beaconing) is depicted in Alg. 1. Upon receiving a datagram,
the hub learns about the identity, IP address, and port number
used by the sender’s beaconing service (lines 1 and 2). The
information thus collected is stored in a registry (line 4), so it
can later be used to forward messages to that SN. With some
opportunistic systems, the datagram may contain an indication
of the TCP port number the sender’s gossiping service is
listening to. In that case, this port number must be replaced
in the datagram by the port number of the TCP socket the
hub is listening to (line 6), so the target SN can later open a
gossiping session through the hub rather than directly with a
peer SN. These operations may be omitted in systems that do
not rely on TCP-based gossiping, or that systematically use
the same number for UDP and TCP ports.

1Many opportunistic systems implement a neighbour discovery mechanism
based on UDP multicast or broadcast, while the exchange of control and data
messages between neighbour nodes is based either on UDP or TCP.

Every datagram received from an SN can then be forwarded
to all neighbours of the sender, the list of these neighbours
being provided by the simulation engine. Note that Alg. 1
allows datagrams to be addressed either in unicast mode to a
single neighbour (lines 13-14), or in broadcast (lines 8-9) or
multicast (lines 10-12) mode. In all cases, the software hub
delivers a copy of the datagram to any SN that is identified as
a receiver for this datagram (lines 18-21).

Algorithm 1 Processing of UDP datagrams received by the
software hub

1: upon receiving beacon from (@ip, udpPort)
2: extract (idsrc, idtgt, [tcpPort]) header from beacon
3: // Record (or update) sender’s info in registry
4: peerRegistry.put(idsrc, @ip, udpPort, [tcpPort])
5: if tcpPort != null then
6: substitute tcpPort by localTcpPort in beacon
7: // Look for targets
8: if idtgt == broadcast then
9: target = SimulationEngine.getPeers(idsrc)

10: else if idtgt == multicast then
11: allPeers = SimulationEngine.getPeers(idsrc)
12: target = filterMulticastPeers(allPeers, idtgt)
13: else if SimulationEngine.arePeers(idsrc, idtgt) then
14: target = {idtgt}
15: else
16: target = {}
17: // Iteratively send to all targets
18: for id in target do
19: if peerRegistry.contains(id) then
20: (@ip, udpPort) = peerRegistry.get(id)
21: send beacon to (@ip, udpPort)

Forwarding TCP traffic: When message passing is based
on TCP sessions, the situation is a bit more tricky (Alg. 2).
Indeed, when a contact is established in “real life” between
two SNs, a TCP session is established directly between these
nodes, and all subsequent messages are then exchanged via
that TCP session. Depending on the characteristics of the
OppNet system considered, such a TCP session is maintained
either as long as possible (i.e., until the contact is disrupted),
or only for the duration of the transaction. When running in
emulation mode, an SN that wishes to start gossiping with
another SN must actually open a TCP session to the software
hub, which in turns opens another TCP session to the target
SN, provided the simulation engine confirms that the target
SN is a neighbour of the initiator. Two TCP sessions must
thus be maintained by the hub for each pair of neighbour
SNs that are engaged in gossiping, the hub ensuring that
everything it receives from one SN is forwarded to its peer
(line 18), with the simulation engine’s assent (line 16). When
one of these SNs decides to close the session opened (through
the hub) with its neighbour (line 21), both TCP sessions
are closed simultaneously by the hub (line 22). Likewise, if
the hub receives something from an SN and learns from the
simulation engine that the target peer is not a neighbour of the
sender anymore, then both TCP sessions are closed (line 20).
Note that the software hub should never close TCP sessions
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authoritatively as soon as the contact is lost between two SNs,
because a TCP session can be maintained between two hosts
even when there is no connectivity between them, as long as no
attempt is made to transfer data via that session. Closing TCP
sessions authoritatively as soon as the contact is lost between
two SNs would introduce a bias, since TCP sockets would
be closed earlier during emulation-based experiments than in
real life. The initiative to close a TCP session must therefore
always be taken by an SN, not by the software hub.

Algorithm 2 “Bridging” between two TCP sessions by the
software hub

1: main
2: upon receiving opening request from (@ip, tcpPort)
3: iSocket = accept incoming session
4: extract (idsrc, idtgt) header from input stream
5: // Check that idtgt is a neighbour of idsrc

6: if SimulationEngine.arePeers(idsrc, idtgt) then
7: (@ip, tcpPort) = peerRegistry.get(idtgt)
8: oSocket = open session with (@ip, tcpPort)
9: spawn StreamManager(iSocket, oSocket)

10: spawn StreamManager(oSocket, iSocket)
11: else
12: close incoming session
13: thread StreamManager(iSocket, oSocket)
14: upon receiving data from iSocket
15: // Check that idsrc and idtgt are still neighbours
16: if SimulationEngine.arePeers(idsrc, idtgt) then
17: (@ip, tcpPort) = peerRegistry.get(idtgt)
18: forward data to oSsocket
19: else
20: close both sockets
21: upon receiving close request from iSocket or oSocket
22: close both sockets

Algorithms 1 and 2 describe the general behaviour of a
software hub that can fit most opportunistic systems, provided
these systems rely on UDP for beaconing, and either UDP or
TCP for gossiping.

Consideration about the software hub: In order to im-
plement a software hub that uses a different communication
technology, the only parts of the templates that need to be
modified are those that extract meta-information from UDP
datagrams (line 2 in Alg. 1), or from the input stream in TCP
sessions (line 4 in Alg. 2).

Moreover, since all traffic must flow through the software
hub during an experiment, the workload imposed on the node
running that hub can be high. It is legitimate to wonder if
this node may constitute a bottleneck at runtime. Fortunately,
measurements confirm that both the CPU workload and net-
work throughput observed on that node remain quite low
(more details in Section V). For very large experiments, several
software hubs could be instantiated to distribute the workload.
These hubs would then only communicate together to update
the state of their registry (as presented in [29]).

The simulation engine API: The API used by the software
hub to interface with the simulation engine is quite simple

public void addNode(String id);
public void deleteNode(String id);
public boolean arePeers(String id1, String id2);
public Collection<String> getPeers();

Figure 5. API that allows the software hub to interact with the simulation
engine.

(Fig 5). With functions addNode and deleteNode the hub can
notify the simulation engine that it has detected the presence or
the loss of an SN. Upon receiving a message from an SN, the
software hub can also consult the simulation engine in order
to determine what to do about this message. The software
hub can thus either check that the message’s destination node
is currently a neighbour of the source node (using function
arePeers), or it can obtain the list of all current neighbours of
the sender (using function getPeers).

Considerations about the addressing scheme: When de-
veloping a software hub for an opportunistic system, special
attention should be paid to the addressing scheme used in this
system. Indeed, redirecting all messages to the hub implies
that identifiers for the source and destination of a message
should be included in the message itself. An IP address,
for example, cannot be used to identify the actual source or
destination of a message, since this message will first be sent
to, and then received from, the software hub. Fortunately, most
opportunistic systems use a high-level addressing scheme,
based for example on textual node ids, which provides the
required decoupling between “network-level” addresses (such
as IP addresses) and “system-level” addresses (such as node
ids). LEPTON can thus relate the messages received by the
hub to the mobile nodes whose whereabouts are determined
by the simulation engine.

D. Modes of operation

LEPTON supports several modes of operation that can be
applied to the two following types of experiments:

• An experiment involving real devices: when real devices
(and thus, possibly, real users) are involved during an
experiment (see Fig. 2.a), LEPTON must discover the
presence of each device at runtime. Upon receiving a
message (typically a beacon) from a new device, the
software hub notifies the simulation engine about this
discovery. The simulation engine then adds a node to
the dynamic graph it maintains and starts moving this
node according to a pre-defined mobility model (Random
Waypoint, Levy Walk...). A mobile device is considered
as “lost”, and is thus removed from the dynamic graph,
if the software hub does not receive any message from
that device for a while. This mode of operation is very
useful during demo sessions, when the dynamic graph
is displayed in real time on a screen, so the users can
observe how they are assumed to “move”, as seen from
the simulation engine’s viewpoint. This mode is also
useful to obtain energy consumption measurements of
the protocols under evaluation while they are executed
on real devices.
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• An experiment involving virtual nodes: in the absence of
real devices, each SN runs as a Unix process containing at
least the implementation of an opportunistic networking
system and of the application code. This application code
is the real application code, unless the application is
interactive (in this case a simulated user’s behaviour must
obviously be added). As with real devices, the software
hub discovers the presence of every node when their first
message is received, and it notifies the simulation engine
to add it to the dynamic graph. Hundreds of nodes can
be executed on a single desktop workstation or laptop,
as shown in Fig. 2.b). When the number of virtual SNs
is very large, these SNs can be distributed on the nodes
of a computer cluster (Fig. 2.c), with a distribution based
on a round-robin policy, so the workload is statistically
balanced between all cluster nodes.
When the experiment involves a stable population of SNs,
multiple SNs can be created by LEPTON at the beginning
of an experiment. Alternatively, the lifecycle of the SNs
can be dictated by a DGS file. SNs are then created and
terminated dynamically, according to the events observed
in that file. While reading the file the simulation engine
can trigger the creation or termination of an SN at the
appropriate time.

These modes of operation can be combined when neces-
sary. For example, an experiment may involve virtual nodes
(running as concurrent processes on a host platform) as well
as real nodes (running on real devices), thus scaling up to
a large population of nodes, while creating, terminating and
simulating the mobility of these nodes according to a DGS
file.

E. Visualization

The GraphStream library provides advanced support for
graph visualization. LEPTON can use these features to display
the evolution of the wireless network (see Figure 6). This visu-
alization can be done on-the-fly while an experiment is running
(which provides for nice demo sessions), when replaying an
experiment, or in order to produce videos. Examples of such
videos are available on LEPTON’s web page2.

Replaying a simulation consists in reading the DGS file that
has been produced earlier during an experiment. This can be
done at any desired speed, including step by step, and it makes
it possible to observe what has happened in the network at a
specific time during the simulation. The history of the radio
contacts of a specific node can, for example, be retraced that
way. Moreover, when the information contained in the DGS
file is combined with middleware-level or application-level
information gathered from execution logs, advanced analysis
can be performed. For example, the multi-hop propagation of
a specific message during an experiment can be observed in
detail.

2http://www-casa.irisa.fr/lepton/videos.html

Figure 6. Snapshot of LEPTON’s GUI during an emulation run involving 15
devices moving in an office floor, assuming a transmission technology with
very short transmission range (in that case, 5 meters). The SNs are depicted
as red dots, and the thin black lines depict radio links.

F. Additional tools

In addition to the simulation engine and the software hub,
LEPTON comes with a set of tools that can be used either
when preparing an experiment, or after an experiment has been
conducted. This toolset notably includes format converters to
manipulate traces, as well as programs that can be used to
analyze a mobility scenario.

Input and output of trace sets: Mobility or contact trace
sets such as those available in the CRAWDAD database [14]
can be converted to the DGS file format used by LEPTON.
Converters are notably available for trace sets that use the
file formats defined for well-known simulators (e.g., ONE,
Legion), but ad hoc converters can also be devised for trace
sets that use exotic formats.

Sometimes the trace set considered as input contains in-
formation about both node mobility and radio contacts, but
sometimes it only contains information about node mobility.
In the latter case programs available in LEPTON’s toolset
can be used to calculate radio contacts, so information about
these contacts gets inserted directly in the output DGS file.
When reading such a file, LEPTON’s simulation engine will
simply drive communication according to these pre-calculated
contacts, rather than calculating them at runtime.

Analysis of mobility/contact scenarios and experimental
results: Several programs provided in LEPTON’s toolset make
it possible to analyze a mobility scenario in details (based
on the corresponding DGS file), but also the log files pro-
duced during an experiment. With these programs traditional
statistical results about the number of nodes, of neighbours,
of contacts and inter-contacts, etc. can be produced easily.

The toolset also includes analysis tools that make it possible
to investigate a scenario, or the results of an experiment,
at a very fine grain. The dissemination of a single message
can for example be examined in details, or the evolution of
the neighbourhood of a single node. With such tools, the
results produced by different experiments (run with the same
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scenario) can be compared, and these results can also be
compared with the theoretical behaviour that can be expected
from the system under test. Predicting the expected behaviour
of the system under test is indeed an important feature of
LEPTON’s toolset, as it provides a reference to which actual
results can be compared.

LEPTON’s toolset implements an algorithm that can deter-
mine the propagation horizons of messages [30]. Basically,
the horizon of a message sent at (S, tS) is the set of all
potential receivers for that message, considering the evolution
of the network graph starting from tS. A node R is a potential
receiver for a message sent at (S, tS) if there exists at least one
journey (or temporal path) from (S, tS) to (R, tR), with tR≥tS.
Computing the horizon of a message therefore provides input
about the “ideal” propagation of that message. It also provides
a reference to which the actual propagation of the message, as
reported in log files, can be compared after an experiment. An
illustration of how this algorithm helps analyze experimental
results is provided in Section V.

IV. INTEGRATING OPPORTUNISTIC SYSTEMS WITH
LEPTON

Wireless network emulation with LEPTON is expected to
be an excellent way to validate the code of a full-featured
opportunistic system, as well as a way to compare the perfor-
mances observed with different systems in similar conditions.
In order to confirm this expectation, two existing systems have
been tested using LEPTON, using the same mobility scenario
and the same application scenario.

These two systems were chosen for three reasons: 1) be-
cause they can both support content-based networking3, that is,
a model where information flows towards interested receivers
rather than towards specifically set destinations; 2) because
the two systems use a similar communication pattern, as they
rely on UDP beaconing for neighbour discovery, and on TCP
sessions for the gossiping; and 3) because they have originally
been designed and implemented by two different research
groups, targeting different kinds of hardware, so they may
require slightly different adaptations in order to interface with
LEPTON.

While considering these two systems, our main objective is
not to compare them, but to show how different systems can
be adapted to run with LEPTON4.

In the remainder of this section we present the two systems,
and we explain how we developed the SN (and the required
software hub) we used to evaluate each system through LEP-
TON.

A. DoDWAN

DoDWAN (Document Dissemination in mobile Wireless
Ad hoc Networks) is an open-source middleware system that
can support content-based networking [33] in partially or

3LEPTON can also support destination-based OppNet systems: an adapter is
already available for IBRDTN [31], and another adapter is under development
for DTN2 [32].

4Further details about this integration process are available on http://
www-casa.irisa.fr/lepton/doc/howtos/emulated_nodes.html.

intermittently connected wireless networks [34], [35]. It is
implemented as Java code, and it is distributed under the terms
of the GNU General Public License, together with documenta-
tion for users and developers5. Binaries of an application suite
based on DoDWAN are also available as a demonstrator for
Android smartphones and tablets [36].

Application services running on a mobile device can interact
with DoDWAN through a pub/sub (publish/subscribe) API.
The objects that can be published and subscribed for through
this API are called documents. A document is basically a
payload, and meta-information characterizing this payload
(content type, author(s), production date, keywords, etc.).

In order to be able to receive documents, an application
service must first subscribe with DoDWAN, and provide a
selection pattern that characterizes the kinds of documents
it is interested in. When several application services run on
the same host, their selection patterns together define the
host’s interest profile. DoDWAN uses this profile to identify
documents that must be exchanged whenever a radio contact
is established between two hosts.

A gossiping algorithm drives interactions between neigh-
bour nodes in an opportunistic way, leveraging every radio
contact between two nodes to allow these nodes to exchange
documents according to their respective interest profiles. This
gossiping algorithm takes inspiration from the Autonomous
Gossiping (A/G) algorithm [37], which itself defines a selec-
tive version of the epidemic routing model proposed in [38].
In DoDWAN’s gossiping algorithm, though, special attention
has been paid to avoiding any unnecessary transmission be-
tween neighbour hosts, while ensuring maximal reactivity to
connectivity changes observed on the wireless channel.

DoDWAN is most commonly used with Wi-Fi interfaces
running in either managed or ad hoc mode. Over the last
few years it has also been tested with a variety of alternative
wireless technologies, such as Bluetooth, XBee, and VHF
battlefield radios used in military tactical networks [39].

Integration of DoDWAN with LEPTON: Since DoDWAN
can rely on different kinds of wireless technologies, no as-
sumption is made about the format of the addresses used to
identify mobile hosts at data link or network level. Indeed,
assuming that a node is always identified by an IP address
would be contrived when running for example with Bluetooth
or XBee radio modules. DoDWAN’s implementation therefore
assumes that each wireless host is identified by a unique
identifier, expressed as a character string. This identifier is
embedded in the beacons used for neighbour discovery, and
in the messages used in gossiping transactions.

Developing a software hub capable of receiving and for-
warding traffic for DoDWAN nodes, based on the templates
presented in Section III-C, is therefore straightforward. Be-
sides, no modification of DoDWAN’s source code is required
to redirect all transmissions to this software hub. This is
because the configuration file that determines how a DoDWAN
node should interact with peer nodes is quite flexible. For
example the IP addresses and port numbers used for the bea-
coning and gossiping services are defined in that configuration

5http://www-casa.irisa.fr/dodwan
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file (assuming IP is used), so redirecting all transmissions to
a software hub only requires changing that file.

B. Active-DTN

The variety of routing protocols defined for mobile and
opportunistic networks over the last decades suggests that no
general-purpose routing strategy can satisfy the requirements
of all applications at once. Active-DTN (or aDTN for short)
is a Bundle Protocol [40] compliant open-source middleware
system that can help meet the different needs of multiple
applications that share the same wireless network, by allowing
these applications to specify how their messages should be
processed while traversing the network [41]. aDTN extends the
structure of bundles so they can carry routing code together
with plain data. More specifically, aDTN messages use the
Mobile code Metadata Extension Blocks (MMEB, defined in
RFC 6258 [42]) to carry their own routing code, lifetime
control code and bundle prioritisation code. These codes are
executed by any node that receives a bundle, in order to
decide what neighbours the bundle should be forwarded to, if
it should be dropped instead, and the priority it must receive.
The system has been implemented in C++, and it is distributed
with libraries that allow the development of DTN applications
in C, Java, or Python.

Active-DTN was designed to demonstrate the feasibility of
this paradigm of bundles that carry executable codes, and to
obtain data from low-scale field experiments. Several such
experiments have been run successfully on the Autonomous
University of Barcelona (UAB) campus, involving up to 10
Raspberry Pi nodes that were carried either by pedestrians,
bus shuttles, cars, and a drone.

Integration of aDTN with LEPTON: By default aDTN uses
UDP multicast for neighbour discovery and TCP sessions
for the transfer of bundles between neighbour nodes. The
main difference with DoDWAN with that respect is that a
transient TCP session is established whenever a bundle must
be transferred between two aDTN nodes, while a single TCP
session is maintained between two DoDWAN nodes as long
as these nodes are neighbours.

The software hub needed to interface aDTN with LEPTON
simulation engine was developed by making small adaptations
to the templates presented in Section III-C.

Additionally, as aDTN is not as configurable as DoDWAN,
the code of the aDTN system had to be slightly modified, so
that an aDTN node could redirect the messages to the software
hub. First of all, the neighbour Discovery module was modified
so this module could listen to a UDP socket bound to a unicast
address, rather than to a multicast address. Conversely, the
beacons sent through that socket are addressed to the hub,
rather than to a multicast group.

The Bundle I/O module was also modified so that messages
sent to the hub carry the identity of their real destination. In
the original implementation of aDTN, bundles sent directly to
a neighbour node are preceded by a short header that only
specifies the sender’s ID and the bundle’s length. The ID of
the receiver node is not specified since this is by construction
the node that receives the message. However, when a bundle is

Figure 7. Sequence diagram of the relay of one bundle by the software
hub between an aDTN node and a neighbour. The Bundle I/O module was
modified to add the receiver ID to every message, because the software hub
requires it to know the intended destination.

relayed through the software hub, the header that precedes a
bundle must be extended so the ID of the receiver is also
specified in the message’s header. Figure 7 illustrates this
process.

V. LEPTON IN PRACTICE

As explained in Section I, the engineering process of any
OppNet system (after the initial design and modeling phases)
should ideally include a simulation phase (possibly based on
pseudo-code), an emulation phase (based on real code), and
ultimately a deployment phase (in a real-life setting, with real
devices and, possibly, real users). In order to demonstrate that
none of these phases should be neglected, we show in this
section that submitting an OppNet system to a stress-test in an
emulation platform such as LEPTON is an excellent means to
pinpoint weaknesses that would not necessarily appear with a
discrete-event simulator. We also show that, unlike a simulator,
an emulation platform can provide testing conditions that
closely mimic real-life conditions.

In Section V-A we first present the scenario we defined
to evaluate the two OppNet systems (DoDWAN and aDTN)
presented in the former section. In Section V-B we present
results we obtained after simulating both DoDWAN’s and
aDTN’s behaviours with the ONE simulator. We then present
in Section V-C the results obtained after running the im-
plementations of both OppNet systems with LEPTON, and
show that unlike pure simulation, emulation helped differen-
tiate these systems, and pinpoint and correct an unexpected
weakness in aDTN’s code. Finally, in Section V-D we describe
a small-scale field experiment we performed with mobile
devices running DoDWAN, and show that this scenario could
be reproduced very accurately with LEPTON.
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Figure 8. Overview of the subway station. There are two different levels that
are connected between them by a pair of stairs (depicted with dotted lines).

A. Scenario considered for both simulation and emulation
runs

Mobility scenario: For this evaluation we used mo-
bility traces available in the CRAWDAD database [14], in
the kth/walkers dataset [43]. This dataset includes mobility
traces that have been produced using the Legion Studio
simulator [44], for both an outdoor scenario (pedestrians in
the Östermalm area of central Stockholm) and an indoor
scenario (pedestrians in a two-level subway station) [45]. We
selected the subway scenario, that comes pre-defined with
Legion Studio, and that models a train platform connected
via escalators to the upper entry-level (see Fig. 8). Pedestrians
can arrive from several entry points of the subway station, or
when trains arrive at the platforms. They can likewise leave
the station through an exit point, or by boarding a train. In
the trace set the location of each walker is defined every 0.6
seconds, and the trace set covers exactly one hour.

This scenario is interesting because, unlike many scenarios
based on algorithmic mobility models, it involves a contin-
uously changing population of mobile nodes that move in
a relatively restricted area (1921 m2). Indeed, most walkers
that enter the station only stay there for a few minutes.
The challenge when considering such a scenario for wireless
network emulation is that instances of mobile nodes must be
created and deleted continuously during the whole duration
of an experiment. Besides, the density of mobile nodes in the
subway station is high, for each node can be in radio contact
with dozens of other nodes at any time, even when considering
a short radio range.

The subway station scenario is analyzed in detail in [45]
(assuming 10 m and 30 m radio range) and in [46] (assuming
10 m and 50 m radio range). For our evaluation, we only
considered the 10-meter range. Since the kth/walkers dataset
only provides information about nodes positions, one of the
programs available in LEPTON’s toolset was used to pre-
calculate radio contacts, thus producing a DGS file containing
both nodes positions and radio contacts.

Application scenario: Besides the mobility scenario, we
have defined the following simple topic-based application
scenario (topic-based messaging can be considered as the
simplest form of content-based networking). The messages
produced during the experiment will pertain to five different
topics, numbered 0 to 4, each message about a single topic.
Each mobile node is assumed to be interested in only one
topic, and is thus willing to receive and forward only messages
about that topic. The population of mobile nodes is thus split
into five distinct groups, each group including all nodes that
share an interest for the same topic. Since nodes in the subway
trace set are numbered from 0 to 3299, we decide that node #i
is interested in topic #(i mod 5). As soon as it starts running,
each node sets a subscription in order to receive all messages
about the topic it is interested in. Because of the OppNet
model, nodes that are interested in topic #j will therefore serve
as both receivers and carriers for all messages about that topic.

During the experiment, a number of messages must be pub-
lished, and we are interested in analyzing how these messages
propagate in the network. No message is published during
the first five minutes of the experiment. This bootstrapping
interval allows for the first mobile nodes to populate the
simulation area. Likewise, no message is published during
the last 15 minutes of the experiment. This allows for the
last published messages to propagate for a while before the
experiment completes. Messages are thus published during a
40 minute time window, which goes approximately from time
t=5’ to time t=45’ during the experiment. More specifically, the
first node to enter the subway station during the time window
is node #200, and the last one is node #2679. Only 20 % of
the nodes created in this time window are allowed to publish a
message, each publisher node publishing a message about the
topic it is itself interested in. In order to determine which node
can act as a publisher, we use the following simple method:
for node #i, if (i mod 25) <= 5, then node #i is a publisher
for topic (i mod 5).

With this simple application scenario, 500 messages are
published during the experiment (100 messages for each
topic).

The analysis tools available with LEPTON have been used
to examine the DGS file produced from the subway trace set.
Some of the figures thus obtained are summarized in Table I.

Besides these statistical data, the horizons of the 500
messages considered in our application scenario have been
computed using LEPTON’s horizon calculator (mentioned
in Section III-F). Figure 9 shows the number of potential
receivers for each of these messages. It can be observed that
the later a node is created during an experiment, the fewer the
potential receivers for a message published by this node.

As explained in Section III-F, computing the horizon of
a message provides input about the “ideal” propagation of
that message. Indeed, the actual number of nodes that can be
expected to receive a message is a key requirement for calcu-
lating delivery ratios, once experimental results are available.

B. Simulating the subway scenario
In order to observe how the two middleware systems pre-

sented in Section IV (i.e., DoDWAN and aDTN) can perform
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Metric Values (* = min / max / avg / stdev values)
Duration of the experiment 3,600”

Nb. of nodes created during the experiment 3,300
Nb. of active nodes per experiment step 2 / 325 / 180 / 57 (*)

Activity duration per node 6.000” / 11’53.400” / 3’15.366” / 1’39.301” (*)

Number of radio contacts 384,465
Number of neighbours per node 0.7 / 73.8 / 25.25 / 11.8 (*)

Durations of radio contacts 0.600” / 6’01.200” / 24.486” / 34.776” (*)

Number of inter-contacts 78,591
Durations of inter-contacts 0.600” / 6’11.400” / 27.114” / 44.424” (*)

Table I
STATISTICS ABOUT THE SUBWAY STATION SCENARIO, ASSUMING 10 METER RADIO RANGE.
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Figure 9. Number of receivers accessible from each message publisher,
according to the horizon calculation. As expected, the later a node enters
the scenario, the lesser the amount of accessible receivers it can reach.

when running the subway scenario, simulations have first been
run using the ONE simulator [12], [13].

Simulation setup: We have converted the DGS files
mentioned in Section V-A into the format required by ONE’s
ExternalEventQueue (for the establishment of connections and
the creation of messages) and ExternalMovement (for the
nodes’ movement) Java classes. We also extended ONE’s
ActiveRouter to develop a DoDWANRouter class and an
ADTNRouter class that replicate DoDWAN’s and aDTN’s
behaviour. This way, we have been able to evaluate how
DoDWAN and aDTN should behave on the subway scenario.

As all the simulation events are deterministic (because
all movement, connectivity and message creation events are
fixed, and none of the two OppNet systems introduce any
randomness by design), all the experiments we performed
have generated the same results. During these experiments the
transmission rate was 250 kB/s, and each message carried a
payload of 200 bytes and had an unlimited lifetime.

Message delivery ratios: In order to improve the preci-
sion of the delivery ratio metric, we use results of the horizon
computation as a reference for message delivery. Thus, for
each message and for each middleware system, we calculated
the delivery ratio as NRO/NRI , where NRI is the number
of potential receivers (or “ideal” number of receivers), as
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Figure 10. Delivery ratio obtained by DoDWAN (red cross) and aDTN (blue
square), relative to the amount of potential receivers. Note that the two systems
perform exactly the same during simulations.

predicted by the horizon computation, and NRO is the number
of effective receivers, as observed from the simulator’s log (or
“observed” number of receivers).

As shown in Figure 10, both DoDWAN and aDTN have
delivered exactly the same amount of messages to the same
receivers (they both delivered a message to 99.7% of the
potential receivers). This was not unexpected. The reason
is that, although DoDWAN uses a publish/subscribe strategy
based on topics of interest, while aDTN uses mobile code to
make routing decisions, in the described application scenario
both systems operate using the very same logic. Therefore,
both systems take the same routing decisions and, when facing
the same situation, they both forward or deliver the messages
to the same nodes. Besides, since processing time and buffer
management are not accounted for in a discrete event-based
simulator (because time “stops” when a node has to make a
decision, and only transmission delays are considered) there is
nothing that differentiates one OppNet system from the other
from the simulator’s point of view.

Other metrics: One of the advantages of using a sim-
ulator is that it makes it easy to collect global statistics of
certain metrics. In this case, we have used some of ONE’s
Report classes to build Table II (that shows some typical metric
statistics about the experiment) and Figure 11 (that shows the
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Metric Value
Started relay events 204,663

Finished relay events 203,223
Aborted relays 1,440

Average latency 961.49 s
Average hop count 14.01 hops

Table II
SOME OF THE MAIN METRICS OBTAINED USING THE ONE’S

MessageStatsReport. SIMULATIONS PERFORMED WITH DODWAN AND
ADTN HAVE OBTAINED EXACTLY THE SAME VALUES.
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Figure 11. Contact duration time. About two thirds of the contacts last less
than 15 seconds, and most of them last less than 30 seconds.

distribution of contact durations).
Regarding the high amount of aborted relays, it is very

interesting to study contact durations, because all abortions are
due to premature disconnections between transferring nodes.
Note that 7.7% of the contacts last less than 2 seconds, so
missing a contact is very easy if one of the nodes is busy
transmitting a bunch of messages. This is what happened with
messages #1650 and #2354, that could not be delivered to
some early carriers because they were occupied, causing that,
respectively, 27 and 22 potential receivers never received these
messages.

These contacts would be exploited (or not) to forward mes-
sages depending on the system implementation’s performance.
Additionally, 16.7% of the contacts last less than 5 seconds.
This is the beaconing period that both DoDWAN and aDTN
use, so all those very short contacts could also be missed by
their neighbour discovery modules.

However, these factors (and many others) have not been
considered in this experiment, for ONE does not simulates
beaconing (it directly notifies a node when a new connection
is created) and it processes routing decisions as atomic op-
erations. Therefore, there is no way to know the impact of
those factors on the overall performance of the two compared
systems using simulation.

These results show that simulation is a good tool to confirm
that both aDTN and DoDWAN should perform equally well
in the subway scenario, and that their designs do not contain
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Figure 12. First set of delivery ratio results observed with systems aDTN
(blue squares) and DoDWAN (orange dots). For almost all senders, DoDWAN
nodes delivered their messages to more than 90% of the possible destinations,
while aDTN nodes performed erratically, their delivery ratios ranging from
0% to 90%.

any obvious incompatibilities or flaws. But while simulation
alone proves unable to differentiate such systems, emulation
will make it possible to see how they differ when implemented
in real code.

C. Emulating the subway scenario

Both DoDWAN’s and aDTN’s real implementations have
been used to run the subway scenario, using LEPTON as
an emulation platform. Note that our prime objective here
is to present how the conclusions thus obtained differ from
those obtained with pure simulation. Performing an exhaustive
analysis and comparison of DoDWAN and aDTN is out of the
scope of this paper.

Emulation setup: Experiments were run using virtual
nodes with the two middleware systems. In all experiments
the systems were configured so as to use a beaconing period
of 5 seconds, and to assume unlimited cache capacity. As in
the simulations, messages were published with 200 bytes of
payload, and unlimited lifetime.

Message delivery ratios: Again, we have calculated the
delivery ratio in relation to the amount of potential receivers
we obtained from the horizon computation. Figure 12 shows
the delivery ratios observed after running the same application
scenario with aDTN nodes, and with DoDWAN nodes. Note
that these are not statistical results, as they present figures
obtained after one experiment run for each of the two systems
considered.

In this figure it appears that aDTN performs quite poorly.
The average delivery ratio observed with this system is actually
54.6%, while that observed with DoDWAN is 98.9%. These
first results came as a surprise, since before running with LEP-
TON, aDTN had first been extensively tested using the ONE
simulator, as well as using a dozen of Raspberry Pi micro-
computers as experimentation platforms. Every time aDTN
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Figure 13. Second set of delivery ratio results observed with systems
aDTN (blue squares) and DoDWAN (orange dots), after correcting aDTN’s
issue (note that the y-axis now starts at 70%). Although DoDWAN slightly
outperforms aDTN, the overall results are now very similar.

seemed to perform quite satisfactorily. It is only when being
tested with LEPTON that aDTN proved unable to support the
workload imposed by a demanding scenario such as that of
the subway station. After a detailed examination of the imple-
mentation of aDTN, it appeared that the buffer management
system in aDTN sometimes maintained duplicates of messages
on the same node. This error was easily corrected, and another
experiment was run with LEPTON and aDTN. The new
delivery ratios obtained with aDTN are shown in Figure 13
(together with those obtained earlier with DoDWAN), and this
time it can be observed that both systems show roughly similar
performances. Indeed, the average delivery ratio observed with
aDTN is 97.1%, against 98.9% for DoDWAN.

This experiment confirms that running an OppNet mid-
dleware system in emulation mode is an excellent stress
test for the system considered. Bad or weak implementation
choices can be revealed in such conditions, while they could
remain undetected when running pure simulations, or when
running real code on a handful of experimentation platforms.
Besides, this experiment confirms that, even when simulation
shows that both systems should perform equally well, their
actual implementations play a key role in differentiating them.
Although the delivery ratios obtained with both systems are
quite similar, there are obvious differences between them that
were not spotted with pure simulation, and these differences
may be crucial when running in real conditions.

Interestingly, Figure 13 also shows that the amount of
undelivered messages increases with time during an exper-
iment. This is because when the system under test fails to
exploit a contact between two SNs, the chance to compensate
for this failure by exploiting later contacts gets weaker as
the simulation gets closer to completion. This phenomenon
affects aDTN’s results more heavily than DoDWAN’s, because
message delivery latencies (discussed in the following para-
graphs) are higher with aDTN than with DoDWAN. aDTN
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Figure 14. Delivery latencies observed during the dissemination of message
#1251, when running either aDTN (blue squares) or DoDWAN (orange dots)
nodes using LEPTON. The obtained latencies are very similar, except in two
moments: at the start of the message’s dissemination, and around 00:43, where
DoDWAN outperforms aDTN.

nodes, therefore, get fewer chances to compensate missed
transmission opportunities.

Message delivery latencies: Another interesting metric
to consider when analyzing experimental results is the latency
of message delivery, as observed for each receiver. In that
particular case we are not interested in the delay between the
time a message is published and the time it is received. We are
interested in the delay between the time a message could be
received by a node (according to the horizon calculation), and
the time it is actually received by that node (as recorded in the
experiment’s log files). Figure 14 shows the latencies observed
(with both aDTN and DoDWAN) for message #1251, and for
each of the receivers of that message. In this figure, a symbol
that shows, for example, a latency of about 80 seconds at
time 00:24 indicates that a receiver that could have received
message #1251 at a certain time (according to the horizon
computation) actually received it 80 seconds later during the
experiment.

In Fig. 14 it can be observed that when running the network
emulation using aDTN nodes, about 20 of these nodes did not
receive message #1251 as early as possible during the first
minute of the message’s dissemination. This did not happen
during simulations (see Figure 15, that shows that only four
nodes received the message more than 30 seconds later than
expected). These nodes that received the message a lot later
than expected could not serve as early carriers for the message,
which compromised the speed of that message’s dissemination
in the subway station. Further investigations (based on a
thorough analysis of the log files) would be required in order
to explain this phenomenon.

LEPTON’s toolset provides programs that can help perform
such fine grain analysis, based on automatic extraction of
data from log files. This topic remains out of the scope of
this paper, though, since our main objective here is simply
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Figure 15. Delivery latencies observed during the dissemination of message
#1251 using the ONE simulator, when running either aDTN or DoDWAN
(which obtained exactly the same results).

to demonstrate how fully-implemented opportunistic systems
can run in an emulated environment, thanks to the LEPTON
platform, producing a wealth of results that can then be
analyzed at a very fine grain.

Considerations about LEPTON’s resource consumption:
Experiments based on the subway scenario have been run on
a cluster composed of 20 cluster nodes (each node including
2 “6-core” Xeon L5640 processors), interconnected via a
Gigabit Ethernet LAN, each cluster node running Linux. In
practice, only five nodes of the cluster were used during our
experiments. One of these nodes ran the LEPTON emulator
(i.e., simulation engine plus the appropriate software hub),
and the other four nodes ran instances of the OppNet system
considered, which were created dynamically at runtime and
interacted via the hub. In our experiments, we deployed only
one software hub, combined with the simulation engine, and
we have studied the workload imposed on the node on which
they were deployed.

Figure 16 shows the evolution of the CPU workload ob-
served on that node during an experiment involving DoD-
WAN’s SNs. Experiments based on aDTN produced roughly
similar results. It can be observed that simulating the mobility
of mobile nodes (which is basically the task of LEPTON’s
simulation engine), and controlling communication between
these nodes (which is that of the software hub), only use a
small fraction of the CPU capacity. The CPU load observed
on the cluster nodes hosting SNs was also measured during
experiments. This workload was even lower than that shown
in Figure 16, even though each cluster node had to run dozens
of concurrent SNs at any time (with occasional peaks at about
80 SNs per cluster node).

Figure 17 shows the network throughput observed on
the same cluster node during an experiment. The maximal
throughput observed is slightly above 16 Mbps. This is only
a small fraction of the network capacity in this configuration.

These figures confirm that LEPTON is indeed a lightweight
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Figure 16. CPU load observed on the host running LEPTON during an
experiment (with DoDWAN nodes).
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Figure 17. Network throughput observed in the software hub during an
experiment (with DoDWAN nodes).

emulation platform, which makes it possible to run emulation-
based experiments on standard laboratory equipment. For
simple simulation scenarios an experiment can be conducted
on a single workstation or laptop, and for more demanding
scenarios a couple of standard workstations (or part of a
cluster) can be used.

D. Field experiment with DoDWAN

Whenever running a certain scenario with a simulation or
emulation platform, it is always legitimate to wonder whether
the results thus obtained bear any resemblance to what could
be observed in real conditions. In order to demonstrate that
LEPTON makes it possible to run emulation-based experi-
ments in conditions that closely mimic real-life conditions,
we have conducted a small-scale field experiment based on
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Figure 18. Map of the campus where the field experiment was conducted.
Every blue line represents the transmission of a message between two
smartphones.

DoDWAN, and then reproduced the same scenario with LEP-
TON.

Mobility and application scenario: Ten volunteers were
equipped with HTC Wildfire-S smartphones, whose Wi-Fi
interfaces were configured to operate in ad hoc mode. Each
smartphone ran DodwanDroid6, an Android application based
on DoDWAN, as well as another application recording GPS
locations and radio contacts.

During the experiment the volunteers were asked to roam
a small university campus (covering roughly a 420m x 160m
area, as depicted in Figure 18), staying outdoors (because of
the GPS recording), while using DodwanDroid to exchange
short-text messages on a public channel (meaning every mes-
sage published by one volunteer was meant to be received by
all other volunteers). The experiment lasted about 25 minutes,
but the volunteers were requested to start DodwanDroid on
their smartphone shortly after they began walking in the
campus, and to stop it shortly before the 25-minute deadline.
They were also requested to stop publishing messages a couple
of minutes before stopping the DodwanDroid application, thus
giving the last messages published a chance to disseminate for
a while.

Log files were collected and analyzed after this experiment.
Some of the statistical figures thus obtained are shown in
Table III7. The last line in that table provides interesting
results about the distances covered during message transfers
between neighbour nodes. During the field experiment some
messages got transmitted over up to 172 meters, with an
average distance of 56 meters. Such rather long transmission
distances could of course be observed because the volunteers
stayed outdoors while roaming the campus. Regarding delivery
ratio, 249 messages were published by the volunteers during
this experiment, and 2234 receive events were recorded in the
log files. Since each message could be received by at most
nine smartphones, the delivery ratio is 2234/(249*9)=99.6%.

6http://www-casa.irisa.fr/dodwan/dodwandroid.html
7Further details about this field experiment (including videos) are available

on http://www-casa.irisa.fr/dodwan/field_expe_2018_01.html

Field results vs emulation results: A history of node
creation, node deletion, publish events, GPS and radio contact
data extracted from the log files were used to produce a DGS
file. This way, we used LEPTON to replay exactly the same
application-level scenario (using virtual nodes instead of the
real devices), starting and stopping each node, and issuing
publish commands at the appropriate times. Three emulation
runs were performed with LEPTON to ensure its stability.

Log files produced during each emulation run were analyzed
using the same method as for those obtained after the field
experiment. As expected, this analysis shows that the pattern
of message dissemination is almost the same in real-world
and emulation conditions (note the similitude between the two
columns in Table III). One perceptible difference, though, is
that the number of contacts observed during emulation runs is
lower than that observed during the field experiment. This is
because a few very short inter-contacts (lasting typically less
than 500 ms) occurred during the field experiment. Such short
inter-contacts can be missed by DoDWAN nodes when running
with LEPTON, two consecutive contacts being perceived as
a single, longer one. Another difference is that 2236 receive
events occurred during each emulation run, against 2234 in the
field experiment. Indeed, a 2.6 seconds radio contact occurred
between two smartphones, shortly before the completion of
the field experiment. These two smartphones failed to exploit
this very short contact, and thus failed to achieve the last two
message transfers. During the emulation runs, though, these
message transfers did not fail, hence the slight (less than 0.1%)
discrepancy in the number of receive events between field data
and emulation data.

Figure 19 shows the average message delivery delays ob-
tained in all four datasets. The similitude between the four
curves confirms that LEPTON’s behaviour is stable, and
that it mimics real conditions satisfactorily. Based on these
results, and despite the minor differences discussed above,
we consider that the overall similarity between field results
and emulation results demonstrates that LEPTON is apt at
replaying accurately field scenarios in emulation mode.

VI. CONCLUSION AND FUTURE WORK

In this article, we have presented LEPTON, an emulation
platform we designed for opportunistic networking develop-
ment. This platform is meant to constitute a lightweight emu-
lation solution that bridges the gap between pure simulation,
and real-world experimentation. With LEPTON, full-featured
application and/or middleware code can run in an emulated
environment, in which only the mobility of network nodes is
simulated. The code running on each network node is therefore
the same code that could run on a mobile device. In fact,
instances of the system under test can be executed concurrently
on real mobile devices (such as smartphones or tablets), on
a single workstation, or on a cluster of workstations, while
LEPTON simulates their mobility and drives transmissions
accordingly.

Initial experiments conducted with two existing opportunis-
tic systems have confirmed that such systems can be easily
adapted to run with LEPTON, and that running opportunistic
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Metric Field experiment Emulation run
Duration of the experiment 25’20”

Nb. of nodes involved in the experiment 10
Nb. of active nodes 2.0 / 10.0 / 9.5 / 1.5(* = min / max / avg / stdev)

Activity duration per node 21’35” / 23’53” / 23’06” / 41” (*)

Average number of neighbours per node 0.0 / 2.7 / 1.2 / 0.5(*) 0.0 / 2.4 / 1.2 / 0.5
Number of contacts 163 157

Durations of contacts 00" / 10’16" / 48" / 01’11"(*) 01" / 10’19" / 49" / 01’13"(*)

Number of inter-contacts 119 113
Durations of inter-contacts 04" / 18’12" / 04’01" / 03’37"(*) 04" / 15’07" / 04’03" / 03’25"(*)

Number of messages published 249
Number of receive events 2234 (delivery ratio: 99.6%) 2236 (delivery ratio: 99.8%)
Message delivery delays 00" / 18’16" / 02’30" / 02’08" (*) 00" / 17’59" / 02’36" / 02’02"(*)

Distances covered during msg transfers (m.) 0.0 / 171.8 / 55.7 / 32.6(*) 0.4 / 169.7 / 54.4 / 33.0(*)

Table III
STATISTICS ABOUT A SMALL-SCALE FIELD EXPERIMENT CONDUCTED WITH DODWAN ON A UNIVERSITY CAMPUS.
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Figure 19. Cumulated distribution functions of message delivery delays
observed in the field experiment, and when replaying the same scenario
with LEPTON (three emulation runs). Note the similitude between the field
experiment results and LEPTON’s ones.

networking scenarios in such conditions constitute an excellent
stress test for these systems. They have also shown that weak-
nesses in the system under test can be revealed while running
demanding application scenarios in emulation mode, while
they could perfectly remain undetected when running pure
simulations, or when running on a handful of experimentation
platforms.

Future work shall aim at extending the set of mobility mod-
els offered in LEPTON, as well as the set of complementary
tools that facilitate the analysis of log files after an experiment.
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G. Karlsson, “A Middleware for Opportunistic Content Distribution,”
Computer Networks, vol. 107-2, pp. 178–193, Oct. 2016.


