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Abstract

The early validation of requirements aims to reduce the need for the high-cost validation testing and corrective mea-
sures at late development stages. This work introduces a systematic process for the unambiguous specification of
system requirements and the guided derivation of formal properties, which should be implied by the system ’s struc-
ture and behavior in conjunction with its external stimuli. This rigorous design takes place through the incremental
construction of a model using the BIP (Behavior-Interaction-Priorities) component framework. It allows building
complex designs by composing simpler reusable designs enforcing given properties. If some properties are neither
enforced nor verified, the model is refined or certain requirements are revised. A validated model provides evidence
of requirements’ consistency and design correctness. The process is semi-automated through a new tool and existing
verification tools. Its effectiveness was evaluated on a set of requirements for the control software of the CubETH
nanosatellite and an extract of software requirements for a Low Earth Orbit observation satellite. Our experience and
obtained results helped in identifying open challenges for applying the method in industrial context. These challenges
concern with the domain knowledge representation, the expressiveness of used specification languages, the library of
reusable designs and scalability.

Keywords: rigorous system design, requirements formalization, model-based design, correctness-by-construction

1. Introduction

1.1. Problem statement
The design problem in systems engineering concerns with defining the architecture, modules, interfaces and data
for a system, in order to meet given requirements [20]. Initially, requirements are high-level statements (conditions
or capabilities that are also called stakeholder or mission requirements) [30], from which the system requirements
are derived that define what the system must do to satisfy stakeholder requirements [36]. In this article, we focus
specifically on system requirements; when we refer to stakeholder requirements we do so explicitly.

In [71] and [12], two perspectives of rigorous system design are introduced. The term “rigorous” refers to a formal
model-based process that leads from requirements to correct implementations. In particular, the focus is on the design
problem for systems that continuously interact with an external environment; such systems usually involve concurrent
execution and emergent behaviors. The design process can be decomposed into two phases. During the first phase,
which in [71] is called proceduralization, the declarative system requirements are transformed into a procedure, i.e., a
model prescribing how the anticipated functionality can be realized by executing sequences of elementary functions.
During the second phase, which is called materialization, the procedure is implemented in a system that meets all
extra-functional requirements by using available resources cost-effectively.
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In this article, we introduce a model-based approach for the proceduralization phase, which aims to the systematic
development of a design solution for a set of system requirements. The design problem is well-defined, only if the
requirements fulfill essential properties, i.e., if they are complete, consistent, correct (valid for an acceptable solution),
and attainable. However, requirements provide in principle only a partial specification, which according to the current
industrial practice (even for critical systems) is stated using a simplified controlled natural language (i.e. restricted in
syntax and/or lexical terms); natural language is ambiguous [69] and it is not tied to a formal semnatics. Thus, none
of the essential properties can be easily proved.

1.2. Research objectives
The main objectives of our approach is to provide the means for:
• unambiguous specification of requirements;
• early assurance of consistency between the requirements and design correctness;
• use of correct-by-construction techniques to limit the need for a posteriori model checking.

Some of the aforementioned objectives are related to the requirements formalization challenge [7, 58] that refers to
the transformation of requirements into formal properties. These property specifications should be implied by the
system’s structure and behavior in conjunction with its external stimuli [79].

We provide a systematic stepwise design approach for transforming declarative system requirements into proce-
dures (proceduralization). This happens by incrementally building a formal and executable model of a design solution
(design model), i.e., a blueprint of the system’s structure and behavior. The design model provides early evidence of
design correctness and consistency. If the properties derived from the requirements cannot be fulfilled by the design
model, a different design should be pursued or certain unsatisfied requirements have to be revised. Such an approach
incurs extra cost to be paid towards delivering early evidence that the requirement specifications are realizable; on
the other hand, late-stage validation, relying on testing and requiring high-cost corrective measures, can be drastically
reduced.

1.3. Context and contributions

Figure 1: The model-based approach

Figure 1 outlines the proposed approach, where our research objectives are attained in three consecutive phases.
In the Requirements formulation and formalization phase, we formulate requirements by instantiating textual tem-
plates, called boilerplates (like in [2, 50, 51]), which are filled with catalogued concepts of the system’s context. The
formalization of requirements as properties occurs in a semi-automated way, based on a predefined mapping of boil-
erplates to formal property patterns and a user-defined association of requirements’ concepts to events of the design
model. Through precisely stating how the boilerplates and concepts of requirements are transformed into properties
using predefined and user-defined mappings, we achieve the unambiguous specification of requirements, since they
are ensured to have a consistent interpretation with respect to the design model.

In the Design model building phase, the system’s components are treated as blocks of established functionality;
they have to be coordinated while they are progressively assembled and integrated so as to fulfil the system require-
ments. We adopt the main principles of [71]:
• a component-based modeling framework for enhanced productivity through reuse of model artifacts;
• the modeling language BIP (Behavior - Interaction - Priorities) [8], which provides an expressive component

framework adequate for a semantically coherent process; any BIP model can be formally analyzed and simu-
lated with the BIP tools1;

1http://www-verimag.imag.fr/BIP-Tools-93
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• correctness-by-construction based on property enforcement and property composability, while integrating the
model components; to this end, we utilize recent theoretical results [5] together with proper automation support.

In the Model verification phase, we formally verify the obtained design model to check that the non-enforceable
properties are fulfilled. Verification takes place, as a final step, after correct-by-construction techniques have been
applied. If the properties cannot be fulfilled, a different design should be pursued or certain unsatisfied requirements
have to be revised.

The concrete research contributions of this article are:
i. The model-based process for the early validation of system requirements and design.

ii. The technical approach for the formalization of requirements. This includes the natural-like template languages
for specifying requirements and formal properties, as well as the associations between templates, for the deriva-
tion of properties.

iii. A library of BIP models for simple designs [55, 56] and their associations with patterns for properties that
can be enforced using our correctness-by-construction approach. These BIP models, called architectures, were
adequate to enforce all safety properties for two industrial studies through correct-by-construction model trans-
formations.

iv. A brief account of the tool-support for the automation of the process, including a new tool called RERD.
v. A report on the early validation of requirements in two studies: the control software of the CubETH nanosatel-

lite [55, 56], and an extract of software requirements for the telecommand management of a low orbit earth
observation satellite.

In the remaining of the paper, Section 2 provides necessary background on BIP modelling and BIP architectures.
Related work is surveyed in Section 3. Section 4 discusses the overview of the model-based process steps, which are
thoroughly seen in Sections 4.1, 4.2, 4.3 and 4.4 together with the corresponding technical approaches. In Section 5,
we refer to the tool-support and in Section 6 we provide a brief report on the results from the two case studies. The
paper concludes with a discussion on the identified benefits and limitations, as well as on the further development of
our model-based process and its tool-support.

2. Background

BIP [8] is a formal framework for building complex models by coordinating the behavior of a set of atomic model
components. Behavior is defined as a transition system, extended with data and functions in C/C++. The description
of coordination between components is layered. The first layer describes the interactions between components. The
second layer describes dynamic priorities between interactions. BIP has a clean operational semantics that describes
the behavior of a composite component as the composition of the behaviors of its atomic ones [9]. This allows a direct
relation between the underlying semantic model (transition systems) and its implementation.

The atomic components are finite-state automata having transitions labeled with ports and extended with data
stored in local variables. Ports form the interface of a component and are used to define interactions with other com-
ponents. States denote control locations at which the components await for interaction. A transition is an execution
step from a control location to another. It might be associated with a boolean condition (guard) and a computation
defined on local variables. The model’s global state at each execution step is given as the current control locations and
the values of local variables of all atomic components.

Connectors relate ports from different subcomponents by assigning to them a synchronization attribute, which may
be either trigger (represented by a triangle, Figure 2a) or synchron (represented by a bullet, Figure 2a). A connector
defines a set of interactions, i.e., a non-empty set of ports. The set of interactions of each connector is based on the
synchronization attributes it assigns. Given a connector involving a set of ports {p1, ..., pn}, the set of its interactions
is defined as follows: an interaction is any non-empty subset of {p1, ..., pn} which contains some port that is assigned
to a trigger (Figure 2c); otherwise, (if all ports are assigned to synchrons) the only possible interaction is the maximal
one that is, {p1, ..., pn} (Figure 2b). The same principle is recursively extended to hierarchical connectors, where one
interaction from each subconnector is used to form an allowed interaction according to the synchron/trigger typing
of the connector nodes (Figure 2d). For instance, in the third hierarchical connector shown in Figure 2d, port p
is assigned to a trigger, whereas the binary subconnector q − r is assigned to a synchron. Thus this hierarchical
connector allows the singleton interaction p and any interaction that combines p with some interaction of the binary
subconnector. Since the latter defines interactions q and qr, the resulting set of interactions is p, pq, and pqr.
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(a) Port attributes
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(c) With trigger
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(d) Hierarchical connectors

Figure 2: BIP connectors and their associated interaction sets

The meaning of a BIP interaction is synchronization of ports. Recall that transitions are labelled with ports.
Thus an interaction p..q defines synchronization constraints on the execution of the corresponding transitions that are
labelled with ports p..q. A BIP interaction is enabled for execution if all the corresponding transitions are enabled
for execution, i.e., the current control locations of components include these transitions as outgoing transitions and all
corresponding transition guards evaluate to true. The operational semantics of BIP is as follows. During the execution
of a BIP interaction, all components that participate in the interaction, i.e., have an associated port that is part of the
interaction, must execute their corresponding transitions simultaneously. All components that do not participate in the
interaction, do not execute any transition and thus remain in the same control location.

Later in the paper, we consider that BIP connectors purely define synchronization constraints regarding component
execution. Generally, BIP connectors may additionally provide guards and data transfer, i.e., respectively, enabling
conditions and data exchange across the ports involved in each interaction. Nevertheless, in our case studies we do
not model data transfer, which can be very expensive for verification purposes. Thus, we omit the explanation of the
BIP data transfer mechanism, for which a detailed description can be found in [16].

2.1. Architecture-based design in BIP

An architecture in BIP is a model that characterizes the structure of the interactions between a set of component
types. Such an architecture is defined with respect to a set of parameter components and a set of coordinators. The
structure is specified as a relation, i.e. connectors between component ports. The components to which an architecture
is applied are the operands that replace the architecture’s parameters.

Figure 3 shows a BIP model for mutual exclusion between two tasks. Each component on the two outer sides
models a task, which enters its critical section (i.e., the control location work) only when its corresponding port bi

(i = 1, 2) is invoked and leave it when port fi (i = 1, 2) is invoked. The model has also one coordinator component C
that allows the execution of bi ports only when itself is in the free control location. The coordinator is in free after a
task has left its critical section. Four binary connectors are used for the aforementioned coordination. Two connectors
synchronize each of b1, b2 ports with the t port and two others synchronize each of the f1, f2 ports with the r port.
The connectors essentially constrain the behavior of the system so that whenever the shared resource, managed by the
coordinator, is taken by e.g., the first task, it cannot be accessed by the second task unless it is first released by the
first task. Initial control locations of the components are indicated with an arc and show that both tasks are outside
their critical section. Figure 4 shows an architecture that enforces the mutual exclusion property on two parameter
components with interfaces {b1, f1} and {b2, f2}.

Composition of architectures is the conjunction of the induced synchronisation constraints. It takes the form of
an associative, commutative and idempotent architecture composition operator ‘⊕’ [5], as illustrated by an exam-
ple in [55]. If two architectures A1 and A2 respectively enforce the safety properties Φ1 and Φ2, the composed
architecture A1 ⊕ A2 enforces the property Φ1 ∧ Φ2, that is, both properties are preserved by architecture compo-
sition. Combined application of architectures can generate deadlocks and the resulting model has to be checked for
deadlock-freedom.
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Figure 3: Mutual exclusion model in BIP
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Figure 4: Mutual exclusion architecture

Although the architecture in Figure 4 can be applied to precisely two components, it is clear that an architecture of
the same style—with n parameter components and 2n connectors—could be applied to n operand components satis-
fying the interface assumptions. We specify such architecture styles with architecture diagrams [52]. An architecture
diagram consists of a set of component types with cardinality constraints for the expected number of instances and a
set of connector motifs. Connector motifs are non-empty sets of port types. Each port type has a cardinality constraint
representing the expected number of port instances per component and two additional constraints: multiplicity and
degree, represented as a pair m : d. Additionally, each port type is typed as either trigger or synchron.

Figure 5: Mutual exclusion style

Figure 5 shows the architecture style of the ar-
chitecture in Figure 4. The unique—due to the
cardinality being 1—coordinator component, Mutex
manager, manages the shared resource, while n pa-
rameter components of type B can access it. The con-
nector motifs have multiplicities of 1 (i.e., in 1: ) in
all port types, denoting that all connectors are binary.
The degrees of 1 (i.e., in :1) require that each port in-
stance of a component of type B is attached to a single connector with the coordinator. Similarly, the degrees of n
require that each port instance of the coordinator is attached to n connectors. The behaviors of the two component
types enforce that once the resource is acquired by a component of type B, it can only be released by the same compo-
nent. This happens because the begin port of a B component interacts with the take port of Mutex Manager leading
the latter to the control location taken. Afterwards, no other B component can fire begin, until Mutex Manager

returns to the control location free ,which happens when the finish port of the former B component is fired.
Cardinalities, multiplicities and degrees may also be intervals. Let us consider, a port type p with its multiplicity

defined as interval. By the interval attributes ‘sc[x, y]’ (single choice) and ‘mc[x, y]’ (multiple choice), we mean that
the same (resp. a different) multiplicity is applied to each port instance of p, provided that it lies in the interval.

3. Related Work

The early validation of system requirements and its design using formal methods has attracted the interest of notewor-
thy industrial research initiatives [58, 19]. On the other hand, the principles of correctness-by-construction in system
design have been introduced in [12] and [71]. In all technical approaches for correct-by-construction system design
it is assumed that requirements and early design coevolve through iterative cycles [77], and the process converges
into a design model, which (provably) fulfills all formal properties that are derived from the requirements. Existing
works following the principles in [12] advocate a top-down hierarchical decomposition of the system into compo-
nents. Correctness-by-construction is based on assume-guarantee contracts, where assumptions are either assertions
on component inputs or invariants, and guarantees correspond to component requirements. Such top-down design
flows [77, 59, 60, 18] are concerned with the allocation of system requirements to system components (as in [37]), so
that higher level requirements are established. System decomposition leads to the decomposition of contracts through
a formal refinement relation [23]. When allocating requirements to a component, it should be ensured that the as-
sumptions made for its environment (assertions or invariants) can be fulfilled. Developing assumptions manually is
hard and the advantages when compared with monolithic verification have been questioned [24].
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Our work aims at a bottom-up rigorous design flow [71]. Important differences from the top-down approaches
are: (i) we focus on requirements formalization, rather than their allocation to components, (ii) we aim at the trans-
formation of system requirements into a procedure, as opposed to the ad hoc design of components that should meet
their contracts. Architectures in BIP drive the choice of system decomposition, component coordination and behavior
transformation. In the top-down design flows, these choices should be validated through a posteriori verification;
finding a solution in such approaches has a non-negligible complexity [24].

The use of natural language boilerplates in the formalization of requirements is not new. In [17], the authors target
the specification and analysis of stakeholder requirements, referred to as early requirements [30]. Our approach for the
use of boilerplates resembles those in [42, 75] and the CESAR reference technology platform [2]. CESAR introduces
the Requirements Specification Language (RSL) that combines boilerplates of three clauses, namely the prefix, the
main part and the suffix. Boilerplate attributes are defined in an attribute ontology and their placeholders must be
filled with concepts from a domain-specific ontology. In [25], the authors introduce contracts with assumptions
and guarantees built up from instances of RSL property patterns. A tool called DODT [29] allows for projectional
requirement editing and for checking pairwise ontology-related contradictions [39] among requirements. Finally,
properties are specified based on a recommendation of patterns with formal semantics, although no exact association
of boilerplates with patterns is proposed.

The Easy Approach to Requirements Syntax (EARS) [50, 51] has introduced a set of structural rules (templates)
for natural language requirements. The authors of EARS admit that their technique is mostly suitable for high-level
stakeholder requirements and it is not applicable to all types of system requirements. Empirical evidence from in-
dustrial application showed improvement or, in some cases, complete elimination of problems related to ambiguity,
vagueness, omissions and others. The EARS-CTRL tool [45] aims to ensure well-formedness in EARS requirements
by construction and checks whether a controller can be synthesized from the provided set of requirements. If a con-
troller cannot be synthesized, possibly conflicting requirements exist. The tool allows for projectional requirements’
editing, based on a glossary defined on the domain of controller synthesis. Requirements are analyzed as LTL (Linear
Temporal Logic) formulas. The analysis’ effectiveness depends on user-defined semantic information (e.g. simple
predicates) for the given glossary. Moreover, model synthesis is limited to a fragment of LTL that involves the univer-
sal path quantifier (G), the next-step operator (X) and the weak until temporal operator (W) [22]. Synthesis for such
specifications is in PSPACE, whereas full LTL synthesis is intrinsically complex (2EXPTIME-complete).

Instead of automated model synthesis, we opt for incremental system construction that maintains the traceability
of requirements up to the final design solution that discharges the derived properties. In this incremental process,
designers can (re-)use “ready-made” solutions formally encoded in BIP architectures, which have been proven correct
practically and theoretically. In essence, the architectures represent design patterns (e.g. for mutual exclusion, clock
synchronization, scheduling, resource management, security) that are defined independently of the components which
make up the system. We can thus ensure correctness-by-construction with respect to properties, while avoiding
computationally expensive techniques that imply state explosion.

The importance of software architecture has been greatly acknowledged by the industry and academia. As a result,
there has been an increasing interest in defining languages that support the architecture-based approach, e.g. UML [73]
and architecture description languages (ADLs) [57, 78]. All these works rely on the distinction between behaviors of
individual components and their coordination in the overall system organization. These languages, however, often lack
formal semantics [73, 65, 74]. As a result, analysis is carried out on models that cannot be rigorously related to system
development formalisms. This introduces gaps in the design process which reduce productivity and limit the ability
for ensuring correctness. In fact, in a survey conducted in the industrial sector regarding architecture description
languages, it is stated that practicing architects nowadays emphasize the need to reconcile informal notations with
more formal and analysable ones [48].

Similarly to the aforementioned approaches, BIP architectures also provide a clear separation of concerns between
functional and coordination aspects. BIP architectures have rigorous semantics; the underlying theory of components
and their interactions is inspired from the BIP framework [10]. In essence, BIP architectures are operators restricting
component behavior for enforcing a characteristic property. Their composition has some similarities with architecture
composition in architecture languages with CSP-like semantics, e.g., Wright ADL [4]. Nevertheless, in contrast to
these approaches application of BIP architectures does not require any modification of the components it is applied
on. Additionally, as explained above, BIP architectures are tightly related with characteristic properties, which are
preserved through composition.
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4. The model-based process

Any system under design is intended to accomplish a set of functions with each of them defining a stateful process-
ing of input. The system’s functional architecture is a top-down decomposition of its functions (using e.g. function
trees [32]). The functions must fulfill certain requirement specifications, i.e. statements that delimit the problem
of system design. In effect, this is only a partial specification which assumes some common and often tacit knowl-
edge for the problem domain (domain knowledge [49]), such as physical laws for the system’s external stimuli [38],
standardized protocols, services and libraries.

On the side of the design solution space, a design is defined based on a hierarchical description (using e.g. product
trees [33]) of the system’s hardware and software components, known as physical architecture. The functions and
their associated requirements are then allocated to the components of the physical architecture.

For the specification of requirements and properties, we employ two natural-like languages with precisely defined
semantics. Requirements are specified using composable boilerplates[36], i.e., semi-complete specifications, with
placeholders to be filled with concepts that adhere to a conceptual model of the system under design. The conceptual
model encodes the relationships among the concepts used in the placeholders. With proper tool-support, the engineer
avoids indeterminate references and maintains links between concepts that exist in requirements. In order to derive
the properties that capture each requirement, we have mapped each boilerplate to one or more property patterns,
that are also natural-like language templates with placeholders. These patterns associate the properties with a formal
representation in a logic language.

If requirements (and derived properties) are simultaneously satisfied by the design model, then early assurance
of consistency and correctness is provided (we do not cope though with inconsistencies between requirements at
the specification level, which are treated e.g. in [47] and other works). The design model is incrementally built
using correct-by-construction model transformations, which integrate reusable BIP architectures [5]. The integrated
architectures provably discharge the specified properties through coordinating the model components. This is an
automated step aiming to preserve the previously established properties. Only the properties that cannot be enforced
by design need to be verified by model checking.

Figure 6: The model-based process for the formalization of requirements and design

Figure 6 introduces the overall process by showing the steps along with their input and output data:
Input: (i) the functional architecture

(ii) the physical architecture
Output: a design model satisfying the derived properties OR requirements that are not satisfied
Step 1 Requirement specification: Requirements for each function of the functional architecture are specified based

on predefined boilerplates (cf. Section 4.1).
Step 2 Initial design: An initial design model is manually built with BIP components representing the physical ar-

chitecture (cf. Section 4.2). BIP components implement behavior for the actions performed by the allocated
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functions; the interactions among the components encode the invocation of actions.
Step 3 Property derivation: Properties are derived from the specified requirements (cf. Section 4.3). To this end,

we have associated each boilerplate with the predefined property patterns that can formally capture it. Then,
for each requirement, properties are derived by filling in the patterns with elements of the design model that
represent the concepts used in the boilerplate.

Step 4 Architecture instantiation: Properties which can be enforced by design are identified; every such property is
provably enforced by a BIP architecture. The architecture to be used is instantiated (cf. Section 4.4) by defining
the operands of an existing architecture style [53, 55], i.e., components of the design model in place of the style
parameters, which fulfill assumed properties.

Step 5 Property enforcement: The architectures are incrementally applied to the design model (cf. Section 4.4) [5].
The properties assumed by definition for the operands of an architecture are verified locally by inspecting the
corresponding components, before the architecture is applied to the design model. If an assumed property is
not satisfieed, the component behavior will have to be refined to ensure property satisfaction.

Step 6 Model checking: Properties that could not be enforced using existing architecture styles are verified on the
final design model. If these properties are satisfied, then so is the whole set of requirements; otherwise, the
design model should be refined or certain unsatisfied requirements have to be revised.

The steps 1, 3, 4 and 5 are supported by the RERD tool, which is described in Section 5. The BIP design model is
compiled and simulated with the BIP tools [14], whereas its deadlock freedom is checked with the D-Finder tool [11].
DesignBIP2 [54] is a web-based graphical editor for BIP models, which can be used for the creation of the initial
design model. For the verification of properties (Step 6) by model checking, it is possible to use the the nuXmv model
checker [21]. Additionally, safety properties can be expressed as observer automata [35], which are then verified
with the BIP tools. Three engineering roles are involved in the process, namely the Requirement Engineer for the
specification of requirements (Step 1), the System Software Engineer for the system design (Steps 2, 4, 5) and the
Verification Engineer for the property derivation and model checking (Steps 3, 6).

4.1. Requirement specification
One of the main objectives of our approach is to tackle the ambiguity of natural language requirement specifications
through the use of boilerplates in combination with a conceptual model. According to [2], a boilerplate consists of
attributes and fixed syntax elements, such as:

〈 f unction〉 shall 〈action〉

where “shall” is a fixed syntax element, while 〈 f unction〉 and 〈action〉 are attributes of placeholders for user input.

Table 1: Conceptual classes

Class Definition

〈 f unction〉 A function of the functional architecture.
〈action〉 A processing step of a function.
〈state〉 A condition that enables/disables actions.
〈state-set〉 A set of mutually exclusive states.
〈event〉 A nominal or failure effect of an action or an exter-

nal stimulus.
Figure 7: Conceptual diagram of classes.

In order to avoid indeterminate values in boilerplate attributes, we link these values with uniquely identified
concepts from the conceptual model, where each concept is an instance of a class with precisely defined relationships.
The conceptual classes are defined in Table 1 and the essential relationships for supporting the modeling steps of
the process are shown in Figure 7. Each function performs actions in order to interact with other functions or the
environment. In particular, actions can invoke actions of other functions or generate events. Moreover, actions are

2https://github.com/DesignBIP/DesignBIP
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of different granularity, hence some actions are action containers i.e. their execution involves the execution of more
fine-grained actions. Events are either generated as the effect of actions or by the environment. Specifically, an event
occurs upon the end of one of its associated actions. The occurrence of ceratin events triggers a change (set) in the
state of one or more state-sets. Notice that the diagram doesn’t show two reasonable constraints for the actions, i.e.,
that they can invoke only actions of other functions and that they can contain only actions of their own function. Also,
a constraint for the states is that they are set by events generated by actions and not by external stimuli.

Our boilerplate language is similar to the one used in [2, 28], where a boilerplate consists of at most three clauses:
(i) the prefix clause, which specifies a stimulation or a condition, (ii) the main clause, which specifies an expected
system action or state and (iii) the suffix clause, which specifies various additional constraints. Moreover, each boiler-
plate attribute is associated with a specific class of our conceptual model. The definition of boilerplates as a sequence
of different clauses offers modularity, simplifies the problem of boilerplate definition and their interpretation using
formal properties.

Example 1. Let us consider the following natural language requirement:
Log-001 Every time a hardware error is detected,

it shall be stored in a memory region in the RAM.
This requirement is expressed in active voice, using a prefix and a main clause for defining the triggering event and
the system’s action, respectively, as follows:

Log-001 Prefix: If 〈event: a hardware error is detected by a function 〉,
Main: 〈function: the function 〉 shall 〈action: store the error in a memory region in the RAM 〉.

4

Table 2: Prefix clauses

ID Template

P1 if 〈event〉
P2 if 〈event〉 and 〈state〉
P3 while 〈state〉

Table 3: Main clauses

ID Template

M1 〈 f unction〉 shall 〈action〉
M2 〈 f unction〉 shall 〈action〉 (and 〈action〉)+
M3 〈 f unction〉 shall 〈state〉

Table 4: Suffix clauses

ID Template

S1 before 〈event〉
S2 sequentially

Table 3 defines the syntax for the main clauses of our boilerplate language, whose subject is a function, that may
(i) execute an action (M1), or (ii) execute a sequence of actions (M2), or (iii) be in a certain state (M3). The main
clause is mandatory; it is the core of the requirement.

Prefixes (Table 2) refer to hypothetical conditions on events and/or states. They specify conditions for the main
specification, i.e., for the action, the sequence of actions or the state observation mentioned in the main clause. Ac-
cording to the prefixes, the main clause shall occur: (i) if an event has occurred (P1), (ii) if an event has occurred and a
state is observed (P2), or (iii) throughout an interval, where a state can be observed (P3). The conditions that involve
events are necessary and sufficient, while those consisting only of states simply represent a necessity.

A suffix is used to constrain the main specification. The suffix clauses shown in Table 4 specify that each time
the main specification (action, sequence of actions or state observation) is activated, it shall: (i) have ended before an
event occurs (S1), or (ii) occur sequentially i.e., consecutive activations do not overlap in time (S2).

Let us consider the boilerplate consisting of the P1, M1 and S2 templates, specifying that “if event, function shall
action sequentially”. Such a boilerplate expresses that: (i) event is a necessary and sufficient precondition for one
action occurrence and (ii) consecutive action occurrences are constrained to be executed sequentially. The remaining
prefix-suffix combinations are interpreted accordingly.

During the specification of each requirement, the conceptual model is enriched with new concepts, if the existing
concepts are not sufficient. At the end of the specification step, the conceptual model will contain the concepts used
in the requirements and additional concepts that are related to them. For example, events used in the requirements
will be related to their generating actions, even if these actions are not explicitly mentioned in requirements. The
conceptual model’s quality is a responsibility of the Requirement Engineer. This matter has been examined in related
works [43, 41] that are further discussed in Section 6.3.
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Example 2. Let us consider the requirements in Table 5, which have been defined for the function that handles
the housekeeping of the payload (PL) subsystem (abbreviated as HK PL). The concepts in requirements and other
concepts related to them are depicted in the conceptual model of Figure 8, which shows that:

Table 5: Requirements for the HK PL function

ID Requirement

HK-02 P2: if 〈event-e003: [TBD] sec pass 〉 and 〈state-s003: HK collection is enabled for PL 〉
M1: 〈function: HK PL 〉 shall 〈action-a004: handle HK data from the PL 〉

HK-03 P3: if 〈state-s002: PS3 for PL is not enabled 〉
M1: 〈function: HK PL 〉 shall 〈action-a002: transmit HK data through the TC/TM service 〉

HK-04 P3: while 〈state-s001: PS for PL is enabled 〉
M1: 〈function: HK PL 〉 shall 〈action-a001: write HK data to the flash memory 〉

HK-05 P1: if 〈event-e004: a PL failure persists for [TBD] sec 〉
M1: 〈function: HK PL 〉 shall 〈action-a003: contact the EPS for a restart of the PL 〉

Figure 8: Conceptual model for the requirements of the HK PL function

• states s001 and s002 belong to the state-set st001, thus, only one of them can be observed at a given instant.
Each of these states is set by the events e001 and e002, respectively (states s003 and s004 are similarly related).
• the used action a004 represents an action container that consists of a001, a002 and a005.
• events e003 and e004 are neither generated by an action nor do they set any states.
For brevity, Figure 8 omits the invokes relationships that relate these actions to actions of other functions. These

relationships are shown at later steps of the running example.
4

The templates in Tables 2, 3 and 4 in no way form a complete set of boilerplates adequate for all kinds of system
requirements, since the boilerplate language is not the primary goal of this article. Thus, our prefixes can only express
necessary and sufficient conditions based on one state or event, even though requirements are often subjected to more
complex conditions (e.g. based on two events) or to conditions that are either necessary or sufficient. However, we
opted to keep the boilerplate language simple enough for illustrating the main principles behind its design, while
covering the specification needs of the two case studies in Section 6. Our considerations for the evolution of the
current language are discussed in Section 6.3.
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4.2. Initial design
The initial design step generates the design model in its initial form, which is a manually built blueprint of the system’s
functional behavior. All the concepts of actions and events mentioned in the requirements should be traceable in ports
of the initial design model.

The model consists of BIP components that implement functions of the functional architecture. Each action of the
conceptual model, which is an identifiable block of functionality within a function, is represented by a list of ports of
a component. Events that are generated by actions are also represented by the action’s ports, whereas environmental
events are non-deterministic inputs which are not explicitly modeled. Components may enclose one or more atomic
subcomponents in order to enable ports within separate threads of control. The number of atomic components to be
used and the placement of actions is a design choice that depends on possible order dependencies among the actions.
For instance, actions which are executed alternatively should be enabled at the same control location of a component,
whereas actions that are independent with each other should be placed in different components.

The invocation of actions, which is reflected by the “invokes” relationship of the conceptual model, is represented
by component interactions. Separate interactions are included for issuing an invocation and receiving the output. Ren-
dezvous connectors can model synchronous invocations, where the caller has to wait for the output. For asynchronous
invocations, an additional atomic component should be used for buffering the output before the caller can get it. Ac-
tions may return a nominal output or potential failures. The caller may receive all outputs with the same port or using
different ports, if it needs to distinguish among them (e.g. if it should be transferred to different control locations).

The design choices at this step incur a limited complexity and risk to the whole process, since components of
the initial design model should have elementary behaviors. More complex behaviors are only built with architecture
instantiation in a controlled and rigorous way.

Example 3. The initial design model shown in Figure 9 corresponds to the requirements in Table 5. It includes the
following three components of the physical architecture:
• the HK PL, which handles the Housekeeping for the PL subsystem function;
• the I2C sat, which handles the communication through the I2C bus [64] function;
• the Flash Memory, which handles the flash memory data management function.

Figure 8 shows the actions of the function allocated to the HK PL component. The other two components are included
in the model since their actions are invoked by HK PL. The HK PL actions have been placed into two atomic subcom-
ponents of the HK PL, namely the HK PL read , which reads Housekeeping data, and the HK PL restart, which
activates a restart of the PL subsystem. Actions are mapped to lists of ports as follows:

a001→ [mem write req , mem res]
a002→ [I2C ask TTC , I2C res TTC]
a003→ [I2C ask EPS , I2C res EPS]
a004→ [beginHK , finished]
a005→ [I2C ask PL, I2C res PL , I2C fail PL]

The use of two atomic components is driven by existing dependencies among actions. For example, in HK PL read,
the action of reading housekeeping data (a004) should precede their transmission (a002) or storage (a001). On the
other hand, subsystem’s reset (a0005) occurs independently of other actions.

In Figure 9 a simplified presentation of BIP connectors is shown by using the diamond shapes in component
interfaces. Each diamond is attached with ports that participate in one action’s invocation and the receipt of the
result/failures and the link between two diamonds denotes that BIP connectors exist between these ports. All actions
of the HK PL function invoke actions of the I2C sat and Flash Memory components4. Specifically, the action of
subsystem communication of the I2C sat is invoked by three actions that need to contact other subsystems:
• a004, which reads housekeeping data from the PL subsystem;
• a002, which submits data to the TC subsystem for transmission to the ground;
• a005, which contacts the EPS subsystem for the restart of the PL subsystem.

Moreover, the memory write action of the Flash Memory is invoked by a003 for writing the data to the flash memory
storage. Note here that a failure in reading the housekeeping data from PL leads to a different control location than the
nominal output and it is therefore received by a different port (i.e. I2C fail PL) than the port receiving the nominal

4the invokes relationship is not shown in the conceptual model of Figure 8
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output (i.e. I2C res PL). In contrast, both outputs of the memory write action can be received with the mem res

port, since they lead to the same control location.

Figure 9: Initial design model example

4

4.3. Property derivation
Formal properties are bound to a unique interpretation specified in an analyzable language. For design models in
BIP, we usually use the Computational Tree Logic (CTL) [6] for behavioral properties and configuration logics [53]
for architectural properties. However, since we aim at a general approach for specifying properties, we use the
specification framework of [27] with patterns that are formally defined in CTL and in other languages5. These patterns
have been found expressively sufficient to capture requirements written with our boilerplates.

Each property specification consists of two templates, a scope and a pattern. The pattern defines an expected
occurrence or the order of one or more events. The scope selects the subset of the model state-space, where the pattern
is expected to hold true. For the rest of the state-space, the property is undefined. For the set of our boilerplates, it
suffices to derive properties using the existence, absense, precedence and response patterns of [27]. Also we needed
two scopes, namely the Global scope or the Between...And scope that refers to a part of the state-space. The templates
for the patterns and the scopes are shown in Table 6. Their placeholders are filled with logical propositions (beh), that
are specified as follows:
• Atomic propositions are defined over firings of component ports: a port p of a component A is denoted by A.p

and holds true at any global state in which the port has fired.
• Logical connectives & (and), | (or) combine atomic propositions with their usual meaning.
• Temporal modalities are used to build more complex propositions. In particular, with the next operator (X) in

front of a beh, we refer to the next global state after beh occurs (the next operator can be formally expressed in
CTL as AX).

We derive properties from requirements, based on a mapping from the requirement’s boilerplate to combinations
of scope and pattern templates that are shortly referred as “property patterns”. This association, which is shown in
Table 7, refers to a set of symbols, which map the boilerplate attributes to beh propositions. The mappings have to be
manually created by the System Software Engineer, as follows:
• The beg (and end) symbols map actions to the beh propositions that define their beginning (resp. ending). For

instance, the beginning of an action is the port with which it can be invoked and its ending is the port of sending
its response or a disjunction of ports (e.g. when alternative endings exist).

5http://patterns.projects.cs.ksu.edu/
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Table 6: Templates for scopes and patterns

ID Template Description

Global globally, throughout the whole execution
Between...And between 〈beh〉 and 〈beh〉, from a 〈beh〉 to another 〈beh〉

Existence 〈beh〉 exists a 〈beh〉 is observed
Absense 〈beh〉 is absent a 〈beh〉 is not observed
Precedence 〈beh〉 precedes 〈beh〉 a 〈beh〉 is observed before another 〈beh〉
Response 〈beh〉 responds to 〈beh〉 a 〈beh〉 is observed after another 〈beh〉

• The occ symbols map events to beh propositions that define each event’s occurrence. An internal event is gen-
erated by one or more action(s), hence a beh is the disjunction of end symbols of alternative actions generating
the event. The occurrence of an external event is a port that generates external stimuli. Such ports are not part of
the initial model; instead, we consider them as “virtual ports” of a “virtual component” named Environment,
in order to assign them to occ symbols in property derivation.
• The obs symbols map states to ports, which are enabled when the design model is in each particular state. These

ports are not part of the initial model; instead, they are placed in coordinating components of architectures that
are added during property enforcement. Hence, we consider them as “virtual ports” in property derivation.

In addition to the aforementioned symbols, the beg(M) and end(M) symbols (see the footnote b in Table 7) are
automatically evaluated based on the used main clause template.

The semantics for M1 and M3 templates, alone, do not yield any correctness properties. On the other hand, M2
specifies a sequential execution of N actions, which is expressed by the conjunction of properties, M2.1.i (see Table 7),
defined for each action a[i] in the sequence (except for the last one). The property expresses that:

• the end of action a[i] enables the beginning of action a[i+1], i.e., “globally, a[i] should end before a consecutive
beginning of a[i+1]”, formulated as:

M2.1.i: globally, end(a[i]) precedes beg(a[i+1]).

Another example is the P2 prefix template, from which patterns P2.1 and P2.2 are derived. The patterns express that:

• the observation of an event while being in a state enables beg(M), i.e., “globally, the event and the state are
observed at some time instant before beg(M)”, formulated as:

P2.1: globally, obs(e1) ∧ obs(s1) precedes beg(M)

• the observation of an event while being in a state triggers beg(M), i.e.,“globally, beg(M) follows the observation
of the event and the state at some time instant”, formulated as:

P2.2: globally, beg(M) responds to occ(e1) ∧ obs(s1)

The rationale of the other derived properties is discussed in AppendixA.

Example 4. Let us consider the requirement HK-02 of our running example, which is captured by the P2.1 and P2.2
property patterns. For these patterns, the following symbols have to be assigned with ports:
• occ(e1), is assigned with the “virtual port” Environment.HKPL TBDpass modeling the occurrence of the

external event e1;
• obs(s1) is assigned with the “virtual port” HK PL.enabledHK PL modeling the observation of the state s1;
• beg(a1) is assigned with the HK PL.beginHK port modeling the begining of action a1.

4
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Table 7: Boilerplate templates and their associated property patterns

Boilerplate Derived patterns

P1: if e1, ... a P1.1: globally, occ(e1) precedes beg(M) b

P1.2:globally, beg(M) responds to occ(e1)

P2: if e1 and s1, ... P2.1: globally, occ(e1) ∧ obs(s1) precedes beg(M)
P2.2: globally, beg(M) responds to occ(e1) ∧ obs(s1)

P3: while s1 , ... P3.1: globally, obs(s1) precedes beg(M)

M1: f1 shall a1 -

M2: f1 shall a1 and ... and aN M2.1.i: globally, end(a[i]) precedes beg(a[i+1])

M3: f1 shall s2 -

S1: ... before e2 S1.1: between obs(P) and beg(M), occ(e2) is absent c

S2: ... sequentially S2.1: between beg(M) and beg(M), end(M) exists

a The enumerated f i, ai, ei and si denote a function, action, event and state mentioned in the
requirement.

b beg(M) and end(M) are replaced according to the used main clause M as follows:

beg(M) =

beg(a1) if M=M1 or M=M2
obs(s2) if M=M3

end(M) =


end(a1) if M=M1
end(aN) if M=M2
¬obs(s2) if M=M3

c obs(P) is replaced according to the used prefix P as follows:

obs(P) =


occ(e1) if P=P1
occ(e1) ∧ obs(s1) if P=P2
obs(s2) if P=P3

4.4. Architecture instantiation and property enforcement

Nine architecture styles from those introduced in [55, 56] were adequate to enforce the safety properties of our case
studies. In this section, we outline how property enforcement is achieved using four out of these nine styles, namely:
• the Action flow, which enforces an ordering of actions;
• the Mode management, which restricts the set of actions performed in a mode (state);
• the Event monitoring, which reports upon monitored events;
• the Mutual exclusion management, which ensures mutually exclusive access to a critical section.
While these styles represent recurring patterns of satellite on-board software, we believe that they are not tied to

the given problem domain.
In order to apply an architecture, the architecture style’s parameters have to be defined. Then, the architecture is

instantiated and combined with other architectures that have already been applied to the same operand components
(using the ⊕ operator as described in Section 2). In our design process this is an automated step, which merges the
connectors of architectures applied on common ports. The result of applying multiple architectures to the design
model has to be verified for deadlock-freedom.

4.4.1. Action flow
The Action flow architecture style, shown in Figure 10, enforces a sequential flow on N actions allocated to n com-
ponents of type B, using an Action Flow Manager coordinator component. Assuming that na actions of the flow
belong to one component, the component has na instances of the actBegin and actEnd port types, which represent
the beginning and end of each action. The coordinator resets the action flow only after the N-th action has ended.
Connector degrees imply that each action can only be involved in one action flow.

The Action flow style is used to enforce a collection of properties of the M2.1.i pattern (i = 1, . . . ,N) derived
from the same requirement. Such patterns specify that, given a set of actions a[1] . . . a[N], the end of action a[i]
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Figure 10: Architecture diagram of the Action flow style

enables the beginning of a[i+1]. For each a[i], the port instances that should be mapped to each actBegin[i] (resp.
actEnd[i] ) are the port(s) that correspond to the beg(a[i]) (resp. end(a[i]) ):

actBegin[i]→ beg(a[i])
actEnd[i]→ end(a[i])

Example 5. Let us consider the requirement CDMS-02 of the CubETH case study:

P1: 〈e1: if [TBD] seconds pass 〉
M2: 〈f1: CDMS status 〉 shall 〈a1: reset the internal and external watchdogs 〉 and 〈a2: contact the EPS
subsystem with a “heartbeat” 〉

from which the following property of the M.2.1 pattern is derived:

CDMS-02-M.2.1: globally, end(a1) precedes beg(a2)

Let us assume that actions a1 and a2 are placed in the Watchdog reset and the Heartbeat components, respec-
tively. For the enforcement of the property, an Action flow architecture was instantiated using the two components
as operands of type B. Table 8 shows the mapping of their ports for actions a[1] and a[2] to port type parameters.
Figure 11 presents the result of applying the architecture, which adds the coordinator and two connectors shown with
dashed lines. Since the coordinator represents the Heartbeat component (i.e., all its ports are synchronized with ports
of the coordinator), the latter is removed as redundant. Moreover, any symbols that refer to the removed component’s
ports are updated to refer to the ports of the the coordinator.

Table 8: Action flow architecture style parameters

a[1] a[2]
actBegin Watchdog reset.internal watchdog Heartbeat.send

actEnd Watchdog reset.done Heartbeat.res , Heartbeat.fail

4

4.4.2. Mode management
The Mode management architecture style (Figure 12) restricts the set of actions which can be executed (i.e., enabled
actions) based on a set of modes. It consists of one coordinator of type Mode Manager, n parameter components of
type B1 and k parameter components of type B2. Each B2 component triggers the transition of the Mode Manager to
a specific mode. B1 components have actions that should be enabled in specific mode(s) of the Mode Manager. Mode
Manager has one control location for each mode, one port type toMode with cardinality k and k port types inMode
with cardinality 1. Each toMode port is connected with the changeMode port of a dedicated B2 component.

B1 has k port types modeBegin with cardinality mc[0, 1]. In other words, a component instance of B1 might
have any number of port instances of modeBegin from 0 to k. B1 has also a modeEnd port type with cardinality k.
m[i]b stands for “mode i begin” and indicates that an action that is enabled in mode i has begun its execution. The
m[i]e ports stand for “mode i end” and indicate that an action that is enabled in mode i has ended. Such ports are
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Figure 11: Application of an Action flow architecture

exported as modeEnd in the interface of the B1 components. Each inMode port instance of the Mode Manager must
be connected with the corresponding m[i]b port instances of all B1 components through an n-ary connector, where a
different multiplicity in the interval [1, n] is considered for each port instance.

Figure 12: Architecture diagram of the Mode management style (component behavior is shown for k=3)

This architecture style enforces sets of properties of the P3.1 pattern that refer to states of the same state-set.
According to each such property, “the main specification shall begin only if a state is observed”. The style is param-
eterized by setting k equal to the number of states in the state-set. To identify instances of m[i]b ports, we use a new
symbol enforce beg(M), which is evaluated as follows:
• if M = M1 or M = M2, enforce beg(M)=beg(M)
• if M = M3, in which case beg(M)=obs(s2), enforce beg(M) is the beg of each action that triggers state s2;

these actions are found in conceptual model by backward tracing the relationships action
generates
−−−−−−−→event

sets
−−−→state.

The second evaluation case reflects that the restriction of being in a state can only be ensured by restricting the event
of entering in that state. Operands of type B1 are the components having the ports mapped to the m[i]b ports. The
changeMode port type is mapped to the ports of the occ of each event that sets the state. Operands of type B2 are the
components having these ports. After having applied a mode management architecture, each “virtual port” assigned
to the obs of the represented states is replaced by an inMode[i] port of the Mode Manager.

The Mode management style is also used in combination with the Event monitoring style to enforce the P2.1
pattern. Specifically, we apply the Mode management after having applied the Event monitoring, by mapping the
m[i]b port type to the port of the event monitoring coordinator that observes the event.

Example 6. Let us consider the requirements HK-03 and HK-04 in Table 5, from which the following two properties
are respectively derived:

HK-03-P3.1: globally, obs(s002) precedes beg(a002)
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HK-04-P3.1: globally, obs(s001) precedes beg(a001)
States s001 and s002 belong to the same state-set, hence, they can be enforced through a single Mode management

architecture in which k = 2. The style parameters shown in Table 9 associate state s001 with mode[1] and state s002
with mode[2]. The m[1]b and m[2]b port types are mapped to the beg(M) of each pattern, namely the beg(a001)
(evaluated as HK PL read.mem write req) and beg(a002). Since Figure 8 shows that each mode is set by the
events e001 and e002, respectively, the changeMode port type is mapped to the ports assigned to the occ(e001) (eval-
uated as s15 1.PL) and the occ(e002) (evaluated as s15 2.PL). The result of architecture application is presented
in Figure 13, where the added connectors are shown with dashed lines.

mode[1] mode[2]
changeMode s15 1.PL s15 2.PL
m[i]b HK PL read.mem write req HK PL read.I2C res TTC

Table 9: Mode management architecture style parameters

Figure 13: Application of a Mode management architecture

4

4.4.3. Event monitoring
The Event monitoring architecture style, shown in Figure 14, provides a coordinator component of type Event

Monitor that tracks events of n components of type B and reports them to a component of type service. Each B
component has an instance of the sndEvent port type, while the service component has an instance of the getRep port
type.

The event monitoring architecture style is used to enforce the P1.1 and P2.1 patterns, according to which “the
main specification shall begin only if a certain event occurs”. For each such pattern, a separate architecture is applied,
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Figure 14: Architecture diagram of the Event monitoring style
Figure 15: Architecture diagram of the bipartite connec-
tors’ simplification

where the getRep port type is mapped to the ports assigned to enforc beg(M) and the sndEvent port type is mapped
to the set of ports given in the occ of the event. Moreover, the P2.1 pattern requires the additional application of a
mode management architecture, as it has been already explained in Section 4.4.2.

Under the assumption that the action is enabled whenever the event is observed, the coordinator’s behavior is
reduced to a single control location and the transitions observe, report are seen as indivisible (replaced by a single
port). For simplicity, the coordinator is omitted, and it is replaced by bipartite rendezvous connectors between the
port(s) of the event occurrence and the action’s beginning. Figure 15 shows the architecture diagram of the bipartite
connectors’ simplification.

Example 7. Let us consider the requirement HK-01 in Table 5, from which the following property is derived:
HK-02-P2.1: globally, occ(e003) ∧ obs(s003) precedes beg(a004)

The property is enforced through a combination of an event monitoring and a mode management architecture, but
here we focus on the event monitoring. The used parameters are shown in Table 10. The getRep port is mapped to
the enforc beg(M), namely the beg(a004) (evaluated as HK PL read.beginHK). The sndEvent is mapped to the
occ(e003) (evaluated as Environment.HKPL TBDpass).

sndEvent Environment.HKPL TBDpass

getRep HK PL read.beginHK

Table 10: Event monitoring architecture style parameters

Figure 16: Application of the bipartite connectors’ simplification of the Event monitoring architecture

In this example, the event represented by the port Environment.HKPL TBDpass can be reported anytime after a
deadline expires. Hence, the assumption that the reporting action is enabled whenever the event occurs is true and the
bipartite connector simplification is used without affecting event occurrences (Figure 16).

4

4.4.4. Mutual exclusion management
The Mutual exclusion management architecture style, shown in Figure 5, has a coordinator component of type Mutex
Manager, which ensures that the actions of n parameter components of type B are executed in a mutually exclusive
manner. The beginning and end of actions are represented by the begin and finish port types of B components.
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Mutual exclusion management is used to enforce the S2.1 pattern, according to which “consecutive executions of
the main specification occur in a sequential manner”. The style is parameterized by mapping the begin and finish

ports to the set of ports in enforc beg(M) and the set of ports in end(M).

Example 8. A mutual exclusion architecture applied to the Flash Memory component is used to enforce that the read
and write requests should be processed in a mutually exclusive manner. The parameters for the architecture are those
in Table 11. The begin is mapped to the ports for the invocation of a read/write request and the finish is mapped to
their results. The obtained model is shown in Figure 17.

begin Flash Memory.read, Flash Memory.write

finish Flash Memory.return, Flash Memory.fail

Table 11: Mutual exclusion management architecture style parameters

Figure 17: Application of a Mutual exclusion management architecture

4

4.4.5. Liveness
In general, the enforcement of liveness properties requires additional assumptions of fair execution scheduling. Fur-
thermore, in order to guarantee the preservation of liveness properties by architecture composition, one has to verify
the architectures’ pair-wise non-interference [5].

However, liveness properties of the patterns P1.2 and P2.2, can, indeed, be enforced by the bipartite connectors’
simplification of the Event monitoring architecture style. Let us consider the safety property “the main specification
begins atomically upon the occurrence of event e”, formulated as follows:

P1.2’: between occ(e) and X occ(e), beg(M) exists.6

It can be easily shown that P1.2 is implied by P1.2’, which can be enforced by the bipartite connectors’ simplification
if the assumptions for its application hold (cf Section 4.4.3).

Another way to indirectly enforce P1.2 through the Event monitoring architecture style is by considering the
following safety property: “after an occurrence of event e, another such event does not occur before the beginning of
the main specification”, formulated as follows:

P1.2”: between occ(e) and occ(e), beg(M) exists.7

It can be easily shown that P1.2”, which is enforceable by the Event monitoring architecture style, implies P1.2, if it
can be verified or assumed that occ(e) occurs infinitely often:

P1.2.asm: globally, occ(e) responds to occ(e)

6The semantics of this property in CTL is given by the formula AG
(
occ(e)→ beg(M)]

)
.

7The semantics of this property in CTL is given by the formula AG
(
occ(e)→ AX A[¬occ(e) W beg(M)]

)
.
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4.4.6. Decision flows for property enforcement
Finding the suitable approach for enforcing a given property involves a decision-making process. Algorithm 1 in-
troduces such a process for properties of the P1.1 pattern. The first conditional (line 1) checks whether the bipartite
connector simplification can be applied, the second conditional (line 3) checks whether Event monitoring is necessary,
and the else statement (line 6) is reached if the property should be verified, through inspection or model checking.

Algorithm 1 Decision-making process for the P1.1 pattern

Require: occ(e), beg(M)
Ensure: P1.1 is either enforced or should be verified

1: if occ(e) is allocated to a different atomic component than beg(M) then
2: P1.1 is enforced by the bipartite connectors’ simplification of the Event monitoring style
3: else if occ(e) is allocated to the same atomic component with beg(M) and P1.1 does not hold by inspection then
4: P1.1 is enforced by the Event monitoring style
5: else
6: P1.1 should be verified
7: end if

The direct or indirect enforcement of the P1.2 pattern is guided by the process shown in Algorithm 2. The flow
takes into account the architecture that enforces P1.1, if such an architecture has been applied. The decision of the
flow is either that the P1.2 property has been enforced by the architecture, or that it has to be verified through model
checking. Similar processes are followed for the remaining patterns.

Algorithm 2 Decision-making process for the P1.2 pattern

Require: the applied architecture that enforces P1.1, if any
Ensure: P1.2 is either enforced or has to be verified through model checking

1: if the Event monitoring style has been applied and the P1.2.asm is verified then
2: P1.2 is enforced by the Event monitoring style
3: else if the bipartite connectors’ simplification has been applied then
4: P1.2 is enforced by the the bipartite connectors’ simplification
5: else
6: P1.2 has to be verified through model checking
7: end if

5. Tool support

The RERD tool supports the requirement specification, property derivation, architecture instantiation and property
enforcement, i.e. the steps 1, 3, 4 and 5 of the model-based process, whereas in step 6 the D-Finder tool is used and
the nuXmv model checker [21], if there is need for verifying CTL properties. For step 1, the Requirements Engineer
selects among the predefined boilerplate clauses and then inserts in each placeholder a textual description referring
to a uniquely identified concept. The concept can be selected from the previously defined concepts (search support
is provided) or if a new concept is needed it is entered along with its relationships. The conceptual model is stored,
shared and is accessed through an underlying ontology architecture, whose design does not need to be known to the
Requirement Engineer (the concept classes in Figure 7 suffice for specifying requirements).

Figure 18 shows the Requirement Editing screen of the RERD tool. The upper part of the screen allows selecting
among the available boilerplate clauses, which are displayed in separate tables. In the middle part, requirements are
shown in an editable form, that is, their placeholders and additional information for the requirement (e.g. id, category)
can be filled in this panel. The lower part of the screen is used for browsing and searching requirements that match
string(s) given in a search box. The table displays the requirements returned by each search (all requirements match
an empty string), with buttons attached to each row for editing/deleting them.
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The RERD tool also stores the user-defined values for the symbols used in patterns. Specifically, the System
Software Engineer assigns ports to the symbols that are necessary for the properties of the specified requirements.
These symbols may be reused in more than one property. Hence, when the Verification Engineer uses the tool during
the property derivation (step 3), the necessary properties are automatically created by retrieving the values of symbols.

For architecture instantiation and property enforcement (steps 4 and 5), the System Software Engineer can choose
among the available architecture styles and parameterize them for creating architectures that enforce a set of properties.
The architectures are then automatically applied to their operand components and the design model is updated as
appropriate.

DesignBIP [54] is a web-based graphical editing tool, which can be used for the specification of BIP models
and BIP architectures. The tool can assist the creation of the initial design model in step 1. Moreover, it allows
for the creation of new architecture styles to be integrated in the RERD tool, whenever RERD is extended with new
boilerplates (and enforcement opportunities).

The D-Finder tool [11] is used by the Verification Engineer for verifying the deadlock-freedom of the design
model (step 6). D-Finder is capable of analyzing very large BIP models using compositional verification on an over-
approximated set of reachable states. For model checking CTL properties, the BIP model has to be transformed with
the BIP-to-NuSMV tool 8 into the input language of the nuXmv model checker.

Figure 18: RERD’s screen for Requirements Editing.

8The tool is available from http://risd.epfl.ch/bip2nusmv. It is based on the encoding presented and proven correct in [15, Section 4].
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6. Evaluation case studies

6.1. CubETH case study

The CubETH nanosatellite [70] is comprised of: the electrical power subsystem (EPS), the command and data man-
agement subsystem (CDMS), the telecommunication subsystem (COM), the attitude determination and control subsystem
(ADCS) and the payload (PL). Our early validation study is focused on the software for the following subcomponents
of the CDMS subsystem (cf. AppendixB.1): 1) the CDMS status that resets internal and external watchdogs; 2) the
Payload that is in charge of payload operations; 3) three Housekeeping components that recover engineering data
from the EPS, PL and COM subsystems; 4) the CDMS Housekeeping which is internal to the CDMS; 5) the I2C sat that
implements the I2C bus protocol; 6) the Flash memory management that implements a non-volatile flash memory
and its read-write protocol; 7) the s3 5, s3 6, s15 1 and s15 2 services that activate or deactivate the housekeep-
ing component actions; 8) the Error Logging that implements a shared RAM region. The case study comprises 38
requirements, from which 57 properties were derived. The complete BIP model can be found in AppendixB.5.

Table 12 summarizes statistics that characterize the property enforcement step. In total, the integrated architec-
tures for enforcing safety properties that were derived from our boilerplates’ requirements are 1 Action Flow, 11 Mode
management, 5 Event monitoring, 10 Mutual Exclusion Management and 3 Failure Monitoring. Since safety proper-
ties enforced by each architecture are preserved by architecture composition (see Section 2), these safety properties
are satisfied by the design model by construction.

Table 12: Statistics of requirement formulation and property enforcement

Model Flow Mode Event Mutex Failure Requir. Deriv. Prop. Assum. Prop. Enforced By inspect.

Payload 0 2 0 4 0 12 16 0 16 0

HK PL 0 2 1 1 1 4 6 0 6 0

HK EPS 0 2 1 1 1 4 6 0 6 0

HK COM 0 2 1 1 1 4 6 0 6 0

HK CDMS 0 2 1 1 0 3 4 0 4 0

Flash Memory 0 1 0 1 0 8 13 4 3 10

CDMS status 1 0 0 0 0 1 3 0 3 0

Error Logging 0 0 1 1 0 2 3 0 3 0

Total 1 11 5 10 3 38 57 4 47 10

Combined application of architectures can generate deadlocks. We verified the deadlock-freedom of the design
model using the D-Finder tool [11]. D-Finder’s compositional analysis is sound, but incomplete: due to the em-
ployed over-approximation of reachable states, it can produce false positives, i.e., potential deadlock states that are
in fact unreachable in the concrete system. However, our design model was found to be deadlock-free without any
potential deadlocks. Thus, no additional reachability analysis was needed. The verification of deadlock-freedom was
completed in 12 seconds, for our model consisting of 46 atomic components and 155 connectors.

The key advantage of our architecture-based approach is that the burden of verification is shifted from the final
design to architectures, which are considerably smaller in size and can be reused. In particular, we managed to enforce
47 out of 57 derived properties using our simple architecture styles. The remaining 10 derived properties were verified
by inspection and 4 fairness assumptions were left for verification using the nuXmv model checker.

Table 13 summarizes the duration of each process step for the input of the problem size shown in each row; the
three roles of the process were performed by an engineer who was fully familiar with the process’s tool support. The
property derivation and property enforcement steps are not shown, since they are fully automated and the time needed
was negligible. We note that the time spent is not evenly distributed across the steps and it tends to be less towards
the end of the process. Also, it is essential to clarify for the shown times that the architecture styles had already been
configured in the RERD tool and the input forms for the style parameters had been defined. This takes 1–2 hours per
style. Much greater effort was needed, though, to create the taxonomy of our architecture styles which took about 1
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man-month. However, this taxonomy serves as a knowledge base in abstract form that we have acquired, and which
can be also reused to build other models of satellite on-board software.

Table 13: Durations and input sizes of the process steps

Step Duration Input size

Requirement specification 8 hours 38 requirements

Initial design 5 hours 12 components

Architecture instantiation 3 hours 47 enforced properties

Verification of deadlock freedom 12 seconds 46 components

6.2. Telecommand Management of an earth observation satellite
In a second case study, our model-based approach was also applied to an extract of 29 software requirements for the
Telecommand Management function of a low orbit earth observation satellite. The requirements and the BIP model of
this study cannot be disclosed, due to confidentiality liability terms. We derived 58 properties from the requirements
and 34 (58%) of them were eventually enforced through architectures.

More specifically, during this case study we identified the need for and formulated an architecture style for Priority
Management [56]. In overall, the integrated architectures were 10 Action Flows, 3 Mutual Exclusion Management,
13 Mode management and 1 Priority Management. The number of components in the BIP model was 25.

6.3. Discussion
The applicability of our approach in an industrial context depends on a number of factors that we discuss hence-
forward. First, we assume the availability of a conceptual model like the one depicted in Figure 8. Such a model
represents the structural elements and their conceptual constraints comprising the problem domain [31]; its adequacy
and completeness determines the range of available concepts and relationships for the boilerplate attributes, the initial
design, and the property derivation steps. We consider that conceptual modeling is performed by the Requirement
Engineers in cooperation with the domain experts in charge of system design. This activity also includes capturing
the domain assumptions, i.e., common and often tacit knowledge for the problem domain, and in spite of the system
under design [49, 44]. The so-called domain knowledge (cf. Section 4) may concern with standardized protocols,
services, libraries or physical laws, and can provide additional semantic information about the nature of the concepts
in question. This information is essential, in order to conclude e.g. that certain events or data ranges that respect the
conceptual model syntactically, are not relevant semantically. Some assumptions may be related to physics, e.g. “mass
cannot be negative”, and some assumptions may be mission-specific, e.g. “the temperature within the orbiting range
of the spacecraft cannot rise above N degrees”. Elicitation of domain knowledge, as a collaborative effort, could be
facilitated by the use of templates for each ontology class [3].

The conceptual model and all assumptions related to domain knowledge are encoded into domain-specific and
system-specific ontologies, which are accessed through the RERD tool. New concepts may be created from within the
tool and the user is notified for violations of constraints related to the model integrity (e.g. undefined relationships).
The model quality (syntactic, semantic, pragmatic) [43, 41] is a responsibility of the Requirement Engineers, who
should aim for models that can be reused to significant extent in multiple projects. Certainly, the reusability depends
on the abstraction level of design, since the requirements are usually specified at different abstraction levels along
the development lifecycle (for space systems we have the spacecraft, avionics and software levels) and a conceptual
model is pertinent only to a specific level [46]. The aforementioned problems and the right ontology in relation to our
model-based design process need to be further researched in future work.

A second important issue is the expressiveness of the boilerplate language, and whether it can be sufficient for
specifying the full range of requirement types found in the design of, say, space systems. This of course depends
on the expressiveness of the property patterns, and on the analyzability of BIP models with extended semantics for
the various property types, because correctness-by-construction does not vanish the need for a posteriori verification.
The structure of the boilerplate language in Section 4.1 resembles that of RSL in the CESAR reference technology
platform [2]. We currently support fewer templates than RSL for the prefix, main and suffix clauses, but this set of
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templates was sufficient for expressing the requirements of the case studies. Moreover, the RERD tool was designed
such that new templates may be added; the only prerequisite is that the additional templates must be associated
with property patterns, as in Table 7. The adopted framework of patterns from [27] is well-established and stems
from industrially-relevant studies, but it only covers functional property specifications. We certainly foresee the need
for boilerplates with templates for non-functional aspects, which call for support by e.g. timing patterns [68] and
probabilistic patterns [34]. Here, it is worth to note:
• the extension of BIP [62] that allows specifying probabilistic aspects of BIP components, while providing a

stochastic semantics for the parallel composition of components through interactions and priorities;
• the RT-BIP extension for modeling timing constraints as a timed automaton, and a real-time engine for comput-

ing the schedules meeting the timing constraints, given the underlying platform’s real-time clock [1].
These extensions are accompanied by advanced verification tools, some of which implement scalable compositional
verification techniques [67].

However, a matter of vital importance is how expressive can be a boilerplate language with a controlled vocabulary
for the attributes with respect to today’s industrial practice of natural language specifications. The loss of expressive-
ness is inevitable, though necessary to avoid ambiguity; the true question is whether it is still possible and whether
we really need to cover the same system aspects with those in today’s specifications. This question also matters for
languages like EARS [50, 51], which insist on natural language specifications using a fixed set of structural rules
(though the EARS-CTRL analysis works with a user-defined glossary of terms). From our experience with the case
studies, which were based on natural language requirements, we believe that only a subset of them needs to be vali-
dated. This set includes requirements that are suspected for consistency issues and have to be established or checked
with respect to the system’s structure and behavior. The Requirement Engineers tend to classify the requirements in
project documentation into categories (e.g. at the software level of space systems there are various classes of interface
requirements, performance requirements, functional requirements and design/construction requirements). Any boiler-
plate language is considered adequate only if it can express all representative forms of natural language requirements
that need to be validated, for all categories of requirements in project documentation (e.g. the design/construction
requirements is not necessary to be expressed using boilerplates). This may imply changes to the scope of individual
requirements (e.g. a natural language requirement may be broken into multiple boilerplate requirements). To this end,
the RERD tool displays the set of applicable boilerplates, for each category of requirements found in a user-defined
catalogue of categories (Figure 18).

Our emphasis lies on precisely capturing the requirements by properties which—ideally—can be enforced through
BIP architectures or—if not enforced—could be verified. As we aim to a semi-automated formalization of require-
ments, we are intentionally limited to specific types of requirements and templates. Our approach can accommodate
additional templates for requirement boilerplates, provided that they are associated with property patterns, for which
it is known how they can be enforced or verified.

The applicability of the correctness-by-construction approach throughout our model-based process depends on a
library of BIP architecture styles for enforcing a worthwhile set of properties in the different categories of require-
ments. We have implicitly adopted the commonly accepted perception that the requirement specification and the
system’s architectural design are in some sense intertwined [72, 63]. While specifying system requirements, the
Requirement Engineers have in mind the overall structure of the system under design (functional and physical archi-
tecture inputs shown in Figure 6), whereas a significant part of their specifications comes from adapting requirements
found in previous projects. Our notion of architecture styles provides the means to formally capture common solu-
tions to recurring design problems in an abstract and reusable form. This certainly incurs a non-negligible investment
cost towards developing adequate and organized libraries of architecture styles, especially since the set of property
patterns that they can enforce has to be precisely defined. The set of styles in this article was derived by identifying
commonalities in the base of natural language requirements of the case studies. Additional effort is required to this
respect, whereas a recent research work opens prospects for defining styles which enforce quantitative properties [66].

Another important issue is the scalability and the effort needed for applying our model-based process. Indicative
figures for problems of the size of our case studies have been previously mentioned. We acknowledge that in industrial
problems of moderate size additional challenges may arise. More specifically, it may be trickier to identify and
uniquely determine—on a team basis—the concepts for specifying requirements, as well as to verify properties against
a large-scale design model. The a posteriori verification with model checking does not scale well and it can be rendered
infeasible for large-scale models. With the architecture-based design a key advantage is, in particular, that the burden
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of verification is shifted from the final design to architectures, which can be reused. Moreover, as was illustrated in
the case studies, the verification of deadlock freedom—which is essential when combining architectures—with the
compositional approach of D-Finder is very fast. However, when a non-enforceable property is not verified in Step 6
of our process, identifying a relevant sub-model for corrective action is complex. An important issue is how to present
the resulting BIP model to engineers in a cognisable manner. In any case, the complexity of locating a design error is
not inherent to the process proposed in the present paper: it arises for any design process involving verification. In that
sense, our proposal, improves the current state of practice by reducing the number of properties that must be verified.
Although additional techniques could be applied to better identify the source of an error, such as fault localisation [76]
and reduction [61] techniques for BIP models, or analysis techniques similar to that used for the cone-of-influence
reduction [26] 9, we consider this direction as out of scope of the present paper and leave it for future research.

7. Conclusion

We presented a model-based approach for the formalization of system requirements, and their early validation with
respect to system design. Our model-based process constitutes a novel approach built on top of correctness-by-
construction techniques, which open a new perspective in the field. The incrementally built design model in BIP
provides evidence of design correctness and consistency or else it can guide the revision of requirements. It can also
form a baseline for formal refinement [40] towards introducing requirements/properties at a lower design abstraction
level, while ensuring that the already established requirements and properties are preserved. Significant challenges
remain to be addressed, if our approach is to be adopted in a realistic industrial context. However, although difficulties
remain, which might be addressed in future work, the process presented in the paper is an advance towards reducing
the validation testing during the late stages of development.
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AppendixA. Derived Property Patterns

AppendixA.1. Prefixes
The prefixes that contain events define necessary and sufficient preconditions that trigger beg(M).

States are used in prefixes as additional necessary preconditions that enable beg(M).

P1: if e1, .... From the P1 template, the properties P1.1 and P1.2 are derived, expressing that

• the observation of the event enables beg(M), i.e., “globally, the event should be observed before an observation
of beg(M), formulated as:

P1.1: globally, occ(e1) precedes beg(M)

• the observation of the event triggers beg(M), i.e., “globally, beg(M) is observed after the observation of the
event”, formulated as:

P1.2: globally, beg(M) responds to occ(e1)

P3: while s2, .... From the P3 template, the property P3.1 is derived, expressing that the state is a necessary precon-
dition, i.e., “beg(M) is observed only whenever the state is observed”, formulated as:

P3.1: between beg(M) and X beg(M),obs(s1) exists

AppendixA.2. Suffixes
Suffixes impose additional constraints to the occurrence of beg(M).

S1: ...before e2. From the S1 suffix, which should be used always in combination with a prefix, the S1.1 property is
derived, expressing that event e2 is a deadline for the occurrence of beg(M), i.e.,“after an observation of the prefix,
the event e2 is not observed before beg(M).”, which is formulated as:

S1.1: between obs(P) and beg(M), occ(e2) is absent

S2: ...sequentially. From the S2 suffix, the S2.1 property is derived, expressing that the main specification is executed
in a sequential manner, i.e., “after the observation of beg(M), end(M) is observed before a consecutive observation of
beg(M).”, which is formulated as:

S2.1: between beg(M) and beg(M), end(M) exists

AppendixB. Case study

AppendixB.1. Functional architecture
• CDMS status: CDMS’s status reporting to the EPS subsystem
• HK PL: HK data generation for the PL subsystem
• HK COM: HK data generation for the COM subsystem
• HK EPS: HK data generation for the EPS subsystem
• HK CDMS: HK data generation for the CDMS internals
• Payload: payload operations’ management
• Error Logging: hardware errors’ logging
• Flash Memory: data management in flash memory
• I2C sat: communication through I2C sat bus

AppendixB.2. Physical architecture
The physical architecture for the case study is identical to the functional architecture (cf. AppendixB.1).
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Figure B.19: The high level initial design model for the CubETH case study.
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AppendixB.3. Initial design model

Figure B.19 shows a high level view of the initial design model. Such a high level design model depicts the
component ports and their in-between connectors.

AppendixB.4. Requirements and properties of the running example

We present here the requirements and the derived properties of the CubETH running example.

HK-02: ‘ HK PL shall handle HK data from the PL subsystem every TBD seconds, as long as the handling of HK
data is enabled. ’

P2: if 〈e1: [TBD] seconds pass 〉 and 〈s1: HK for PL is enabled 〉
M1: 〈f1: HK PL 〉 shall 〈a1: handle HK data from PL 〉

Derived Properties:
HK-02-P2.1 globally, occ(e1)∧ obs(s1) precedes beg(a1)
HK-02-P2.2 globally, beg(a1) responds to occ(e1)∧ obs(s1)
Attribute values based on the resulting model:
obs(s1): HK PL.enabledHK PL,
occ(e1): Environment.HKPL TBD pass ,
beg(a1): HK PL.beginHK

HK-03: ‘ While the PS for the PL subsystem is not enabled, HK PL shall transmit the HK data of the PL subsystem
through the TC/TM service. ’

P3: while 〈s1: PS for PL is not enabled 〉
M1: 〈f1: HK PL 〉 shall 〈a1: transmit HK data through the TC/TM service 〉

Derived Properties:
HK-03-P3.1 globally, obs(s1) precedes beg(a1)
HK-03-P3.2 globally, beg(a1) responds to obs(s1)
Attribute values based on the resulting model:
obs(s1): HK PL.disabledPS PL,
beg(a1): HK PL.ask I2C TTC

HK-04: ‘ HK PL shall write HK data to the flash memory, if PS for the PL subsystem is enabled. ’
P3: while 〈s1: PS for PL is enabled 〉

M1: 〈f1: HK PL 〉 shall 〈a1: write HK data to the flash memory 〉
Derived Properties:
HK-04-P3.1 globally, occ(e1) precedes beg(a1)
HK-04-P3.2 globally, beg(a1) responds to obs(s1)
Attribute values based on the resulting model:
obs(s1): HK PL.enabledPS PL,
beg(a1): HK PL.mem write req

HK-05: ‘ HK PL shall contact the EPS for a restart of the PL subsystem after a failure persists for [TBD] sec.’
P1: if 〈e1: a failure of subsystem * persists for [TBD] sec 〉,
M1: 〈f1: HK PL 〉 shall 〈a1: contact the EPS for a restart of PL 〉

Derived Properties:
HK-05-P1.1 globally, occ(e1) precedes beg(a1)
HK-05-P1.2 globally, beg(a1) responds to obs(s1)
Attribute values based on the resulting model:
occ(e1): Environment.HKPL failurePers

beg(a1): HK PL.I2C ask EPS

and their properties
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AppendixB.5. Final design model

Figure B.20: The high level final design model for the CubETH case study.

In the high level view of the final design model, compared to that of the initial design in Figure B.19, additional
connectors have been added for property enforcement. Specifically, these connectors were added between the Error
Logging component and other components of the model.
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AppendixB.5.1. HK PL

Figure B.21: The HK PL component (The HK COM and HK EPS are also like HK PL)

The requirements for the HK PL component are shown in Section AppendixB.4.
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AppendixB.5.2. HK CDMS

Figure B.22: The HK CDMS component

The requirements for the HK CDMS component are similar to the HK-02, HK-03 and HK-04 requirements (of HK
PL component) shown in Section AppendixB.4.
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AppendixB.5.3. CDMS status

Figure B.23: The CDMS status component

CDMS-02: ‘ The CDMS status shall periodically reset the internal and external watchdogs and contact
the EPS subsystem with a “heartbeat”. ’
P1: 〈e1: if [TBD] seconds pass 〉
M2: 〈f1: CDMS status 〉 shall 〈a1: reset the internal and external watchdogs 〉 and 〈a2: contact the EPS
subsystem with a “heartbeat” 〉
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AppendixB.5.4. Error Logging

Figure B.24: The Error Logging component

Log-02: ‘ Error logging shall log each hardware error to the RAM.’
P1: if 〈e1: a hardware error is produced 〉
M1: 〈f1: Error logging 〉 shall 〈a1: log the error to the RAM 〉
Log-03: ‘ Error logging shall not log two errors simultaneously. ’
M1: 〈f1: Error logging 〉 shall 〈a1: log the error to the RAM 〉
S3: sequentially
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AppendixB.5.5. Payload

Figure B.25: The Payload component

PL-01: ‘ When in IDLE mode, PL shall load a scenario to the board. ’
P3: while 〈s1: in IDLE mode 〉
M1: 〈f1: PL 〉 shall 〈a1: load a scenario to the board 〉
PL-02: ‘ In SCENARIO READY, PL has loaded a scenario to the board. ’
P1: if 〈e1: PL has finished loading a scenario to the board 〉
M3: 〈f1: PL 〉 shall 〈s2: be in SCENARIO READY mode 〉
PL-03: ‘ In SCENARIO READY, PL shall execute a scenario to the board. ’
P3: while 〈s2: in SCENARIO READY mode 〉
M1: 〈f1: PL 〉 shall 〈a12: execute a scenario to the board 〉
PL-04: ‘ In STARTED mode, a PL scenario has been executed. ’
P1: if 〈e2: PL has finished executing a scenario 〉
M3: 〈f1: PL 〉 shall 〈s3: be in STARTED mode 〉
PL-05: ‘ In STARTED mode, PL shall check the status of the board’s internals. ’
P3: while 〈s3: in STARTED mode 〉
M1: 〈f1: PL 〉 shall 〈a3: check the status of the board’s internals 〉
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PL-06: ‘ If the board status is full, PL shall be in the RESULT READY mode. ’
P2: if 〈e3: the board status is found full 〉 and 〈s5: there is data to be transferred from the board 〉
M3: 〈f1: PL 〉 shall 〈s4: be in RESULT READY mode 〉
PL-07: ‘ In RESULT READY, PL shall transfer data from the board to the flash memory. ’
P3: while 〈s4: in RESULT READY 〉
M1: 〈f1: PL 〉 shall 〈a4: transfer data from the board to the flash memory 〉
PL-08: ‘ PL shall be back to IDLE mode, whenever PL aborts a board operation. ’
P1: if 〈e4: PL has finished aborting a board operation 〉
M1: 〈f1: PL 〉 shall 〈s1: be in IDLE mode 〉
PL-09: ‘ PL shall not be processing two (128,1) telecommands simultaneously. ’
M1: 〈f1: PL 〉 shall 〈a6: process (128,1) telecommands 〉
S2: sequentially
PL-10: ‘ PL shall not be processing two (128,4) telecommands simultaneously. ’
M1: 〈f1: PL 〉 shall 〈a7: process (128,4) telecommands 〉
S2: sequentially
PL-11: ‘ PL shall not be processing two (128,5) telecommands simultaneously. ’
M1: 〈f1: PL 〉 shall 〈a8: process (128,5) telecommands 〉
S2: sequentially
PL-12: ‘ PL shall not perform two status verification tests simultaneously. ’
M1: 〈f1: PL 〉 shall 〈a9: perform status verification tests 〉
S2: sequentially
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AppendixB.5.6. Flash Memory

Figure B.26: The Flash Memory component

Mem-01: ‘ Flash memory shall process read and write operations sequentially. ’
M1: 〈f1: Flash memory 〉 shall 〈a1: process operations 〉
S2: sequentially
Mem-02: ‘ For a write operation, the flash memory writes blocks of data the device, until all data has been
written. ’
P3: while 〈s1: a write operation is being processed 〉
M1: 〈f1: Flash memory 〉 shall 〈a2: write data to the device 〉
Mem-03: ‘ For a read operation, the flash memory reads each block of data from the device and performs
the Cyclic redundancy check (CRC), until all data has been read. ’
P3: while 〈s2: a read operation is being processed 〉
M2: 〈f1: Flash memory 〉 shall 〈a3: read data from the device 〉 and 〈a6: perform the CRC 〉
Mem-04: ‘ Each read operation returns its finishing status. ’
P1: if 〈e1: a read operation begins 〉
M1: 〈f1: Flash memory 〉 shall 〈a4: return the operation’s finishing status 〉
S1:before 〈e4: it has finished 〉
Mem-05: ‘ Each write operation returns its finishing status.’
P1: if 〈e2: a write operation begins 〉
M1: 〈f1: Flash memory 〉 shall 〈a5: return the operation’s finishing status 〉
S1:before 〈e5: it has finished 〉
Mem-07: ‘ If CRC fails, the Flash memory shall reread the data from the flash memory, as long as the
number of read attempts is less or equal to [MAX FM READS]. ’
P2: if 〈e3: CRC fails 〉 and 〈s3: the same data has been read [MAX FM READS] times or less 〉
M1: 〈f1: Flash memory 〉 shall 〈a6: continue reading data from the device 〉
Mem-08: ‘ If CRC fails, the Flash memory shall abandon the reading operation, as long as the number of
read attempts exceeds [MAX FM READS]. ’
P2: if 〈e3: CRC fails 〉 and 〈s4: the same data has been read more than [MAX FM READS] times 〉
M1: 〈f1: Flash memory read 〉 shall 〈a7: abort the read operation 〉
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AppendixB.5.7. I2C sat

Figure B.27: The I2C sat component

The funcitonality of the I2C sat component is taken into account in the model, though it is not specified in the
requirements. The component implements the I2C protocol, which is specified in [64].
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