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Abstract. We revisit the ordinary isogeny-graph based cryptosystems
of Couveignes and Rostovtsev–Stolbunov, long dismissed as impracti-
cal. We give algorithmic improvements that accelerate key exchange in
this framework, and explore the problem of generating suitable system
parameters for contemporary pre- and post-quantum security that take
advantage of these new algorithms. We also prove the session-key security
of this key exchange in the Canetti–Krawczyk model, and the IND-CPA
security of the related public-key encryption scheme, under reasonable
assumptions on the hardness of computing isogeny walks. Our systems
admit efficient key-validation techniques that yield CCA-secure encryp-
tion, thus providing an important step towards efficient post-quantum
non-interactive key exchange (NIKE).

Keywords: post-quantum cryptography · key exchange · elliptic curves
· isogenies

1 Introduction

Isogeny-based protocols form one of the youngest and least-explored families of
post-quantum candidate cryptosystems. The best-known isogeny-based protocol
is Jao and De Feo’s SIDH key exchange [36], from which the NIST candidate
key-encapsulation mechanism SIKE was derived [4,53]. SIDH was itself inspired
by earlier key-exchange constructions by Couveignes [19] and Rostovtsev and
Stolbunov [57,61,62], which were widely considered unwieldy and impractical.

Indeed, the origins of isogeny-based cryptography can be traced back to Cou-
veignes’ “Hard Homogeneous Spaces” manuscript, that went unpublished for ten
years before appearing in [19]. A principal homogeneous space (PHS) for a group
G is a set X with an action of G on X such that for any x, x′ ∈ X , there is a
unique g ∈ G such that g ·x = x′. Equivalently, the map ϕx : g 7→ g ·x is a bijec-
tion between G and X for any x ∈ X . Couveignes defines a hard homogeneous



Algorithm 1: Key generation for cryptosystems in an HHS X for a group
G, with a fixed “base point” x0 in X .

Input: ()
Output: A private-public keypair (g, x) ∈ G×X s.t. x = g · x0

1 function KeyGen()

2 g ← Random(G) // g is sampled uniformly at random from G
3 x← g · x0

4 return (g, x)

space (HHS) to be a PHS where the action of G on X is efficiently computable,
but inverting the isomorphism ϕx is computationally hard for any x.

Any HHS X for an abelian group G can be used to construct a key exchange
based on the hardness of inverting ϕx, as shown in Algorithms 1 and 2. If Alice
and Bob have keypairs (gA, xA) and (gB, xB), respectively, then the commuta-
tivity of G lets them derive a shared secret

DH(gA, xB) = gA · (gB · x0) = gB · (gA · x0) = DH(gB, xA) .

The analogy with classic group-based Diffie–Hellman is evident.

Algorithm 2: Diffie–Hellman in an HHS X for a group G

Input: A private key gA ∈ G and a public key xB ∈ X, each generated by calls
to KeyGen

Output: A shared secret value k ∈ X
1 function DH(gA,xB)

2 k ← gA · xB

3 return k

For example, if X = 〈x〉 is cyclic of order p and G = (Z/pZ)∗ acts on X \{1}
by g · x = xg, then inverting ϕx is the discrete logarithm problem (DLP) in X .
But inverting ϕx for other homogeneous spaces may not be related to any DLP,
and might resist attacks based on Shor’s quantum algorithm. Similar ideas have
occasionally appeared in the literature in different forms [40,48].

Couveignes viewed HHS chiefly as a general framework encompassing var-
ious Diffie–Hellman-like systems. Nevertheless, he suggested using a specific
HHS based on the theory of complex multiplication of elliptic curves, in a sense
generalizing Buchmann and Williams’ class-group-based Diffie–Hellman key ex-
change [10]. Independently, Rostovtsev and Stolbunov proposed in [57] a public
key encryption scheme based on the same HHS. Later, Stolbunov [62] derived
more protocols from this, including an interactive key exchange scheme similar
to Algorithm 2. Rostovtsev and Stolbunov’s proposal deviates from the HHS
paradigm in the way random elements of G are sampled, as we will explain in
§3. This makes the primitive less flexible, but also more practical.
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Rostovtsev and Stolbunov advertised their cryptosystems as potential post-
quantum candidates, leading Childs, Jao and Soukharev to introduce the first
subexponential quantum algorithm capable of breaking them [13]. Hence, be-
ing already slow enough to be impractical in a classical security setting, their
primitive appeared even more impractical in a quantum security setting.

But the Couveignes–Rostovtsev–Stolbunov primitive (CRS) has some im-
portant advantages over SIDH which make it worth pursuing. Unlike SIDH,
CRS offers efficient and safe public key validation, making it suitable for non-
interactive key exchange (NIKE). Further, CRS does not suffer from some of the
potential cryptographic weaknesses that SIDH has, such as short paths and the
publication of image points.

This paper aims to improve and modernize the CRS construction, borrowing
techniques from SIDH and point-counting algorithms, to the point of making it
usable in a post-quantum setting. Our main contributions are in §§3–4, where
we present a new, more efficient way of computing the CRS group action, and
in §5, where we give precise classic and quantum security estimates, formalize
hardness assumptions, and sketch security proofs in stronger models than those
previously considered. In §6 we present a proof-of-concept implementation and
measure its performance. While the final result is far from competitive, we believe
it constitutes progress towards a valid isogeny-based alternative to SIDH.

CSIDH. While preparing this paper we were informed of recent work by Cas-
tryck, Lange, Martindale, Panny, and Renes, introducing CSIDH, an efficient
post-quantum primitive based on CRS [12]. Their work builds upon the ideas
presented in §§3–4, using them in a different homogeneous space where they
apply effortlessly. Their breakthrough confirms that, if anything, our techniques
were a fundamental step towards the first practical post-quantum non-interactive
key exchange protocol.

Side channel awareness. The algorithms we present here are not intended to
provide any protection against basic side-channel attacks. Uniform and constant-
time algorithms for arbitrary-degree isogeny computations are an interesting
open problem, but they are beyond the scope of this work.

Acknowledgments. We would like to thank Wouter Castryck, Tanja Lange, Chloe
Martindale, Lorenz Panny, and Joost Renes for sharing a draft of their paper
with us, and Alexandre Gélin and François Morain for fruitful discussions. De Feo
acknowledges the support of the French Programme d’Investissements d’Avenir
under the national project RISQ no P141580-3069086/DOS0044212.

2 Isogenies and complex multiplication

We begin by recalling some basic facts on isogenies of elliptic curves over finite
fields. For an in-depth introduction to these concepts, we refer the reader to [59].
For a general overview of isogenies and their use in cryptography, we suggest [21].
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2.1 Isogenies between elliptic curves

In what follows Fq is a finite field of characteristic p with q elements, and Fq

is its algebraic closure. Let E and E′ be elliptic curves defined over Fq. A ho-
momorphism φ : E → E′ is an algebraic map sending 0E to 0E′ ; it induces a
group homomomorphism from E(Fq) to E′(Fq) [59, III.4]. An endomorphism is
a homomorphism from a curve to itself. The endomorphisms of E form a ring
End(E), with the group law on E for addition and composition for multiplica-
tion. The simplest examples of endomorphisms are the scalar multiplications [m]
(mapping P to the sum of m copies of P ) and the Frobenius endomorphism

π : E −→ E ,

(x, y) 7−→ (xq, yq) .

As an element of End(E), Frobenius satisfies a quadratic equation π2 + q = tπ.
The integer t (the trace) fully determines the order of E as #E(Fq) = q+1− t.
A curve is called supersingular if p divides t, ordinary otherwise.

An isogeny is a non-zero homomorphism of elliptic curves. The degree of an
isogeny is its degree as an algebraic map, so for example the Frobenius endomor-
phism π has degree q, and the scalar multiplication [m] has degree m2. Isogenies
of degree ℓ are called ℓ-isogenies. The kernel kerφ of φ is the subgroup of E(Fq)
that is mapped to 0E′ . An isogeny φ is cyclic if kerφ is a cyclic group.

An isomorphism is an isogeny of degree 1. An isomorphism class of elliptic
curves is fully determined by their common j-invariant in Fq. If any curve in
the isomorphism class is defined over Fq, then its j-invariant is in Fq.

Any isogeny can be factored as a composition of a separable and a purely
inseparable isogeny. Purely inseparable isogenies have trivial kernel, and degree
a power of p. Separable isogenies include all isogenies of degree coprime to p.
Up to isomorphism, separable isogenies are in one-to-one correspondence with
their kernels: for any finite subgroup G ⊂ E of order ℓ there is an elliptic curve
E/G and an ℓ-isogeny φ : E → E/G such that kerφ = G, and the curve
and isogeny are unique up to isomorphism. In particular, if φ is separable then
deg φ = #kerφ. It is convenient to encode kerφ as the polynomial whose roots
are the x-coordinates of the points in kerφ, called the kernel polynomial of φ.

For any ℓ-isogeny φ : E → E′, there is a unique ℓ-isogeny φ̂ : E′ → E such
that φ ◦ φ̂ = [ℓ] on E′ and φ̂ ◦ φ = [ℓ] on E. We call φ̂ the dual of φ. This
shows that being ℓ-isogenous is a symmetric relation, and that being isogenous
is an equivalence relation. Further, a theorem of Tate states that two curves are
isogenous over Fq if and only if they have the same number of points over Fq.

2.2 Isogeny graphs

Isogeny-based cryptosystems are based on isogeny graphs. These are (multi)-
graphs whose vertices are elliptic curves up to isomorphism, and whose edges are
isogenies between them (again up to isomorphism). The use of isogeny graphs for
algorithmic applications goes back to Mestre and Oesterlé [49], followed notably
by Kohel [41], and has been continued by many authors [29,26,31,50,37].
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We write E[ℓ] for the subgroup of ℓ-torsion points of E(Fq). If ℓ is coprime
to p, then E[ℓ] is isomorphic to (Z/ℓZ)2. Furthermore, if ℓ is prime then E[ℓ]
contains exactly ℓ+ 1 cyclic subgroups of order ℓ; it follows that, over Fq, there
are exactly ℓ+1 distinct (non-isomorphic) separable ℓ-isogenies from E to other
curves. Generically, a connected component of the ℓ-isogeny graph over Fq will
be an infinite (ℓ + 1)-regular graph (a notable exception is the finite connected
component of supersingular curves, used in SIDH and related protocols).

We now restrict to isogenies defined over Fq. If E and E′ are elliptic curves
over Fq, then an isogeny φ : E → E′ is defined over Fq (up to a twist of E′) if
and only if the Frobenius endomorphism π on E stabilizes kerφ. We emphasize
that the points in kerφ need not be defined over Fq themselves.

For the vertices of the Fq-isogeny graph we use j-invariants, which classify
elliptic curves up to Fq-isomorphism; but in the sequel we want to work up

to Fq-isomorphism, a stronger equivalence. If E and Ẽ are not Fq-isomorphic

but j(E) = j(Ẽ), then Ẽ is the quadratic twist of E (which is defined and
unique up to Fq-isomorphism).5 When E is ordinary, its quadratic twist has

a different cardinality (if #E(Fq) = q + 1 − t, then #Ẽ(Fq) = q + 1 + t),

so E and Ẽ are in different components of the isogeny graph. But every Fq-

isogeny φ : E → E′ corresponds to an Fq-isogeny φ̃ : Ẽ → Ẽ′ of the same
degree between the quadratic twists. The component of the Fq-isogeny graph
containing an ordinary curve and the component containing its twist are thus
isomorphic; we are therefore justified in identifying them, using j-invariants in
Fq for vertices in the Fq-graph.6 This is not just a mathematical convenience:
we will see in §3 below that switching between a curve and its twist often allows
a useful optimization in isogeny computations.

If an isogeny φ is defined over Fq and cyclic, then π acts like a scalar on the
points of kerφ. Thus, for any prime ℓ 6= p, the number of outgoing ℓ-isogenies
from E defined over Fq can be completely understood by looking at how π acts
on E[ℓ]. Since E[ℓ] is a Z/ℓZ-module of rank 2, the action of π is represented by
a 2 × 2 matrix with entries in Z/ℓZ and characteristic polynomial X2 − tX + q
mod ℓ. We then have four possibilities:

(0) π has no eigenvalues in Z/ℓZ, i.e. X2 − tX + q is irreducible modulo ℓ; then
E has no ℓ-isogenies.

(1.1) π has one eigenvalue of (geometric) multiplicity one, i.e. it is conjugate to a
non-diagonal matrix

(

λ ∗
0 λ

)

; then there is one ℓ-isogeny from E.
(1.2) π has one eigenvalue of multiplicity two, i.e. it acts like a scalar matrix

(

λ 0
0 λ

)

;
then there are ℓ+ 1 isogenies of degree ℓ from E.

(2) π has two distinct eigenvalues, i.e. it is conjugate to a diagonal matrix
(

λ 0
0 µ

)

with λ 6= µ; then there are two ℓ-isogenies from E.

5 There is a slight technicality here for j-invariants 0 and 1728, where non-quadratic
twists may exist. We ignore these special cases because these curves never appear
in our cryptosystem: the class groups of their endomorphism rings are trivial, and
keyspaces of size 1 are of limited utility in cryptography.

6 The situation is much more complicated for supersingular graphs, because the curve
and its twist are in the same component of the graph; see [23, §2] for details.
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The primes ℓ in Case (2) are called Elkies primes for E; these are the primes
of most interest to us. Cases (1.x) are only possible if ℓ divides ∆π = t2 − 4q,
the discriminant of the characteristic equation of π; for ordinary curves ∆π 6= 0,
so only a finite number of ℓ will fall in these cases, and they will be mostly
irrelevant to our cryptosystem. We do not use any ℓ in Case (0).

Since all curves in the same isogeny class over Fq have the same number of
points, they also have the same trace t and discriminant ∆π. It follows that if ℓ
is Elkies for some E in Ellq(O), then it is Elkies for every curve in Ellq(O).

Hence, if ℓ is an Elkies prime for a curve E, then the connected component
of E in the ℓ-isogeny graph is a finite 2-regular graph—that is, a cycle. In the
next subsection we describe a group action on this cycle, and determine its size.

2.3 Complex multiplication

In this subsection we focus exclusively on ordinary elliptic curves. If E is an
ordinary curve with Frobenius π, then End(E) is isomorphic to an order7 in the
quadratic imaginary field Q(

√
∆π) (see [59, III.9]). A curve whose endomorphism

ring is isomorphic to an order O is said to have complex multiplication by O.
For a detailed treatment of the theory of complex multiplication, see [45,60].

The ring of integers OK of K = Q(
√
∆π) is its maximal order : it contains

any other order of K. Hence Z[π] ⊂ End(E) ⊂ OK , and there is only a finite
number of possible choices for End(E). If we write ∆π = d2∆K , where ∆K is the
discriminant8 of OK , then the index [OK : End(E)] must divide d = [OK : Z[π]].

It turns out that isogenies allow us to navigate the various orders. If φ : E →
E′ is an ℓ-isogeny, then one of the following holds [41, Prop. 21]:

– End(E) = End(E′), and then φ is said to be horizontal ;
– [End(E) : End(E′)] = ℓ, and then φ is said to be descending;
– [End(E′) : End(E)] = ℓ, and then φ is said to be ascending.

Notice that the last two cases can only happen if ℓ divides d2 = ∆π/∆K , and
thus correspond to Cases (1.x) in the previous subsection. If ℓ does not divide
∆π, then φ is necessarily horizontal.

We now present a group action on the set of all curves up to isomorphism
having complex multiplication by a fixed order O; the key exchange protocol of
§3 will be built on this action. Let a be an invertible ideal in End(E) ≃ O of
norm prime to p, and define the a-torsion subgroup of E as

E[a] =
{

P ∈ E(Fq)
∣

∣ σ(P ) = 0 for all σ ∈ a
}

.

This subgroup is the kernel of a separable isogeny φa.
9 The codomain E/E[a] of

φa is well-defined up to isomorphism and will be denoted a · E. The isogeny φa

is always horizontal—that is, End(a ·E) = End(E)—and its degree is the norm
of a as an ideal of End(E).

7 An order is a subring which is a Z-module of rank 2.
8 ∆K is a fundamental discriminant: ∆K ≡ 0, 1 (mod 4), and ∆K or ∆K

4
is squarefree.

9 In fact, one can define φa for any invertible ideal a, but it is not always separable.
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Let Ellq(O) be the set of isomorphism classes over Fq of curves with com-
plex multiplication by O, and assume it is non-empty. The construction above
gives rise to an action of the group of fractional ideals of O on Ellq(O). Fur-
thermore, the principal ideals act trivially (the corresponding isogenies are en-
domorphisms), so this action induces an action of the ideal class group C(O) on
Ellq(O).

The main theorem of complex multiplication states that this action is simply
transitive. In other terms, Ellq(O) is a PHS under the group C(O): if we fix a
curve E as base point, then we have a bijection

C(O) −→ Ellq(O)

Ideal class of a 7−→ Isomorphism class of a · E.

The order of C(O) is called the class number of O, and denoted by h(O). An
immediate consequence of the theorem is that #Ellq(O) = h(O).

As before, we work with Fq-isomorphism classes. Then Ellq(O) decomposes
into two isomorphic PHSes under C(O), each containing the quadratic twists
of the curves in the other. We choose one of these two components, that we
will also denote Ellq(O) in the sequel. (The choice is equivalent to a choice of
isomorphism End(E) ∼= O, and thus to a choice of sign on the image of π in O.)

Now let ℓ be an Elkies prime for E ∈ Ellq(O). So far, we have seen that
the connected component of E in the ℓ-isogeny graph is a cycle of horizontal
isogenies. Complex multiplication tells us more. The restriction of the Frobenius
to E[ℓ] has two eigenvalues λ 6= µ, to which we associate the prime ideals a =
(π − λ, ℓ) and â = (π − µ, ℓ), both of norm ℓ. We see then that E[a] is the
eigenspace of λ, defining an isogeny φa of degree ℓ. Furthermore aâ = âa = (ℓ),
implying that a and â are the inverse of one another in C(O), thus the isogeny
φâ : a ·E → E of kernel (a ·E)[â] is the dual of φa (up to isomorphism).

The eigenvalues λ and µ define opposite directions on the ℓ-isogeny cycle,
independent of the starting curve, as shown in Figure 1. The size of the cycle
is the order of (π − λ, ℓ) in C(O), thus partitioning Ellq(O) into cycles of equal
size.

3 Key exchange from isogeny graphs

We would like to instantiate the key exchange protocol of Algorithm 2 with the
PHS X = Ellq(O) for the group G = C(O), for some well chosen order O in a
quadratic imaginary field. However, given a generic element of C(O), the best
algorithm [38] to evaluate its action on Ellq(O) has subexponential complexity
in q, making the protocol infeasible. The solution, following Couveignes [19], is
to fix a set S of small prime ideals in O, whose action on X can be computed
efficiently, and such that compositions of elements of S cover the whole of G.
The action of an arbitrary element of G is then the composition of a series of
actions by small elements in S. As Rostovtsev and Stolbunov [57] observed, it
is useful to visualise this decomposed action as a walk in an isogeny graph.
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Fig. 1. An isogeny cycle for an Elkies
prime ℓ, with edge directions associated
with the Frobenius eigenvalues λ and µ.
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x1

Fig. 2. Undirected Schreier graph on
〈x〉 \ {1} where x13 = 1, acted upon by
(Z/13Z)∗, generated by S = {2, 3, 5}
(resp. blue, red and green edges).

3.1 Walks in isogeny graphs

Let G be a group, X a PHS for G, and S a subset of G. The Schreier graph
G(G,S,X) is the labelled directed graph whose vertex set is X , and where an
edge labelled by s ∈ S links x1 to x2 if and only if s · x1 = x2. It is isomorphic
to a Cayley graph for G. If S is symmetric (that is, S−1 = S), then we associate
the same label to s and s−1, making the graph undirected.

A walk in G(G,S,X) is a finite sequence (s1, . . . , sn) of steps in S. We define
the action of this walk on X as

(s1, . . . , sn) · x =
(

n
∏

i=1

si
)

· x.

In our application G is abelian, so the order of the steps si does not matter.
We can use this action directly in the key exchange protocol of Algorithm 2, by
simply taking private keys to be walks instead of elements in G.

Example 1. Figure 2 shows G(G,S,X) where G = (Z/13Z)∗, S = {2, 3, 5} ∪
{2−1, 3−1, 5−1}, and X = 〈x〉\{1} is a cyclic group of order 13, minus its identity
element. The action of G on X is exponentiation: g · x = xg. The action of 11,
which takes xk to x11k, can be expressed using the walks (2, 5, 5), or (2−1, 3−1),
or (3, 5), for example. Note that 5 has order 4 modulo 13, thus partitioning
〈x〉 \ {1} into 3 cycles of length 4.

Returning to the world of isogenies, we now take

– X = Ellq(O) as the vertex set, for some well-chosen q and O; in particular
we require O to be the maximal order (see §5).
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– G = C(O) as the group acting on X ;
– S a set of ideals, whose norms are small Elkies primes in O.

The graph G(G,S,X) is thus an isogeny graph, composed of many isogeny cycles
(one for the norm of each prime in S) superimposed on the vertex set Ellq(O). It
is connected if S generates C(O). Walks in G(G,S,X) are called isogeny walks.

We compute the action of an ideal s (a single isogeny step) on an x ∈ Ellq(O)
by choosing a representative curve E with x = j(E), and computing an isogeny
φs : E → E′ from E corresponding to s; the resulting vertex is s · x = j(E′).
The action of an isogeny walk (si)i is then evaluated as the sequence of isogeny
steps φsi . Algorithms for these operations are given in the next subsection.

Using this “smooth” representation of elements in C(O) as isogeny walks lets
us avoid computing C(O) and Ellq(O), and avoid explicit ideal class arithmetic;
only isogenies between elliptic curves are computed. In practice, we re-use the
elliptic curve E′ from one step as the E in the next; but we emphasize that when
isogeny walks are used for Diffie–Hellman, the resulting public keys and shared
secrets are not the final elliptic curves, but their j-invariants.

3.2 Computing isogeny walks

Since C(O) is commutative, we can break isogeny walks down into a succession
of walks corresponding to powers of single primes s = (ℓ, π−λ); that is, repeated
applications of the isogenies φs. Depending on s, we will compute each sequence
of φs using one of two different methods:

– Algorithm 5 (ElkiesWalk) uses Algorithm 3 (ElkiesFirstStep) followed
by a series of calls to Algorithm 4 (ElkiesNextStep), both which use the
modular polynomial Φℓ(X,Y ). This approach works for any s.

– Algorithm 7 (VéluWalk) uses a series of calls to Algorithm 6 (VéluStep).
This approach, which uses torsion points on E, can only be applied when λ
satisfies certain properties.

Rostovtsev and Stolbunov only used analogues of Algorithms 3 and 4. The
introduction of VéluStep, inspired by SIDH and related protocols (and now a
key ingredient in the CSIDH protocol [12]), speeds up our protocol by a consid-
erable factor; this is the main practical contribution of our work.

Elkies steps. Algorithms 3 and 4 compute single steps in the ℓ-isogeny graph.
Their correctness follows from the definition of the modular polynomial Φℓ:
a cyclic ℓ-isogeny exists between two elliptic curves E and E′ if and only if
Φℓ(j(E), j(E′)) = 0 (see [58, §6] and [24, §3] for the relevant theory). One may
use the classical modular polynomials here, or alternative, lower-degree modular
polynomials (Atkin polynomials, for example) with minimal adaptation to the
algorithms. In practice, Φℓ is precomputed and stored: several publicly available
databases exist (see [42] and [66,8,9], for example).

Given a j-invariant j(E), we can compute its two neighbours in the ℓ-isogeny
graph by evaluating P (X) = Φℓ(j(E), X) (a polynomial of degree ℓ + 1), and
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Algorithm 3: ElkiesFirstStep

Input: E ∈ Ellq(O); (ℓ, λ) encoding s = (π − λ, ℓ)
Output: j(s ·E)

1 P ← Φℓ(X, j(E))
2 {j1, j2} ← Roots(P, Fq)
3 K ← KernelPolynomial(Isogeny(E, j1, ℓ)) // e.g. BMSS algorithm [7]

4 Q← a nonzero point in K // e.g. (x, y) ∈ E(Fq[x, y]/(y
2 − fE(x),K(x)))

5 if π(Q) = [λ]Q then
6 return j1
7 else
8 return j2

Algorithm 4: ElkiesNextStep

Input: (ℓ, λ) encoding s = (π − λ, ℓ); (j0, j1) = (j(E), j(s · E)) for E in Ellq(O)
Output: j(s · s · E)

1 P ← Φℓ(X, j1)/(X − j0)
2 j2 ← Root(P,Fq) // It is unique

3 return j2

Algorithm 5: ElkiesWalk

Input: E ∈ Ellq(O); (ℓ, λ) encoding s = (π − λ, ℓ); k ≥ 1
Output: sk · E

1 j0 ← j(E)
2 j1 ← ElkiesFirstStep(E, (ℓ, λ))
3 for 2 ≤ i ≤ k do
4 (j0, j1)← (j1,ElkiesNextStep((ℓ, λ), (j0, j1)))

5 ER ← EllipticCurveFromJInvariant(j1)
6 if not CheckTrace(ER, t) then
7 ER ← QuadraticTwist(ER)

8 return ER

Algorithm 6: VéluStep

Input: E ∈ Ellq(O); (ℓ, λ) encoding s = (π − λ, ℓ); r > 0; Cr = #E(Fqr )
Output: s · E

1 repeat
2 P ← Random(E(Fqr ))
3 Q← [Cr/ℓ]P

4 until Q 6= 0E

5 K ←∏(ℓ−1)/2
i=0 (X − x([i]Q)) // Kernel polynomial of isogeny

6 ER ← IsogenyFromKernel(E,K) // Apply Vélu’s formulæ

7 return ER

10



Algorithm 7: VéluWalk

Input: E ∈ Ellq(O); (ℓ, λ) encoding s = (ℓ, π − λ); k ≥ 1
Output: sk · E

1 r ← Order(λ, ℓ) // Precompute and store for each (ℓ, λ)
2 Cr ← #E(Fqr ) // Precompute and store for each r
3 for 1 ≤ i ≤ k do
4 E ← VéluStep(E, (ℓ, λ), r,Cr)

5 return E

then computing its two roots in Fq. Using a Cantor–Zassenhaus-type algorithm,

this costs Õ(ℓ log q) Fq-operations.

We need to make sure we step towards the neighbour in the correct direction.
If we have already made one such step, then this is easy: it suffices to avoid
backtracking. Algorithm 4 (ElkiesNextStep) does this by removing the factor
corresponding to the previous j-invariant in Line 4; this algorithm can be used
for all but the first of the steps corresponding to s.

It remains to choose the right direction in the first step for s = (ℓ, π− λ). In
Algorithm 3 we choose one of the two candidates for φs arbitrarily, and compute
its kernel polynomial. This costs Õ(ℓ) Fq-operations using the Bostan–Morain–
Salvy–Schost algorithm [7] with asymptotically fast polynomial arithmetic. We
then compute an element Q of kerφs over an extension of Fq of degree at most
ℓ−1
2 , then evaluate π(Q) and [λ]Q. If they match, then we have chosen the right

direction; otherwise we take the other root of P (X).

Algorithm 5 (ElkiesWalk) combines these algorithms to compute the iter-
ated action of s. Line 5 ensures that the curve returned is the the correct com-
ponent of the ℓ-isogeny graph. Both ElkiesFirstStep and ElkiesNextStep

cost Õ(ℓ log q) Fq-operations, dominated by the calculation of the roots of P (X).

Vélu steps. For some ideals s = (ℓ, π − λ), we can completely avoid modular
polynomials, and the costly computation of their roots, by constructing kerφs

directly from ℓ-torsion points. Let r be the order of λ modulo ℓ; then kerφs ⊆
E(Fqr ). If r is not a multiple of the order of the other eigenvalue µ of π on E[ℓ],
then E[ℓ](Fqr ) = kerφs. Algorithm 6 (VéluStep) exploits this fact to construct
a generator Q of kerφs by computing a point of order ℓ in E(Fqr ). The roots of
the kernel polynomial of φs x(Q), . . . , x([(ℓ − 1)/2]Q).10

Constructing a point Q of order ℓ in E(Fqr ) is straightforward: we take
random points and multiply by the cofactor Cr/ℓ, where Cr := #E(Fqr ). Each
trial succeeds with probability 1−1/ℓ. Note that Cr can be easily (pre)computed
from the Frobenius trace t: if we write Cr = q − tr + 1 for r > 0 (so t1 = t) and
t0 = 2, then the tr satisfy the recurrence tr = t · tr−1 − q · tr−2.

10 If the order of µ divides r, Algorithm 6 can be extended as follows: take P ∈ E[ℓ],
and compute π(P )− [µ]P ; the result is either zero, or an eigenvector for λ. This is
not necessary for any of the primes in our proposed parameters.
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We compute the quotient curve in Line 6 with Vélu’s formulæ [69] in O(ℓ)
Fq-operations. Since logCr ≃ r log q, provided ℓ = O(log q), the costly step in

Algorithm 6 is the scalar multiplication at Line 3, which costs Õ(r2 log q) Fq-
operations.

Comparing the costs. To summarize:

– Elkies steps cost Õ(ℓ log q) Fq-operations;

– Vélu steps cost Õ(r2 log q) Fq-operations, where r is the order of λ in Z/ℓZ.

In general r = O(ℓ), so Elkies steps should be preferred. However, when r is
particularly small (and not a multiple of the order of the other eigenvalue), a
factor of ℓ can be saved using Vélu steps. The value of r directly depends on λ,
which is in turn determined by #E(Fp) mod ℓ. Thus, we see that better Step

performances depend on the ability to find elliptic curves whose order satisfies
congruence conditions modulo small primes. Unfortunately, we can only achieve
this partially (see §4), so the most efficient solution is to use Vélu steps when
we can, and Elkies steps for some other primes.

In practice, Algorithm 6 can be improved by using elliptic curve models
with more efficient arithmetic. In our implementation (see §6), we used x-only
arithmetic on Montgomery models [51,18], which also have convenient Vélu for-
mulæ [17,56]. Note that we can also avoid computing y-coordinates in Algo-
rithm 3 at Line 5 if λ 6= ±µ: this is the typical case for Elkies steps, and we used
this optimization for all Elkies primes in our implementation.

Remark 1. Note that, in principle, Algorithm 6, can only be used to walk in one
direction sλ = (ℓ, π − λ), and not in the opposite one sµ = (ℓ, π − µ). Indeed we
have assumed that E[sλ] is in E(Fqr ), while E[sµ] is not. However, switching to

a quadratic twist Ẽ of E over Fqr changes the sign of the Frobenius eigenvalues,

thus it may happen that Ẽ[s−µ] is in Ẽ(Fqr ), while Ẽ[s−λ] is not. It is easy to
force this behavior by asking that p ≡ −1 (mod ℓ), indeed then λ = −1/µ.

For these eigenvalue pairs we can thus walk in both directions using Vélu
steps at no additional cost, following either the direction λ on E, or the direction
−µ on a twist. In Algorithm 6, only the curve order and the random point
sampling need to be modified when using quadratic twists.

3.3 Sampling isogeny walks for key exchange

We now describe how keys are generated and exchanged in our protocol. Since
the cost of the various isogeny walks depends on the ideals chosen, we will use
adapted, or skewed, smooth representations when sampling elements in C(O) in
order to minimize the total computational cost of a key exchange.

We take a (conjectural) generating set for C(O) consisting of ideals over a set
S of small Elkies primes, which we partition into three sets according to the step
algorithms to be used. We maintain three lists of tuples encoding these primes:
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SV V is a list of tuples (ℓ, λ, µ) such that the ideal (ℓ, π − λ) and its inverse
(ℓ, π − µ) are both amenable to VéluStep.

SV E is a list of tuples (ℓ, λ) such that (ℓ, π − λ) is amenable to VéluStep but
its inverse (ℓ, π − µ) is not.

SEE is a list of tuples (ℓ, λ, µ) such that neither (ℓ, π − λ) nor (ℓ, π − µ) are
amenable to VéluStep.

In SV V and SEE , the labelling of eigenvalues as λ and µ is fixed once and
for all (that is, the tuples (ℓ, λ, µ) and (ℓ, µ, λ) do not both appear). This fixes
directions in each of the ℓ-isogeny cycles. Looking back at Figure 1, for ℓ associ-
ated with SEE and SV V , both directions in the ℓ-isogeny graph will be available
for use in walks; for SV E , only the Vélu direction will be used.

Each secret key in the cryptosystem is a walk in the isogeny graph. Since the
class group C(O) is commutative, such a walk is determined by the multiplicities
of the primes s that appear in it. Algorithm 8 (KeyGen) therefore encodes
private-key walks as exponent vectors, with one integer exponent for each tuple
in SV V , SV E , and SEE . For a tuple (ℓ, λ, µ),

– a positive exponent kℓ indicates a walk of kℓ ℓ-isogeny steps in direction λ;
– a negative exponent −kℓ indicates kℓ ℓ-isogeny steps in direction µ.

For the tuples (ℓ, λ) in SV E , where we do not use the slower µ-direction, we only
allow non-negative exponents. We choose bounds Mℓ on the absolute value of
the exponents kℓ so as to minimize the total cost of computing isogeny walks,
while maintaining a large keyspace. As a rule, the bounds will be much bigger
for the primes in SV V and SV E , where Vélu steps can be applied.

The public keys are j-invariants in Fq, so they can be stored in log2 q bits;
the private keys are also quite compact, but their precise size depends on the
number of primes ℓ and the choice of exponent bounds Mℓ, which is a problem
we will return to in §6.

Algorithm 9 completes a Diffie–Hellman key exchange by applying a combi-
nation of Elkies and Vélu walks (Algorithms 5 and 7, respectively).

4 Public parameter selection

It is evident that the choice of public parameters has a heavy impact on the exe-
cution time: smaller Elkies primes, and smaller multiplicative orders of the Frobe-
nius eigenvalues, will lead to better performance. Since all of this information is
contained in the value of #E(Fq), we now face the problem of constructing ordi-
nary elliptic curves of prescribed order modulo small primes. Unfortunately, and
in contrast with the supersingular case, no polynomial-time method to achieve
this is known in general: the CM method [3,64], which solves this problem when
the corresponding class groups are small, is useless in our setting (see §5).

In this section we describe how to use the Schoof–Elkies–Atkin (SEA) point
counting algorithm with early abort, combined with the use of certain modular
curves, to construct curves whose order satisfies some constraints modulo small
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Algorithm 8: KeyGen for cryptosystems in the isogeny graph on Ellq(O)
with walks based on S, and initial curve E0. The ideal lists SEE , SV V , and
SV E , and the walk bounds Mℓ, are system parameters.

Input: ()
Output: A secret key (kℓ)ℓ∈S and the corresponding public key j(E)

1 E ← E0

2 for (ℓ, λ, µ) ∈ SEE do
3 kℓ ← Random([−Mℓ,Mℓ])
4 if kℓ ≥ 0 then ν ← λ
5 else ν ← µ
6 E ← ElkiesWalk(E, (ℓ, ν), |kℓ|)
7 for (ℓ, λ, ν) ∈ SV V do
8 kℓ ← Random([−Mℓ,Mℓ])
9 if kℓ ≥ 0 then ν ← λ

10 else ν ← µ
11 E ← VéluWalk(E, (ℓ, ν), |kℓ|)
12 for (ℓ, λ) ∈ SV E do
13 kℓ ← Random([0,Mℓ])
14 E ← VéluWalk(E, (ℓ, λ), kℓ)

15 return ((kℓ)ℓ∈S, j(E))

Algorithm 9: DH for the isogeny graph on Ellq(O) with primes in S.
The ideal lists SEE , SV V , and SV E , and the walk bounds Mℓ, are system
parameters. Public key validation is not included here, but (if desired)
should be carried out as detailed in §5.4.

Input: A private key kA = (kA,ℓ)ℓ∈S corresponding to a walk (s1, . . . , sn), and a
public key jB = j(EB) for EB ∈ Ellq(O)

Output: A shared secret j(
∏n

i=1 si ·EB)
1 E ← EllipticCurveFromJInvariant(jB)
2 if not CheckTrace(E, t) then
3 E ← QuadraticTwist(E)

4 for (ℓ, λ, µ) ∈ SEE do
5 if kA,ℓ ≥ 0 then ν ← λ
6 else ν ← µ
7 E ← ElkiesWalk(E, (ℓ, ν), |kA,ℓ|)
8 for (ℓ, λ, µ) ∈ SV V do
9 if kA,ℓ ≥ 0 then ν ← λ

10 else ν ← µ
11 E ← VéluWalk(E, (ℓ, ν), |kA,ℓ|)
12 for (ℓ, λ) ∈ SV E do
13 E ← VéluWalk(E, (ℓ, λ), kA,ℓ)

14 return j(E)
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primes. This is faster than choosing curves at random and computing their orders
completely until a convenient one is found, but it still does not allow us to use
the full power of Algorithm VéluStep.

Early-abort SEA. The SEA algorithm [58,52] is the state-of-the-art point-count-
ing algorithm for elliptic curves over large-characteristic finite fields. In order to
compute N = #E(Fp), it computes N modulo a series of small Elkies primes ℓ,
before combining the results via the CRT to get the true value of N .

Cryptographers are usually interested in generating elliptic curves of prime
or nearly prime order, and thus without small prime factors. While running SEA
on random candidate curves, one immediately detects if N ≡ 0 (mod ℓ) for the
small primes ℓ; if this happens then the SEA execution is aborted, and restarted
with a new curve.

Here, the situation is the opposite: we want elliptic curves whose cardinality
has many small prime divisors. To fix ideas, we choose the 512-bit prime

p := 7





∏

2≤ℓ≤380, ℓ prime

ℓ



− 1 .

Then, according to Remark 1, Algorithm VéluStep can be used for ℓ-isogenies
in both directions for any prime ℓ ≤ 380, as soon as the order of its eigenvalues
is small enough. We now proceed as follows:

– Choose a smoothness bound B (we used B = 13).
– Pick elliptic curves E at random in Fp, and use the SEA algorithm, aborting

when any ℓ ≤ B with #E(Fp) 6≡ 0 (mod ℓ) is found.
– For each E which passed the tests above, complete the SEA algorithm to

compute #E(Fp), and estimate the key exchange running time using this
curve as a public parameter (see §6).

– The “fastest” curves now give promising candidates for #E(Fp).

In considering the efficiency of this procedure, it is important to remark
that very few curves will pass the early-abort tests. The bound B should be
chosen to balance the overall cost of the first few tests with that of the complete
SEA algorithm for the curves which pass them. Therefore, its value is somewhat
implementation-dependent.

Finding the maximal order. Once a “good” curve E has been computed, we want
to find a curve E0 having the same number of points, but whose endomorphism
ring is maximal, and to ensure that its discriminant is a large integer. Therefore,
we attempt to factor the discriminant ∆π of Z[π]: if it is squarefree, then E
already has maximal endomorphism ring, and in general the square factors of
∆π indicate which ascending isogenies have to be computed in order to find E0.

Remark 2. Factoring random 512-bit integers is not hard in general, and dis-
criminants of quadratic fields even tend to be slightly smoother than random
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integers. If a discriminant fails to be completely factored, a conservative strat-
egy would be to discard it, but ultimately undetected large prime-square factors
do not present a security issue because computing the possible corresponding
large-degree isogenies is intractable (see §5).

Using the modular curve X1(N). Since we are looking for curves with smooth
cardinalities, another improvement to this procedure is available: instead of
choosing elliptic curves uniformly at random, we pick random candidates using
an equation for the modular curve X1(N) [65], which guarantees the existence
of a rational N -torsion point on the sampled elliptic curve. This idea is used
in the procedure of selecting elliptic curves in the Elliptic Curve Method for
factoring [70,71]. In our implementation we used N = 17, and also incorporated
the existence test in [54] for Montgomery models for the resulting elliptic curves.

Results. We implemented this search using the Sage computer algebra system.
Our experiments were conducted on several machines running Intel Xeon E5520
processors at 2.27GHz. After 17,000 hours of CPU time, we found the Mont-
gomery elliptic curve E : y2 = x3 +Ax2 + x over Fp with p as above, and

A = 108613385046492803838599501407729470077036464083728319343246605668887327977789
32142488253565145603672591944602210571423767689240032829444439469242521864171 .

The trace of Frobenius t of E is

−147189550172528104900422131912266898599387555512924231762107728432541952979290 .

There is a rational ℓ-torsion point on E, or its quadratic twist, for each ℓ in

{3, 5, 7, 11, 13, 17, 103, 523, 821, 947, 1723} ;

each of these primes is Elkies. Furthermore, End(E) is the maximal order, and
its discriminant is a 511-bit integer that has the following prime factorization:

−23·20507·67429·11718238170290677·12248034502305872059

·60884358188204745129468762751254728712569

·68495197685926430905162211241300486171895491480444062860794276603493 .

In §6, we discuss the practical performance of our key-exchange protocol using
these system parameters. Other proposals for parameters are given in [39].

5 Security

We now address the security of the CRS primitive, and derived protocols. Intu-
itively, these systems rely on two assumptions:

1. given two curves E and E′ in Ellq(O), it is hard to find a (smooth degree)
isogeny φ : E → E′; and
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2. the distribution on Ellq(O) induced by the random walks sampled in Algo-
rithm 8 is computationally undistinguishable from the uniform distribution.

We start by reviewing the known attacks for the first problem, both in the
classical and the quantum setting. Then, we formalize security assumptions and
give security proofs against passive adversaries. Finally, we discuss key validation
and protection against active adversaries.

5.1 Classical attacks

We start by addressing the following, more general, problem:

Problem 1. Given two ordinary elliptic curves E,E′ defined over a finite field
Fq, such that #E(Fq) = #E′(Fq), find an isogeny walk (φi)1≤i≤n such that
φn ◦ · · · ◦ φ1(E) = E′.

The curves in Problem 1 are supposed to be sampled uniformly, though
this is never exactly the case in practice. This problem was studied before the
emergence of isogeny-based cryptography [29,31,28], because of its applications
to conventional elliptic-curve cryptography [31,67,37]. The algorithm with the
best asymptotic complexity is due to Galbraith, Hess and Smart [31]. It consists
of three stages:

Stage 0. Use walks of ascending isogenies to reduce to the case where End(E) ∼=
End(E′) is the maximal order.

Stage 1. Start two random walks of horizontal isogenies from E and E′; detect
the moment when they collide using a Pollard-rho type of algorithm.

Stage 2. Reduce the size of the obtained walk using index-calculus techniques.

To understand Stage 0, recall that all isogenous elliptic curves have the same
order, and thus the same trace t of the Frobenius endomorphism π. We know
that End(E) is contained in the ring of integers OK of K = Q(

√
∆π), where

∆π = t2 − 4q is the Frobenius discriminant. As before we write ∆π = d2∆K ,
where ∆K is the discriminant of OK ; then for any ℓ | d, the ℓ-isogeny graph
of E contains ascending and descending ℓ-isogenies; these graphs are referred
to as volcanoes [26] (see Figure 3). Ascending isogenies go from curves with
smaller endomorphism rings to curves with larger ones, and take us to a curve
with End(E) ≃ OK in O(log d) steps; they can be computed efficiently using the
algorithms of [41,26,35,22]. Assuming11 all prime factors of d are in O(log q), we
can therefore compute Stage 0 in time polynomial in log q.

The set Ellq(OK) has the smallest size among all sets Ellq(O) for O ⊂ OK , so
it is always interesting to reduce to it. This justifies using curves with maximal
endomorphism ring in the definition of the protocol in §3. When ∆π is square-
free, Z[π] is the maximal order, and the condition is automatically true.

11 This is typical for isogeny-based protocols. No counter-example has ever been con-
structed.
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Fig. 3. 3-isogeny graph (volcano) containing the curve with j(E) = 607 over F6007. A
larger vertex denotes a larger endomorphism ring.

The collision search in Stage 1 relies on the birthday paradox, and has a com-
plexity of O(

√

h(OK)). It is known that, on average, h(OK) ≈ 0.461 · · ·
√

|∆K |
(see [15, 5.10]), and, assuming the extended Riemann hypothesis, we even have
a lower bound (see [47])

h(OK) ≥ 0.147 · · · (1 + o(1))
√

|∆K |
log log |∆K | .

Since ∆K ∼ q, we expect Stage 1 to take time O(q1/4), which justifies a choice
of q four times as large as the security parameter. Unfortunately, class numbers
are notoriously difficult to compute, the current record being for a discriminant
of 300 bits [5]. Computing class numbers for ∼ 500-bit discriminants seems to
be expensive, albeit feasible; thus, we can only rely on these heuristic arguments
to justify the security of our proposed parameters.

The horizontal isogeny produced by Stage 1 is represented by an ideal con-
structed as a product of exponentially many small ideals. Stage 2 converts this
into a sequence of small ideals of length polynomial in log q. Its complexity is
bounded by that of Stage 1, so it has no impact on our security estimates.

Remark 3. The Cohen–Lenstra heuristic [16] predicts that the odd part of C(OK)
is cyclic with overwhelming probability, and other heuristics [33] indicate that
h(OK) is likely to have a large prime factor. However, since there is no known
way in which the group structure of C(OK) can affect the security of our protocol,
we can disregard this matter. No link between the group structure of E(Fq) itself
and the security is known, either.

5.2 Quantum attacks

On a quantum computer, an attack with better asymptotic complexity is given
by Childs, Jao and Soukharev in [13]. It consists of two algorithms:
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1. A (classical) algorithm that takes as input an elliptic curve E ∈ Ellq(O) and
an ideal a ∈ C(O), and outputs the curve a ·E;

2. A generic quantum algorithm for the dihedral hidden subgroup problem
(dHSP), based upon previous work of Kuperberg [43,44] and Regev [55].

The ideal evaluation algorithm has sub-exponential complexity Lq(
1
2 ,

√
3
2 ).

However, after a subexponential-time classical precomputation, any adversary
can know the exact class group structure; in that case, this ideal evaluation
step could possibly be performed in polynomial time (and non-negligible success
probability) using LLL-based methods, as discussed in [63] and [19, §5].

The dHSP algorithm uses the ideal evaluation algorithm as a (quantum) black
box, the number of queries depending on the variant. Childs–Jao–Soukharev gave
two versions of this algorithm, Kuperberg’s [43] and Regev’s[55]. However, both
are superseded by Kuperberg’s recent work [44]: his new algorithm solves the

dHSP in any abelian group of order N using 2O(
√
logN) quantum queries and

classical space, but only O(logN) quantum space. Given this estimate, we expect
the bit size of q to grow at worst like the square of the security parameter.

Unfortunately, the analysis of Kuperberg’s new algorithm is only asymptotic,
and limited to N of a special form; it cannot be directly used to draw conclusions
on concrete cryptographic parameters at this stage, especially since the value of
the constant hidden by the O() in the exponent is unclear. Thus, it is hard
to estimate the impact of this attack at concrete security levels such as those
required by NIST [53].

Nevertheless, we remark that the first version of Kuperberg’s algorithm, as
described in [55, Algorithm 5.1 and Remark 5.2] requiresO(23

√
logN logN) black-

box queries and ∼ 23
√
logN qubits of memory. Although the quantum memory

requirements of this algorithm are rather high, we will take its query complexity
as a crude lower bound for the complexity of Kuperberg’s newer algorithm in the
general case. Of course, this assumption is only heuristic, and should be validated
by further study of quantum dHSP solvers; at present time, unfortunately, no
precise statement can be made.

Table 1 thus proposes various parameter sizes, with associated numbers of
quantum queries based on the observations above; we also indicate the estimated
time to (classically) precompute the class group structure according to [5].12

Whenever the quantum query complexity alone is enough to put a parameter in
one of NIST’s security categories [53], we indicate it in the table. We believe that
using query complexity alone is a very conservative choice, and should give more
than enough confidence in the post-quantum security properties of our scheme.

The system parameters we proposed in §4 correspond to the first line of
Table 1, thus offering at least 56-bit quantum and 128-bit classical security.

12 Computing the class group structure is an instance of the hidden subgroup problem,
and thus can be solved in quantum polynomial time by Shor’s algorithm.
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log∆K log h(OK)
classical
security

L|∆K |(1/2, 1)
quantum
queries

NIST
category

512 256 2128 256.6 > 256

688 344 2172 267.0 > 264 1

768 384 2192 271.4 > 267 1

1024 512 2256 284.2 > 276 1

1656 828 2414 2110.8 > 296 3

3068 1534 2767 2156.9 > 2128 5

Table 1. Suggested parameter sizes and associated classical security, class group com-
putation time, and query complexity, using the heuristic estimations of §5.2.

5.3 Security proofs

We now formalize the assumptions needed to prove the security of the key ex-
change protocol, and other derived protocols such as PKEs and KEMs, in various
models. Given the similarity with the classical Diffie–Hellman protocol on a cyclic
group, our assumptions are mostly modeled on those used in that context. Here
we are essentially following the lead of Couveignes [19] and Stolbunov [62,63].
However, we take their analyses a step further by explicitly modeling the hard-
ness of distinguishing random walks on Cayley graphs from the uniform distri-
bution: this yields stronger proofs and a better separation of security concerns.

For the rest of this section q is a prime power, O is an order in a quadratic
imaginary field with discriminant ∆ ∼ q, C(O) is the class group of O, Ellq(O) is
the (non-empty) set of elliptic curves with complex multiplication by O, and E0

is a fixed curve in Ellq(O). Finally, S is a set of ideals of O with norm polynomial
in log q, and σ is a probability distribution on the set S∗ of isogeny walks (i.e.
finite sequences of elements in S) used to sample secrets in the key exchange

protocol. We write x
σ∈ X for an element taken from a set X according to σ, and

x
R∈ X for an element taken according to the uniform distribution.
Our security proofs use four distributions on Ellq(O)3:

Gq,∆ :=

{

(a ·E0, b ·E0, ab · E0)

∣

∣

∣

∣

a, b
R∈ C(O)

}

,

Wq,∆,σ :=
{

(

(ai)i · E0, (bj)j ·E0, (ai)i · (bj)j ·E0

)

∣

∣

∣ (ai)i, (bj)j
σ∈ S∗

}

,

Rq,∆,σ :=

{

(

(ai)i · E0, (bi)i · E0, E
′)
∣

∣

∣

∣

(ai)i, (bi)i
σ∈ S∗, E′ R∈ Ellq(O)

}

,

Uq,∆ :=

{

(Ea, Eb, Eab)

∣

∣

∣

∣

Ea, Eb, Eab

R∈ Ellq(O)

}

.

The assumption needed to prove security of the protocols is the hardness of
a problem analogous to the classic Decisional Diffie–Hellman (DDH) problem.
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Definition 1 (Isogeny Walk DDH (IW-DDH)). Given a triplet of curves
(Ea, Eb, Eab) sampled with probability 1

2 from Rq,∆,σ and 1
2 from Wq,∆,σ, decide

from which it was sampled.

We split this problem into two finer-grained problems. The first is that of
distinguishing between commutative squares sampled uniformly at random and
commutative squares sampled from the distribution σ.

Definition 2 (Isogeny Walk Distinguishing (IWD)). Given a triplet of
curves (Ea, Eb, Eab) sampled with probability 1

2 from Wq,∆,σ and 1
2 from Gq,∆,

decide from which it was sampled.

The second problem is a group-action analogue of DDH. It also appears in [19]
under the name vectorization, and in [62,63] under the name DDHAP.

Definition 3 (Class Group Action DDH (CGA-DDH)). Given a triplet
of curves (Ea, Eb, Eab) sampled with probability 1

2 from Gq,∆ and 1
2 from Uq,∆,

decide from which it was sampled.

We want to prove the security of protocols based on the primitive of §3 under
the CGA-DDH and IWD assumptions combined. To do this we give a lemma
showing that CGA-DDH and IWD together imply IW-DDH. The technique is
straightforward: we use an IW-DDH oracle to solve both the CGA-DDH and
IWD problems, showing that at least one of the two must be solvable with non-
negligible advantage. The only technical difficulty is that we need an efficient
way to simulate the uniform distribution on Ellq(O); for this, we use another
Cayley graph on Ellq(O), with a potentially larger edge set, that is proven in [37]
to be an expander under the generalized Riemann hypothesis (GRH).

We let Adv
A
IW-DDH be the advantage of an adversary A against IW-DDH,

defined as the probability that A answers correctly, minus 1/2:

2AdvAIW-DDH = Pr
[

A(Rq,∆,σ) = 1
]

− Pr
[

A(Wq,∆,σ) = 1
]

.

We define Adv
A
CGA-DDH and Adv

A
IWD similarly. Switching answers if needed, we

can assume all advantages are positive. We let AdvX(t) denote the maximum of
Adv

A
X over all adversaries using at most t resources (running time, queries, etc.).

Lemma 1. Assuming GRH, for q large enough and for any bound t on running
time, and for any ǫ > 0,

AdvIW-DDH(t) ≤ 2AdvIWD(t+ poly(log q, log ǫ)) + AdvCGA-DDH(t) + ǫ .

Proof (Sketch). We start with an adversary A for IW-DDH, and we construct
two simulators S and T for CGA-DDH and IWD respectively.

– The simulator S simply passes its inputs to A, and returns A’s response.
– The simulator T receives a triplet (Ea, Eb, Eab) taken from Gq,∆ or Wq,∆,σ,

and flips a coin to decide which of the two following actions it will do:
• forward (Ea, Eb, Eab) to A, and return the bit given by A; or
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• generate a random curve Ec ∈ Ellq(O), forward (Ea, Eb, Ec) to A, and
return the opposite bit to the one given by A.

The curve Ec must be sampled from a distribution close to uniform for the
simulator T to work. The only way at our disposal to sample Ec uniformly would
be to sample a uniform c ∈ C(O) and take Ec = c·E0, but this would be too costly.
Instead we use [37, Theorem 1.5], combined with standard results about random
walks in expander graphs (for instance, an easy adaptation of the proof of [37,
Lemma 2.1]), to sample Ec so that any curve in Ellq(O) is taken with probability
between (1− ǫ)/h(O) and (1 + ǫ)/h(O), using only poly(log q, log ǫ) operations.
We can consider this sampling as follows: with probability 1 − ǫ, sample Ec

uniformly, and with probability ǫ sample it from an unknown distribution.
Now, if T forwarded (Ea, Eb, Eab) untouched, then we immediately get

2AdvTIWD = Adv
A
IW-DDH − Adv

S
CGA-DDH ;

if T forwarded (Ea, Eb, Ec), then we get

2AdvTIWD ≥ Adv
A
IW-DDH − (1− ǫ)AdvSCGA-DDH − ǫ .

Averaging over the two outcomes concludes the proof. ⊓⊔

Finally, we define an isogeny-walk analogue of the classic Computational
Diffie–Hellman (CDH) problem for groups. Using the same techniques as above,
we can prove the security of the relevant protocols based only on CGA-CDH
and IWD, without the generalized Riemann hypothesis.

Definition 4 (Class Group Action CDH (CGA-CDH)). Given Ea = a·E0

and Eb = b ·E0 with a, b
R∈ C(O), compute the curve Eab = ab · E0.

Stolbunov proved the security of HHS Diffie–Hellman under the equivalent of
CGA-DDH [62]. Repeating the same steps, we can prove the following theorem.

Theorem 1. If the CGA-DDH and IWD assumptions hold, assuming GRH, the
key-agreement protocol defined by Algorithms 8 and 9 is session-key secure in the
authenticated-links adversarial model of Canetti and Krawczyk [11].

Similarly, we can prove the IND-CPA security of the hashed ElGamal proto-
col derived from Algorithm 8 by replicating the techniques of e.g. [30, §20.4.11].

Theorem 2. Assuming CGA-CDH and IWD, the hashed ElGamal protocol de-
rived from Algorithms 8 and 9 is IND-CPA secure in the random oracle model.

A heuristic discussion of the IWD assumption. From its very definition, the IWD
problem depends on the probability distribution σ we use to sample random
walks in the isogeny graph. In this paragraph, we provide heuristic arguments
suggesting that the IWD instances generated by Algorithm 9 are hard, provided
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1. the keyspace size is at least
√

|∆K |, and

2. S is not too small, i.e. the number of isogeny degrees used is in Ω(log q).

Proving rapid mixing of isogeny walks with such parameters seems out of
reach at present, even under number-theoretic hypotheses such as GRH. The
best results available, like [37, Theorem 1.5] (used in the proof of Lemma 1),
typically require isogeny degrees in Ω((log q)B) for some B > 2, and fully random
walks that are not, for example, skewed towards smaller-degree isogenies.

However, numerical evidence suggests that these theoretical results are too
weak. In [37, 7.2], it is asked whether an analogue of the previous theorem would
be true with the sole constraint B > 1. In [31, Section 3], it is mentioned that
many fewer split primes are needed to walk in the isogeny graph than theoreti-
cally expected. Practical evidence also suggests that the rapid mixing properties
are not lost with skewed random walks: such walks are used in [28] to accelerate
an algorithm solving Problem 1. We believe that these experiments can bring
some evidence in favor of relying on the IWD assumptions with more aggres-
sive parameters than those provided by GRH, although further investigation is
required.

5.4 Key validation and active security

Modern practice in cryptography mandates the use of stronger security notions
than IND-CPA. From the DLP assumption, it is easy to construct protocols with
strong security against active adversaries. For example, it is well-known that the
hashed ElGamal KEM achieves IND-CCA security in the random oracle model
under various assumptions [2,1,20].

All of these constructions crucially rely on key validation: that is, Alice must
verify that the public data sent by Bob defines valid protocol data (e.g., valid
elements of a cyclic group), or abort if this is not the case. Failure to perform
key validation may result in catastrophic attacks, such as small subgroup [46],
invalid point [6], and invalid curve attacks [14].

In our context, key validation amounts to verifying that the curve sent by
Bob really is an element of Ellq(OK). Failure to do so exposes Alice to an invalid
graph attack, where Bob forces Alice onto an isogeny class with much smaller
discriminant, or different Elkies primes, and learns something on Alice’s secret.

Fortunately, key validation is relatively easy for protocols based on the CRS
primitive. All we need to check is that the received j-invariant corresponds to a
curve with the right order, and with maximal endomorphism ring.

Verifying the curve order. Since we already know the trace t of the Frobenius
endomorphism of all curves in Ellq(O), we only need to check that the given
E has order q + 1 − t. Assuming that E is cyclic, or contains a cyclic group of
order larger than 4

√
q, a very efficient randomized algorithm consists in taking

a random point P and verifying that it has the expected order. This task is easy
if the factorization of q + 1− t is known.
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Concretely, the curve given in §4 has order

N = 22 · 32 · 5 · 7 · 11 · 132 · 17 · 103 · 523 · 821 · 1174286389 · (432-bit prime) ,

and its group structure is Z/2Z× Z/N
2 Z. To check that a curve is in the same

isogeny class, we repeatedly take random points until we find one of order N/2.

Verifying the endomorphism ring level. The curve order verification proves that
End(E) is contained between Z[π] and OK . We have already seen that there is
only a finite number of possible rings: their indices in OK must divide d where
d2 = ∆π/∆K . Ascending and descending isogenies connect curves with different
endomorphism rings, thus we are left with the problem of verifying that E is on
the crater of any ℓ-volcano for ℓ | d. Assuming no large prime divides d, this check
can be accomplished efficiently by performing random walks in the volcanoes, as
described in [41, §4.2] or [26]. Note that if we choose ∆π square-free, then the
only possible endomorphism ring is OK , and there is nothing to be done.

Concretely, for the curve of §4 we have ∆π/∆K = 22, so there are exactly
two possible endomorphism rings. Looking at the action of the Frobenius endo-
morphism, we see that End(E) = OK if and only if E[2] ≃ (Z/2Z)2.

Example 2. Let p and O be as in §4. Suppose we are given the value

α = 67746537624003763704733620725115945552778190049699052959500793811735672493775
18737748913882816398715695086623890791069381771311397884649111333755665289025

in Fp. It is claimed that α is in Ellp(O); that is, it is a valid public key for the
system with parameters defined in §4. Following the discussion above, to validate
α as a public key, it suffices to exhibit a curve with j-invariant α, full rational
2-torsion, and a point of order N/2. Using standard formulæ, we find that the
two Fp-isomorphism classes of elliptic curves with j-invariant α are represented
by the Montgomery curve Eα/Fp : y2 = x(x2 +Ax + 1) with

A = 41938099794353656685283683753335350833889799939411549418804218343694887415884
66125999279694898695485836446054238175461312078403116671641017301728201394907

and its quadratic twist E′
α. Checking the 2-torsion first, we have Eα[2](Fp) ∼=

E′
α[2](Fp) ∼= (Z/2Z)2, because A2 − 4 is a square in Fp. Trying points on Eα, we

find that (23,
√

23(232 + 23A+ 1)) in Eα(Fp) has exact order N/2. We conclude
that End(Eα) = O, so α is a valid public key. (In fact, Eα is connected to the
initial curve by a single 3-isogeny step.)

Consequences for cryptographic constructions. Since both of the checks above
can be done much more efficiently than evaluating a single isogeny walk, we
conclude that key validation is not only possible, but highly efficient for protocols
based on the CRS construction. This stands in stark contrast to the case of SIDH,
where key validation is known to be problematic [32], and even conjectured to
be as hard as breaking the system [68].

Thanks to this efficient key validation, we can obtain CCA-secure encryption
from the CRS action without resorting to generic transforms such as Fujisaki–
Okamoto [27], unlike the case of SIKE [4,34]. This in turn enables applica-
tions such as non-interactive key exchange, for which no practical post-quantum
scheme was known prior to [12].
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6 Experimental results

In order to demonstrate that our protocol is usable at standard security levels,
we implemented it in the Julia programming language. This proof of concept
also allowed us to estimate isogeny step costs, which we needed to generate
the initial curve in §4. We developed several Julia packages13, built upon the
computer algebra package Nemo [25]. Experiments were conducted using Julia
0.6 and Nemo 0.7.3 on Linux, with an Intel Core i7-5600U cpu at 2.60GHz.

Consider the time to compute one step for an ideal s = (ℓ, π − λ). Using
Elkies steps, this is approximately the cost of finding the roots of the modular
polynomial: roughly 0.017 · ℓ seconds in our implementation. Using Vélu steps,
the cost is approximately that of one scalar multiplication in E(Fqr ); timings for
the extension degrees r relevant to our parameters appear in Table 2.

r 1 3 4 5 7 8 9
time (s) 0.02 0.10 0.15 0.24 0.8 1.15 1.3

Table 2. Timings for computing scalar multiplications in E(Fpr ), the dominant oper-
ation in VéluStep (Algorithm 6), as a function of the extension degree r.

Using this data, finding efficient walk length bounds Mℓ offering a sufficient
keyspace size is easily seen to be an integer optimization problem. We used
the following heuristic procedure to find a satisfactory solution. Given a time
bound T , let KeySpaceSize(T ) be the keyspace size obtained when each Mℓ

is the greatest such that the total time spent on ℓ-isogenies is less than T .
Then, if n is the (classical) security parameter, we look for the least T such that
KeySpaceSize(T ) ≥ 22n (according to §5), using binary search. While the Mℓ

we obtain are most likely not the best possible, intuitively the outcome is not
too far from optimal.

In this way, we obtain a proposal for the walk length bounds Mℓ to be used
in Algorithm 8 along with the curve found in §4, to achieve 128-bit classical
security. Table 3 lists the isogeny degrees amenable to Algorithm 6, each with
the corresponding extension degree r (a star denotes that the twisted curve
allows us to use both directions in the isogeny graph, as in Remark 1). Table 4
lists other primes for which we apply Algorithm 5.

Using these parameters, we perform one isogeny walk in approximately 520
seconds. These timings are worst-case: the number of isogeny steps is taken to be
exactly Mℓ for each ℓ. This is about as fast as Stolbunov’s largest parameter [62],
which is for a prime of 428 bits and a keyspace of only 216 bits.

We stress that our implementation is not optimised. General gains in field
arithmetic aside, optimised code could easily beat our proof-of-concept imple-

13 The main code is available at https://github.com/defeo/hhs-keyex/ , and the
additional dependencies at https://github.com/defeo/EllipticCurves.jl/ and
https://github.com/defeo/ClassPolynomials.jl/.
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r Mℓ ℓ r Mℓ ℓ r Mℓ ℓ

1* 409 3, 5, 7, 11, 13, 17, 103 4 54 1013, 1181 8 7 881
1 409 523, 821, 947, 1723 5 34 31*, 61*, 1321 9 6 37*, 1693
3 81 19*, 661 7 10 29*, 71*, 547

Table 3. Primes ℓ amenable to Algorithm 6 (VéluStep) for our candidate isogeny
graph, with corresponding extension degrees r and proposed walk length bounds Mℓ.

Mℓ ℓ Mℓ ℓ Mℓ ℓ

20 23 6 73 2 157, 163, 167, 191, 193, 197, 223, 229
11 41 5 89 1 241, 251, 257, 277, 283, 293, 307
10 43 4 107, 109, 113 1 317, 349, 359
9 47 3 131, 151

Table 4. Primes ℓ amenable to Algorithm 5 (ElkiesWalk) for our candidate isogeny
graph, with proposed walk length bounds Mℓ.

mentation at critical points of our algorithms, such as the root finding steps in
Algorithms 3 and 4.

For comparison, without Algorithm 6 the total isogeny walk time would ex-
ceed 2000 seconds. Our ideas thus yield an improvement by a factor of over 4
over the original protocol. A longer search for efficient public parameters would
bring further improvement.

7 Conclusion

We have shown that the Couveignes–Rostovtsev–Stolbunov framework can be
improved to become practical at standard pre- and post-quantum security levels;
even more so if an optimized C implementation is made. The main obstacle to
better performance is the difficulty of generating optimal system parameters:
even with a lot of computational power, we cannot expect to produce ordinary
curve parameters that allow us to use only Vélu steps. In this regard, the CSIDH
protocol [12], which overcomes this problem using supersingular curves instead
of ordinary ones, is promising.

One particularly nice feature of our protocol is its highly efficient key valida-
tion, which opens a lot of cryptographic doors. However, side-channel-resistant
implementations remain an interesting problem for future work.
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