
HAL Id: hal-01873040
https://hal.inria.fr/hal-01873040

Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Formalizing Behavorial Substitutability in
Component Frameworks

Sabine Moisan, Annie Ressouche, Jean-Paul Rigault

To cite this version:
Sabine Moisan, Annie Ressouche, Jean-Paul Rigault. Towards Formalizing Behavorial Substitutability
in Component Frameworks. International Conference on Software Engeniering and Formal Methods
(SEFM), Sep 2004, Beijing, China. �hal-01873040�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163016653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01873040
https://hal.archives-ouvertes.fr

Towards Formalizing Behavioral Substitutability in Component Frameworks

Sabine Moisan & Annie Ressouche
INRIA Sophia Antipolis
2004, route des Lucioles

06902 Sophia Antipolis, France
{Sabine.Moisan,Annie.Ressouche}@inria.fr

Jean-Paul Rigault
I3S Laboratory, Univ. of Nice Sophia Antipolis

and CNRS (UMR 6070)
06902 Sophia Antipolis, France

jpr@essi.fr

Abstract

When using a component framework, developers need to
respect the behavior implemented by the components. Static
information about the component interface is not sufficient.
Dynamic information such as the description of valid se-
quences of operations is required. In this paper we pro-
pose a mathematical model and a formal language to de-
scribe the knowledge about behavior. We rely on a hier-
archical model of deterministic finite state-machines. The
execution model of these state-machines follows the Syn-
chronous Paradigm. We focus on extension of components,
owing to the notion of behavioral substitutability. A formal
semantics for the language is defined and a composition-
ality result allows us to get modular model-checking facili-
ties. From the language and the model, we can draw prac-
tical design rules that are sufficient to preserve behavorial
substitutability. Associated tools may ensure correct (re)use
of components, as well as automatic simulation and verifi-
cation, code generation, and run-time checks.

1. Introduction

Reusability—not only of code, but also of analysis and
design models—is mandatory to improve product time to
market, software quality, maintenance, and to decrease de-
velopment cost. The notion of frameworks was introduced
as a possible answer to these needs.

A framework is dedicated to a family of problems (com-
piler construction, graphic user interface, knowledge-based
systems, etc.). Basically, it is a well-defined architec-
ture composed of generic classes and their relation-
ships. As reusable entities, classes rapidly appeared as
too fine grained. Hence, the notion of component frame-
works emerged. According to Szyperski [24] a component
is “a unit of [software] composition with contractually spec-
ified interfaces and explicit context dependencies...”. In

the object-oriented approach a component usually corre-
sponds to a collection of interrelated classes providing a
logically consistent set of services.

To use a component framework, a developer (or frame-
work user) selects, adapts, and assembles components to
build a customized application. Thus reusing existing com-
ponents is the developer’s major task. But building on
reusability is not straightforward. It implies to understand
the nature of the contract between the framework user and
the component. The mere specification of a static interface
(list of operation signatures) is not sufficient since it misses
the information regarding the component behavior.

Adding pre- and post-conditions to operations (like in
Meyer’s design by contract) is an interesting improvement.
However, contracts express only behavior local to an oper-
ation, they do not concern the global valid sequences of op-
erations. The description of such valid sequences is the es-
sential part of what we call the protocol of use of a frame-
work. We claim that the explicit description of this proto-
col is an integral part of the framework, hence the impor-
tance of providing models and tools to formalize it, reason
about it, and manipulate it.

Our work on formalizing component protocols relies on
our experience with a framework for knowledge-based sys-
tem inference engines, named BLOCKS [19]. BLOCKS’s ob-
jective is to help designers create new engines and reuse
or modify existing ones. It is a set of C++ classes, com-
ing with a behavioral description of their valid sequences of
operations, in the form of state-transition diagrams. Such
descriptions allowed us to prove invariant properties of
the framework, using model-checking techniques. As with
other frameworks, the developer adapts BLOCKS classes
essentially through subtyping (more exactly, class deriva-
tion used as subtyping). Derived classes must respect the
behavioral protocol that their base classes implement and
guarantee. In particular, we want to ensure that an invari-
ant property at the framework base level also holds at the
developer’s class level. Thus the notion of behavioral sub-
stitutability is central to such a correct use of the frame-

work. To this end we elaborated a formal model of behav-
ioral substitutability, where safety properties are preserved
during subtyping. We then laid design rules on top of it. Our
aim is to propose a verification algorithm as well as practi-
cal design rules to ensure sound framework adaptation.

The next section defines our notion of components and
their protocol of use. Section 3 presents the mathematical
model and formal language to describe the behavioral part
of the protocol. Section 4 illustrates our approach on exam-
ples and shows how safety properties can be proved. Finally,
section 5 discusses some issues about this approach and re-
lates it to similar work.

2. Target Framework Characteristics

2.1. Notion of Components

In the object-oriented community a component frame-
work is usually composed of several hierarchies of classes.
The root class of each hierarchy corresponds to an impor-
tant concept in the target domain. In this context, a compo-
nent can be viewed as the realization of a class hierarchy:
this complies to one of Szyperski’s definitions for compo-
nents [24].

As a matter of example, let us examine the problem of
history management in an object-oriented environment. In
BLOCKS a history is composed of several successive snap-
shots, each one gathering the modifications (or deltas) to
object attributes that have happened since the previous snap-
shot (that is during an execution step). It is a rather gen-
eral view of history management and any framework with
a similar purpose is likely to provide classes similar to
those shown in the UML class diagram of figure 1. Class
Snapshot memorizes the modification of objects during an
execution step in its attached Delta set; it displays several
operations: memorize the deltas and other contextual infor-
mation, add a new delta, and add a child snapshot (i.e., close
the current step and start a new one).

Delta
History Snapshot

memorize()
add_child()
add_delta()

0..*0..*

0..*0..*

0..1

+current

0..1

0..*

0..1

-children 0..*

-parent

0..1

Figure 1. Simplified UML diagram of class
Snapshot

2.2. Using a Framework

Framework users both adapt the components and write
some glue code. To achieve a given purpose, they will (non-
exclusively) use these components directly (like a library),
specialize their classes by inheritance, compose classes to-
gether, or instantiate new classes from predefined generic
ones (template classes in C++). Among all these possibili-
ties, class derivation is frequent. It is also the one that may
raise the trickiest problems, that is why we concentrate on
it in this paper. When deriving a class users may either in-
troduce new attributes and/or operations or redefine inher-
ited operations. These specializations should be “semanti-
cally acceptable”, i.e., they should comply with the design
hypotheses of the framework.

BDelta

undo()
redo()

BSnapshot

regenerate()
search()

0..*0..*

<<refines>>

Delta
Snapshot

memorize()
add_child()
add_delta()

0..*0..*

0..*

0..1

-children
0..*

-parent

0..1

Figure 2. UML class diagram of BSnapshot;
above, the original classes, below, the de-
rived ones

Let us continue with our example: the Snapshot class
originally implements a linear history and does not take
into account a possible “backtrack”. However, in search-
ing activities, a “branching” history is necessary: a com-
mon practice is to backtrack to past milestones in order to
try a different action or to modify some contextual informa-
tion and see what happens. To cope with such requirements,
the user can introduce a BSnapshot class as a derivative of
Snapshot (figure 2). BSnapshot defines two new opera-
tions: regenerate that reestablishes the memorized values
and search that checks whether a condition was true in a
previous state. The regeneration feature implies that deltas
have the ability to redo and undo their changes; hence the
new class BDelta replaces Delta (figure 2).

2.3. Protocol(s) of Use

Static information is not sufficient to ensure a correct use
of a framework: specifying a protocol of use is required.

This protocol is defined by two sets of constraints.
First, a static set enforces the internal consistency of

class structures. UML-like class diagrams provide a part of
this information: input interfaces of classes (list of opera-
tion signatures), specializations, associations, indication of
operation redefinitions, and even constraints on the opera-
tions that a component expects from other components (a
sort of required interface, something that will likely find its
way into UML 2.0). We do not focus on this part of the pro-
tocol since its static nature makes it easy to generate the
necessary information at compile-time.

A second set of constraints describes dynamic require-
ments: (1) legal sequences of operation calls, (2) specifica-
tion of internal behavior of operations and of sequences of
messages these operations send to other components, and
(3) behavioral specification of valid redefinition of opera-
tions in derived classes. These dynamic aspects are more
complex to express than static ones and there is no tool (as
natural as compiler-like tools for the static case) to han-
dle and check them. While item (1) and partially item (2)
are addressed by classical UML state-transition models, the
whole treatment of the last two items is more challenging.

3. Behavior Description and Refinement

To cope with dynamic aspects, our approach is threefold.
First, we define a mathematical model providing a consis-
tent description of behavioral entities, which may be whole
components, sub-components, single operations, or any as-
sembly of these. Hence, the whole system is a hierarchical
composition of communicating behavioral entities. Such a
model complements the UML approach and allows to spec-
ify class and operation behavior with respect to class deriva-
tion. Second, we propose a hierarchical behavioral speci-
fication language to describe the dynamic aspect of com-
ponents, both at the class and operation levels. Third, we
define a semantic mapping to bridge the gap between the
specification language and its meaning in the mathemati-
cal model.

As already mentioned, our primary intent is to formal-
ize the behavior side of class derivation, in the sense of sub-
typing1. In the object-oriented approach, subtyping usually
obeys the classical Substitutability Principle [15]. This prin-
ciple has a static interpretation leading to, e.g., the well-
known covariant and contravariant issues for parameters
and return types. It may also be given a dynamic interpre-
tation, leading to behavioral subtyping, or behavioral sub-
stitutability [13]. This is precisely the kind of interpretation
we need to enforce the dynamic aspect of framework proto-
cols, since it provides a behaviorwise correct derivation.

1 Note that, in this paper, derivation, inheritance, specialization all refer
to the subtyping interpretation. In particular, we do not consider other
uses or interpretations of inheritance.

We focus on proving specifications, not implementa-
tions: although we use concurrency for our specification,
modeling a system as disjoint parts with (more or less) inde-
pendent execution, it is only a logical notion, not an imple-
mentation one. Moreover, this work does not address con-
current execution models.

To deal with behavioral substitutability, we need behav-
ior representation formalisms: we propose to rely on the
family of synchronous models [3, 12], which are dedicated
to specify reactive systems [14], such as found for instance
in Real Time systems. Such systems are event-driven and
discrete time: they interact with their environment, react-
ing to input events by sending output events. Furthermore,
they obey the synchrony hypothesis: the corresponding reac-
tion is atomic; during a reaction, the input events are frozen,
all events are considered as simultaneous, events are broad-
cast and available to any part of the system that listens to
them. A reaction is also called an instant. The succession
of instants defines a logical time. Because of synchrony,
such a system is able to react to the presence of an input
event as well as to its absence at a given instant. Verifica-
tion of synchronous models exhibits a lower computational
complexity than for asynchronous ones. Moreover, to de-
scribe complex behavior as found in component protocols
of use, a hierarchical modular description is natural. Pro-
vided that certain “compositionality properties” hold, auto-
matic proofs become modular and thus more efficient.

3.1. Mathematical Model of Behavior

Input/output labeled transition systems [17] are usual
mathematical models for synchronous languages. Each re-
action corresponds to a transition and obeys the synchrony
hypothesis. These systems are a special kind of finite de-
terministic state machines (automata) and we shall denote
them LFSM for short in the rest of the paper.

In our model, a LFSM is associated with a behavioral en-
tity: we use LFSMs to represent the state behavior of classes
as well as of operations. Each transition has a label repre-
senting an elementary execution step of the entity, consist-
ing of a trigger (input condition) and an action to be exe-
cuted when the transition is fired. In our case an action cor-
responds to emission of events, such as calling an operation
of some component, whereas a trigger corresponds to start-
ing an operation (in response to a call).

A LFSM is a tuple M = (S, s0, T, A) where S is a finite
set of states, s0 ∈ S is the initial state, A is the alphabet of
events from which the set of labels L is built, and T is the
transition relation T ⊆ S × L × S. We introduce the set I
of input events I ⊆ A and the set O ⊆ A of output events
(or actions).

Labels L, the set of labels, has elements of the form i/o,
where i is the trigger and o ⊆ O the action or output events

set; i has the form (i+, i−) where i+, the positive (input
event) set of a label, consists of the events tested for their
presence in the trigger, and i−, the negative (input event)
set, consists of the events tested for their absence.
Moreover, a label must be well-formed which means that
the following conditions must hold: i+ ∩ i− = ∅ (trigger consistency)

i+ ∪ i− = I (trigger completeness)
i− ∩ o = ∅ (synchrony hypothesis)

The first condition means that an event cannot be tested for
both absence and presence at the same instant. The second
condition expresses that a trigger i contains either a test
of presence or of absence for each event in I (this corre-
sponds to the notion of “completely specified” automaton).
The synchrony hypothesis implies that an event tested for
its absence in the trigger cannot be emitted as output in the
same instant. It is clear that i∩o (that is in fact i+∩o) can be
non empty: indeed in the synchronous paradigm it is possi-
ble to test the presence of an event in the same instant it is
emitted; it is even the primary way of modeling communi-
cation.

Transitions Each transition has three parts: a source state
s, a label l, and a target state s′; s l→ s′ denotes the transi-
tion (s, l, s′).
There cannot be two transitions leaving the same state and
bearing the same trigger. Formally, if there are two tran-

sitions from the same state s such that s
i1/o1→ s1 and

s
i2/o2→ s2, with s1 6= s2, then i1 6= i2.
This rule, together with the label well-formedness con-

ditions, ensures that LFSMs are deterministic. Determin-
ism constitutes one of the fundamental requirements of the
synchronous approach and is mandatory for all models and
proofs that follow.

Behavioral Substitutability The substitutability principle
should apply to the dynamic semantics of a behavioral
entity–such as either a whole class, or one of its (redefined)
operations [13]. If M and M ′ are LFSMs denoting respec-
tively some behavior in a base class and its redefinition in
a derivative, we seek for a relation M ′ � M stating that
“M ′ extends M in a correct way”. To comply with subtyp-
ing, this relation must be a preorder.

Following the substitutability principle, we say that M ′

is a correct extension of M , iff the alphabet of M ′ (AM ′) is
a superset of the alphabet of M (AM) and every sequence
of inputs that is valid 2 for M is also valid for M ′ and pro-

2 A path in a LFSM M is a (possibly infinite) sequence of transitions

π = s0
i0/o0→ s1

i1/o1→ s2... such that ∀i(si, ii/oi, si+1) ∈ T . The
sequence i0/o0, i1/o1... is called the trace associated with the path.
When such a path exists, the corresponding trigger sequence i0, i1, ...
is said to be a valid sequence of M .

duces the same outputs (once restricted to the alphabet of
M). Thus, the behavior of M ′ restricted to the alphabet of
M is identical to the one of M . Formally,

M ′ �M ⇔ AM ⊆ AM ′ ∧M Rsim (M ′\AM)

where M ′\AM is the restriction of M ′ to the alphabet of
M andRsim is Milner’s simulation relation.

First, we define the restriction (l\A) of a label (l) over an
alphabet (A) as follows: let l = i/o,

l\A =

{
(i ∩A/(o ∩A) if i+ ⊆ A
undef otherwise

Intuitively, this corresponds to consider as undefined all the
transitions bearing a positive trigger not in A, and to strip
the events not in A from the outputs. The restriction of M
to the alphabet A (generally with A ⊆ AM) is obtained by
restricting all the labels of M to A, then discarding the re-
sulting undefined transitions.
Formally, let M = (S, s0, T, AM) be a LFSM,
M\A = (S, s0, T\A,AM ∩ A) where T\A is defined as
follows:

s
l′→ s′ ∈ T\A⇔ ∃ s l→ s′ ∈ T ∧ l′ = l\A 6= undef

Second, Milner’s simulation relation [18] is de-
fined as follows: let M1 and M2 be two LFSMs with
the same alphabet: M1 = (SM1

, sM1
0 , TM1

, A) and
M2 = (SM2

, sM2
0 , TM2

, A). A relationRsim ⊆ SM1
×SM2

is called a simulation iff (sM1
0 , sM2

0) ∈ Rsim and

∀(s1, s2) ∈ Rsim :

s1
l→ s′1 ∈ TM1

⇒ ∃s2
l→ s′2 ∈ TM2

∧ (s′1, s
′
2) ∈ Rsim

LFSMs are deterministic and it turns out that simulation
coincides with trace containment relation in such a case. But
simulation is local, since the relation between two states is
based only on their successors. As a result, it can be checked
in polynomial time, which is not in general the case of trace
containment; hence, it is widely used as an efficient com-
putable condition for trace-containment. Indeed, the simu-
lation relation can be computed using a symbolic fixed point
procedure, allowing to tackle large-sized state spaces.

Milner’s simulation relation is a preorder and pre-
serves satisfaction of the formulae of a subset of tempo-
ral logic, expressive enough for most verification tasks
(namely ∀CTL∗ [7]). Moreover, this subset has effi-
cient model checking algorithms. Obviously, relation � is
also a preorder over LFSMs; we call it substitution pre-
order. We say that M ′ is substituable for M iff M ′ � M .
Thus, a valid sequence of M is also a valid sequence of
M ′ and the output traces are identical, once restricted to
AM . As a consequence, if M ′ � M , M ′ can be substi-
tuted for M , for all purposes of M .

With such a model, the behavior description matches
the class hierarchy. Hence, class and operation refinements
are compatible and consistent with the static description:
checking dynamic behavior may benefit from the static hi-
erarchical organization.

3.2. Behavior Description Language

We need a language that makes it possible to describe
complex behavioral entities in a structured way. Similar to
Argos [17], our language offers a graphical notation close
to UML StateCharts with some restrictions, but with a dif-
ferent semantics based on the Synchronous Paradigm. The
language is easily compiled into LFSMs. Programs writ-
ten in this language operationally describe behavioral enti-
ties; we call them behavioral programs. The mathematical
model allows to express the semantics of this language, per-
mitting an easy translation into LFSMs.

The primitive elements from which programs are con-
structed are called flat automata, since they cannot be de-
composed (they contain no applications of operator). They
are the direct representation of LFSMs, with the following
simplified notation: only positive (i.e., present) events ap-
pear in triggers; all other events are considered as absent.
The language is generated by the following grammar (where
F is a flat automaton, s a state name, and Y a set of events):

P ::= F | F [P/s] | P‖P | P|Y

Parallel composition (P‖Q) is a symmetric operator which
behaves as the synchronous product of its operands where
labels are unioned. Hierarchical composition (F [P/s]) cor-
responds to the possibility for a state in an automaton to
be refined by a behavioral (sub) program. This operation
is able to express preemption, exceptions, and normal ter-
mination of sub-programs. Scoping (P|Y) where P is a pro-
gram and Y a set of local events, makes it possible to restrict
the scope of some events. Indeed, when refining a state by
combining hierarchical and parallel composition, it may be
useful to send events from one branch of the parallel com-
position to the other(s), without these events being globally
visible. This operation can be seen as encapsulation: local
events that fired a transition must be emitted in their scope;
they cannot come from the surrounding environment.

The language offers syntactic means to build programs
that reflect the behavior of components. Nevertheless, the
soundness of the approach requires a clear definition of the
relationship between behavioral programs and their math-
ematical representation as LFSMs (section 3.1). Let B de-
note the set of behavioral programs and M the set of LF-
SMs. We define a semantic function S : B −→ M that
is stable with respect to the previously defined operators
(parallel composition, hierarchical composition, and scop-
ing). S is structurally defined over the syntax of the lan-

guage. Let P and Q be two behavioral programs, with
S(P) = (SP , s

P
0 , TP , AP) and S(Q) = (SQ, s

Q
0 , TQ, AQ):

• For a flat automaton F , S(F) is a LFSM with the same
set of states, the same initial state, and the same alphabet as
F . Its transition relation TF is the one of F where each trig-
ger has been completed with the test of absence of all input
events that the corresponding trigger of F does not contain.
This satisfies the trigger completeness condition for LFSMs
• For parallel composition, S(P‖Q) is (SP × SQ, s

P
0 ×

sQ0 , TP‖Q, AP ∪AQ) where TP‖Q is defined by rules Par1,
Par2 and Par3 described in figure 3. Rule Par1 character-
izes the synchronous hypothesis whitch allows the simul-
taneity of triggers. Here, the label of the resulting transition
is the⊕ of the respective label of each operands: the⊕ oper-
ation is the union of trigger and output sets respectively, en-
suring that the result leads to a well-formed label (see [22]
for a formal definition).
• For hierarchical composition, S(P [Q/s]) is S(P)

where state s in P is refined by S(Q). The set of states
of S(P [Q/s]) is of the form SP \{s} ∪ {s.s′i|s′i ∈ SQ}.
If s = sP0 , the initial state of S(P [Q/s]) is sP0 .s

Q
0 , other-

wise it is sP0 . The set of events is AP ∪ AQ and the transi-
tion relation TP [Q/s] is defined by rules Ref1, Ref2,Ref3,
and Ref4 described in figure 3.

Both Ref1 and Ref2 are applied when a preemption
transition can be fired. The preemption of the enclosing
state s is done whatever the transitions of Q are. Rule Ref1
expresses that the internal transition is not fireable (i′Q

+

does not hold) and only external actions are emitted. On the
other hand,Ref2 applies when the internal transition is fire-
able (i′Q

+ holds) and both internal and external actions are
simultaneously performed. RuleRef3 applies when no pre-
emption transition is fireable, hence we keep the internal
transition. Rule Ref4 applies when the source state is not
the refined state. Two cases may occur: if the target state
of the transition in P is the refined state (u1 = s), the tar-
get state of the resulting transition is the state corresponding
to the initial state of Q in the resulting LFSM (u′1 = s.sQ0).
Otherwise, it is the target state of the initial transition in P
(u′1 = u1).
• For scoping operator, S(P|Y) is basically S(P) where

some transitions are discarded following a scoping princi-
ple and where occurrences of local events are hidden in the
labels of the remaining transitions. We define S(P|Y) =
(SP , s

P
0 , TP|Y

, AP − Y) where TP |Y is built following the
Sco rule described in figure 3. In this rule, (iP /oP)|Y means
(iP − Y)/(oP − Y).

The following theorem expresses that relation � is a
congruence with respect to the language operators. The
proof [22] is out of the scope of the paper and is obtained
by explicit construction of the preorder relation.

Theorem 1 Let P , Q1 and Q2 be behavioral programs

iP oP/s1 s’1 TP s2

iQ oQ/
s’2

TQ∈ , ∈

s’1 s’2(,) P||QTs1 s2(,) ∈
iP oP/ iQ oQ/⊕

iP oP/s1 s’1 TP s2 QS∈ , ∈

s1 s2(,) iP oP/
s’1 s2(,) P||QT∈

s1 s2(,)
iQ oQ/

P||QTs’2s1 ∈(,)

s1 PS s2

iQ oQ/
s’2

TQ∈ , ∈

iP oP/ i+
PTP

,s’ ∩ Y ⊆ Po∈s

TP|Y
iP |Y(/oP) ∈s’s

iP oP/ s2 TP s’i s’j TQ

/Q Qi’ o’
s ∈ , ∈

s’i
iP oP/

s2
TP[Q/s]s. ∈

iP oP/ s2 TP s’i s’j TQ

/Q Qi’ o’
s ∈ , ∈

s’i

iP oP/ /Q Qi’ o’⊕
s2 TP[Q/s]s. ∈

s’i s’j TQ

/Q Qi’ o’
∈ PIi’+Q ⊄,

s’i
/Q Qi’ o’

s’j TP[Q/s]s. s. ∈

u1 TP
iP oP/ ∈ , u≠ su

iP oP/ u’1 TP[Q/s]u ∈

(Ref4)

(Par1)

(Par2)

(Par3)

(Sco)

(Ref1)

(Ref2)

(Ref3)

Figure 3. Semantic Rules for Behavior Description Language Operators.

such that S(Q1) � S(Q2) and both P , Q1 and P , Q2 have
disjoint outputs; the following holds:
S(P [Q1/s]) � S(P [Q2/s])
S(P‖Q1) � S(P‖Q2)
S(Q1|Y) � S(Q2|Y)

3.3. Modular Verification

To perform model checking of behavorial programs
we need a modular and incremental way to verify
such programs using their natural structure: proper-
ties of a whole program can be deduced from properties
of its sub-programs. Scaling up to large applications re-
lies on this property, since this makes it possible to deal
with highly complex global behaviors provided that they re-
sult from composing elementary behaviors that can be veri-
fied, modified, and understood incrementally. In particular
it makes it possible to perform modular verification us-
ing some form of temporal logics.

Temporal logics are formal languages to express prop-
erties of discrete logical time systems. In these logics, a
formula may specify that a particular event will eventu-
ally occur or will never happen. The logic we consider
(∀CTL∗) [7] is based on first-order logic, augmented with
temporal operators that make it possible to express proper-
ties holding for a given state, for the next state (operator X),
eventually for a future state (F), for all future states (G), or
that a property remains true until some condition becomes
true (U). One can also express that a property holds for all
the paths starting in a given state (∀). For efficiency rea-
sons, ∀CTL∗ does not introduce the existential path quan-
tifier.

Following Clarke et al. [7], ∀CTL∗ is interpreted over
Kripke structures in order to get a sound definition of for-

mulae satisfaction. Such structures belong to the family of
finite state machines. They possess a preorder relation (�K)
that preserves ∀CTL∗ formulae: let K1 and K2 be two
Kripke structures such that K1 �K K2, then K2 |= φ ⇒
K1 |= φ, φ ∈ ∀CTL∗.

Relying on these results, we associate a Kripke struc-
ture (K(M)) whith each LFSM (M) and we extend the no-
tion of satisfaction of temporal logic formulae to behavioral
programs: let P a behavorial program, P |= φ means that
K(S(P)) |= φ.
The main result of our approach is the following theorem:

Theorem 2 Let P and Q two behavioral programs and ψ
a ∀CTL∗ formula:

if P |= ψ then P [Q/s] |= ψ.

if P |= ψ then (P ‖ Q) |= ψ.

Sketch of the proof First, we introduce a stronger preorder
than the substitution preorder: let M and M ′ be two LFSM,
M ′ �E M ⇔ AM ⊆ AM ′ ∧M ESim (M ′\AM) where
ESim is a simulation equivalence 3.
Second, we prove two propositions (proof detailed in [22]):

Proposition 1 LetM1 andM2 be two LFSMs, thenM1 �E

M2 ⇒ K(M1\AM2
) �K K(M2).

Proposition 2 Let P and Q be two behavioral programs.

1. S(P [Q/s]) �E S(P)

2. S(P‖Q) �E S(P)

3 For two LFSMs M1 and M2, M1 �E M2 if and only if there is a
pair (R0

Sim, R
1
Sim) of simulation relations such that M1R0

SimM2

and M2R1
SimM1.

Theorem 2 has an important consequence: it allows a
bottom-up verification. Properties are stable with respect to
the language operators, thus a property proved for a sub-
program holds for the overall program.

Dually, a top-down approach similar to assume-
guarantee method [7] is possible. In this method a property
is decomposed into sub-properties according to the struc-
tural decomposition of the system: when all sub-properties
are valid, their conjonction must imply the global prop-
erty. Kripke structures support an assume-guarantee
method. In [7], the composition of two Kripke struc-
tures (denoted ‖K) is defined and the assume-guarantee
method corresponds to the following proof scheme 4. Let
K and K ′ be two Kripke structures, and A a Kripke struc-
ture representing a set of assumptions:

K �K A
A‖KK ′ |= φ
T (φ)‖KK |= ψ

K‖KK ′ψ

To extend the assume-guarantee method to behavioral
programs we first show that the �E preorder implies the
�K preorder and, second, that parallel composition of be-
havioral programs is isomorphic to the composition of their
associated Kripke structures. The latter property (proved in
[22]) is fundamental to ensure that an assume-guarantee
mechanism can be applied in our language.

4. Practical Issues

4.1. Design Rules

>From our model, we obtain practical design rules that
can be applied at the behavioral language level. When a be-
havioral program P (called the base program) is extended
by another behavioral program P ′, respecting these rules
ensures that we obtain a new deterministic automaton for
which behavioral substitutability holds (P ′ � P). These
rules correspond to sufficient conditions that save us the
trouble of a formal proof for each derived program.

At this time we have identified eight such practical rules.
Their formal descriptions can be found in [22]. We briefly
list them here: (1) modification of the base program struc-
ture is not allowed (no deletion nor modification of transi-
tions or states); (2) it is possible to add trigger-disjoint tran-
sitions for a given state; (3) parallel composition is possible
with a program with disjoint actions(3a) or different initial
trigger(3b) or with a substitutable program(3c); (4) hierar-
chical composition is possible with a program without auto-

4 For each ∀CTL∗ formulae φ, a specific Kripke structure: the tableau
of φ denoted by T (φ) is defined and M |= φ if and only if M �K

T (φ).

preemption(4a) or with disjoint triggers and actions(4b); (5)
program top-level events cannot be made local.

4.2. Application to Components

To illustrate our purpose, let us consider the previously
mentioned history mechanism (section 2.1). Figure 4(a)
presents the behavioral program for the whole Snapshot

class. This program specifies the valid sequences of op-
erations that can be applied to Snapshot instances. Two
states correspond to execution of operations (memorize
and add_child); they are to be refined by behavioral pro-
grams describing these operations.

dead

error

open

sleep

sleep

Snapshot

active

inactive

memorize()

do:memorize()

memorization

add_delta()

add_child()

do:add_child()

(a) Behavioral program of class Snapshot.

dead

open

error
BSnapshot

sleep

sleepy

searched

inactive

do:search()

do:regenerate()

success

active

memorize()

add_delta()

do:memorize()

memorization

regeneration

success/regenerate()

local:success

sleep

search() search_ko

search_ok/

add_child()

do:add_child()

end_regenerate

(b) Behavioral program of class BSnapshot. It is similar to Snapshot
with a refined inactive state, a local event success, and the pos-
sibility of launching regenerate from the inactive state. Restriction
S(BSnapshot)\ASnapshot is obtained by removing states and tran-
sitions displayed with thick lines.

Figure 4. Behavioral programs of classes
Snapshot and BSnapshot.

Figure 4(b) presents the expected behavioral pro-
gram for class BSnapshot which derives from Snapshot.

In particular, BSnapshot necessitates a new opera-
tion, regenerate, called when backtracking the his-
tory (i.e., when search returns success). The new
class has the extra possibilities to search inside a sleep-
ing snapshot and to call regenerate when success

occurs.
The behavioral program of BSnapshot has been ob-

tained from the one of Snapshot by applying a combi-
nation of our design rules. Obviously no state nor tran-
sition have been deleted from Snapshot (rule 1). The
new transition from inactive to regeneration bears
a completely new trigger (rule 2). The program that re-
fines state inactive has no trigger belonging to the pre-
emption trigger set of this state (rule (4a)). Finally, the lo-
cal event success was not part of the Snapshot program
(rule 5). Thus, by construction, BSnapshot is substitutable
for Snapshot; no other verification is necessary to assert
that BSnapshot � Snapshot. Therefore, the extension of
BSnapshot has no influence when a BSnapshot is used as
a Snapshot. As a result, every trace of Snapshot is also a
trace of BSnapshot.

In frameworks a component (a set/pattern of related
classes in our case) usually implements a given service,
such as history management in the example. Components
can be extended to satisfy users’ needs. Provided that they
are small enough to be individually verified by model-
checking tools (a sound assumption in most cases), the
modularity property allows to verify a complex large scale
framework that would not be trackable as a whole by model-
checking tools.

4.3. Stability of Properties

Continuing with the previous example, to prove that ev-
ery temporal property in ∀CTL∗ true for Snapshot is
also true for its extension BSnapshot, we need to en-
sure that S(Snapshot) �E S(Snapshot). But, obviously
S(BSnapshot)\ASnapshot = S(Snapshot) and so the
proof is immediate.

For instance, suppose we wish to prove the following
property: “It is possible to add a child to a snapshot (i.e., to
call the add_child() operation) only after memorization
has been properly done”. Looking at the behavioral program
(figure 4(a)), this property (referred to as Pchild) corre-
sponds to the following behavior. When exiting successfully
from state memorization, if add_child() is received,
then control enters state active. Then label sleep leads
to the inactive state. Otherwise, operation memorize()
emits error which provokes global preemption. We de-
compose the Pchild property into two ∀CTL∗ specifica-
tions:

∀G(add_child()&∀G(¬error)) ⇒ ∀Fstate = inactive

∀G(error ⇒ ∀G(¬state = inactive))

Intuitively, the first formula corresponds to memorization
success: if add_child() is received and if no error oc-
curs, then state inactive is reached. The second formula
corresponds to memorization failure: error occurred, and
state inactive will never be reached.

We are developing a tool that allows us to describe
BLOCKS component behavior and to automatically achieve
proofs of safety properties. In this example, our tool auto-
matically transforms the description of the behavioral pro-
gram of Snapshot and the two above specifications into in-
puts acceptable for NuSMVmodel checker [6]. The tool re-
turns that both specifications are true for Snapshot. Con-
versly, if a formula turns out to be false, the diagnosis re-
turned by NuSMV is a counter-example. Our tool interprets
and displays a user friendly version of this diagnosis for the
user.

5. Related Work and Discussion

Modeling component behavior and protocols and ensur-
ing correct use of component frameworks through a proof
system is a recent research line. Most approaches concen-
trate on the composition problem [16, 1, 8], whereas we are
focusing on the substitutability issue.

Many approaches use finite state machine to model the
behavior of components. In [9], interface automata are de-
fined to model the “temporal” aspects of components. This
formalism intends to check the compatibility between com-
ponents viewed both statically and dynamically. However,
the notion of refinement defined for interface automata in-
tends to prove that an implementation meets its specifi-
cation; it differs from our substitution preorder (since it
addresses a kind of “inverse” problem). In [23], Counter-
Constrained Finite State Machines (CC-FSM) are intro-
duced to model component interfaces. CC-FSMs are fi-
nite state machines extended with constraints on counters
related to enumerable ressources. This approach comple-
ments ours since it allows to take into account specific prop-
erties of resource values. However it cannot describe the
whole behavior of components even at an abstract level.
Moreover, it is not liable to standard verification tools.

Holmquist et al. [10] introduce the virtual finite state ma-
chine (VFSM) formalism to specify the control behavior of
a software module. VFSMs are well-suited to reduce the
gap between specification and code generation. Thus, VF-
SMs are just basic FSMs extended “with little more than
boolean variables”. This low-level dedication is not adapted
to substitutability analysis, a specification level issue.

In the field of Software Architecture, most works for
modeling behavior [2] address component compatibility
and adaptation in a distributed environment. They are often
based on process calculi [20, 25, 21]. In particular, works to
formalize and verify Statechart-like languages (UML state

diagrams [26] and µ-Charts [11]) use CSP process alge-
bra. These approaches differ from our’s. UML state dia-
grams are intrinsically non-deterministic and formalizing
them in CSP produces automata larger than synchronous
ones; hence, model-checking tends to be more complex. µ-
Charts also differ from behavorial programs and their re-
finement operation is not equivalent to our substitution pre-
order. Moreover, both works use a model checker based on
the notion of CSP refinement, not well-suited to verify tem-
poral logic properties.

Some authors put a specific emphasis on the substi-
tutability problem. For instance [4] proposes static sub-
type checking relying on Nierstrasz’s notion of regular
types [20]. As another example, in [5], the authors focus on
inheritance and extension of behavior, using the π-calculus
as formal model. Both consider a distributed environment.
They are more general than ours in their objective, although
quite similar as far as behavioral description is concerned.
In contrast, we restrict to the problem of substitutability in
a non-distributed world, because it is what we needed for
BLOCKS. Again, this restriction allows us to adopt mod-
els more familiar to software developers (UML StateCharts-
like), easier to handle (deterministic systems), efficient for
formal analysis (model-checking and simulation), and for
which there exist effective algorithms and tools. The Syn-
chronous Paradigm offers good properties and tools in such
a context. This is why we could use it as the foundation of
our model.

As already mentioned our notion of substitutability guar-
antees the stability of interesting (safety) properties dur-
ing the extension process. Hence, at the user level as well
as at the framework one, it may be necessary to automat-
ically verify these properties. To this end, we have chosen
model checking techniques. Indeed, model checkers rely on
verification algorithms based on the exploration of a state
space and they can be made automatic since tools are avail-
able. They are robust and can be made transparent to frame-
work users. The problem with model checkers is the pos-
sible explosion of the state space. Fortunately, this prob-
lem has become less limiting over the last decade owing
to symbolic algorithms. Furthermore, taking advantage of
the structural decomposition of the system allows modu-
lar proofs on smaller (sub-)systems, a key for scaling up.
This requires a formal model that exhibits the composition-
ality property, which is the case for our model (theorems 1
and 2).

6. Conclusion and Perspectives

The work described in this paper is derived from our ex-
perience in providing support for correct use of a frame-
work. We first adapted framework technology to the design
of knowledge-based system engines and observed a signifi-

cant gain in development time. For instance, once the anal-
ysis completed, the design of a new planning engine based
on the BLOCKS framework took only two months (instead
of about two years for a similar former project started from
scratch) and more than 90 % of the code reused existing
components [19]. While performing these extensions, we
realized the need to formalize and verify component pro-
tocols, especially when dealing with subtyping. The corre-
sponding formalism, the topic of this paper, has been devel-
oped in parallel with the engines. As a consequence of this
initial work, developing formal descriptions of BLOCKS
components led us to a better organization of the frame-
work, with an architecture that not only satisfies our design
rules but also makes the job easier for the framework user
to commit to these rules.

Our behavioral formalism relies on a mathemati-
cal model, a specification language, and a semantic map-
ping the language into the model. The model supports mul-
tiple levels of abstraction, from highly symbolic (just la-
bels) to merely operational (pieces of code); thus users
can consider the specification level they need. More-
over, this model is original in the sense that it can cover
both static and dynamic behavioral properties of com-
ponents. To use our formalism, the framework user has
only to describe behavioral programs, by drawing sim-
ple StateCharts-like graphs with a provided graphic in-
terface. The user may be to a large extend oblivious
of the theoretical foundations of the underlying mod-
els and their complexity.

Our aim is to accompany frameworks with several kinds
of dedicated tools. Currently, we provide a graphic inter-
face to display existing descriptions and modify them. In the
future, the interface will watch the user activity and warn
about possible violation of the design rules. Since these
rules are only sufficient, it is possible for the user not to
apply them or to apply them in such a way that they can-
not be clearly identified. To cope with this situation, we will
also provide a static substitutability analyzer, based on our
model (section 3.1) and a usual partitioning simulation al-
gorithm.

At the present time we have designed a complete inter-
face with NuSMV . This tool makes it possible to represent
synchronous finite state systems and to analyze specifica-
tions expressed in ∀CTL∗ temporal logic. It uses both sym-
bolic BDD-based and SAT-based (based on propositional
satisfiability) model checking techniques. These techniques
solve different classes of problems and therefore can be
seen as complementary. First, our description language can
be translated into NuSMV specifications, and our tool pro-
vides also a user friendly way to express the properties the
users may want to prove. Second, NuSMV diagnosis and re-
turn messages are displayed in a readable form: users can
browse the hierarchies of behavioral derivations and follow

the steps of the proofs. The next step is to implement the
substitutability analysis tool.

The model has also a pragmatic outcome: it allows sim-
ulation of resulting applications and generation of code,
of run-time traces, and of run-time assertions. Indeed the
behavioral description is rather abstract and may be inter-
preted in a variety of ways. In particular, automata and as-
sociated labels can be given a code interpretation. The gen-
erated code would provide skeletal implementations of op-
erations. This code will be correct, by construction—at least
with respect to those properties which have been previously
checked. Furthermore, the generated code can also be in-
strumented to build run-time traces and assertions into com-
ponents.

Developing such tools is a heavy task. Yet, as frame-
works are becoming more popular but also more complex,
one cannot hope using them without some kind of active as-
sistance, based on formal modeling of component features
and automated support. Our work shows that combining for-
mal techniques issued from different computer science do-
mains can be of practical value to make the use of compo-
nent frameworks safer and easier.

References

[1] F. Achermann and O. Nierstrasz. Applications = Compo-
nents + Scripts - A Tour of Piccola. In M. Aksit, editor, Soft-
ware Architectures and Component Technology, pages 261–
292. Kluwer, 2001.

[2] R. Allen and D. Garlan. A formal basis for architectural con-
nection. ACM Transactions on Software Engineering and
Methodology, 6(3):213–249, 1997.

[3] G. Berry. The Foundations of Esterel. In G. Plotkin, C. Stear-
ling, and M. Tofte, editors, Proof, Language, and Interaction,
Essays in Honor of Robin Milner. MIT Press, 2000.

[4] S. Butkevich, M. Renedo, G. Baumgartner, and M. Young.
Compiler and Tool Support for Debugging Object Protocols.
In Proc. of the 8th ACM SIGSOFT Int. Symposium on Foun-
dations of Software Engineering, pages 50–59, San Diego,
CA, USA, 2000. ACM Press.

[5] C. Canal, E. Pimentel, and J. M. Troya. Compatibility and
inheritance in software architectures. Science of Computer
Programming, (41):105–138, 2001.

[6] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pis-
tore, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2:
an OpenSource Tool for Symbolic Model Checking. In
E. Brinksma and K. G. Larsen, editors, Proc. of the 14th
Int. Conf. on Computer-Aided Verification, number 2404 in
LNCS, pages 359–364, Copenhagen, Danmark, July 2002.
Springer-Verlag.

[7] E. M. Clarke, O.Grumberg, and D.Peled. Model Checking.
MIT Press, 2000.

[8] J. Costa Seco and L. Caires. A Basic Model of Typed Com-
ponents. In E. Bertino, editor, ECOOP 2000, volume 1850
of LNCS, pages 108–128. Springer, 2000.

[9] L. de Alfaro and T. A. Henzinger. Interface automata. Proc.
of the Foundation of Soft. Eng., 26:109–122, 2001.

[10] A. Flora-Holmquist, E. Morton, J. O’Grady, and
M. Staskauskas. The virtual finite-state machine de-
sign and implementation paradigm. Technical report, Lucent
Technologies Inc., winter 1997.

[11] D. Goldson. Formal Verification of mu-Charts. In Proc. of
the 9th Asia-Pacific Soft. Eng. Conf., Gold Coast, Australia,
2002. IEEE Computer Society Press.

[12] N. Halbwachs. Synchronous Programming of Reactive Sys-
tems. Kluwer Academic, 1993.

[13] D. Harel and O. Kupferman. On object systems and be-
havioral inheritance. IEEE Trans. Soft. Eng., 28:9:889–903,
2002.

[14] D. Harel and A. Pnueli. On the development of reactive sys-
tems. In NATO, Advanced Study Institute on Logics and
Models for Verification and Specification of Concurrent Sys-
tems. Springer Verlag, 1985.

[15] B. Liskov and J. Wing. A behavioral notion of subtyp-
ing. ACM Transactions on Programming Languages and
Systems, 16(6):1811–1841, November 1994.

[16] K. Mani Chandy and M. Charpentier. An experiment in pro-
gram composition and proof. Formal Methods in System De-
sign, 20(1):7–21, January 2002.

[17] F. Maraninchi. Operational and Compositional Semantics of
Synchronous Automaton Composition. LNCS: Concur, 630,
1992.

[18] R. Milner. An algebraic definition of simulation between
programs. Proc. Int. Joint Conf. Artificial Intelligence, pages
481–489, 1971.

[19] S. Moisan, A. Ressouche, and J.-P. Rigault. BLOCKS,
a Component Framework with Checking Facilities for
Knowledge-Based Systems. Informatica, Special Issue
on Component Based Software Development, 25:501–507,
2001.

[20] O. Nierstrasz. Object-Oriented Software Composition,
chapter Regular Types for Active Objects, pages 99–121.
Prentice-Hall, 1995.

[21] F. Plasil and S. Visnovsky. Behavior protocols for software
components. IEEE Transactions on Soft. Eng., 28(11), Nov
2002.

[22] A. Ressouche, S. Moisan, and J.-P.Rigault. A Behavior
Model of Component Frameworks. Technical report, INRIA,
December 2003. available at: http://www.inria.fr.

[23] R. Reussner. Counter-constraint finite state machines: A
new model for resource-bounded component protocols. In
B. Grosky, F. Plasil, and A. Krenek, editors, Proc. of the 29th
Conf. in Current Trends in Theory and Practice of Informat-
ics (SOFSEM 2002), Milovy, Tschechische Republik, volume
2540 of LNCS, pages 20–40, Nov. 2002.

[24] C. Szyperski. Component Software - Beyond Object-
Oriented Programming. Addison Wesley, 1998.

[25] D. M. Yellin and R. E. Strom. Protocol specifications and
component adaptors. ACM Transactions on Programming
Languages and Systems, 19(2):292–333, March 1997.

[26] M. Yong and M. Butler. Towards Formalizing UML State
Diagrams. In Proc. of the 1st Conf. on Soft. Eng. and Formal
Methods, Brisbane, Australia, 2003. IEEE Computer Society
Press.

