
HAL Id: hal-01875534
https://hal.archives-ouvertes.fr/hal-01875534

Submitted on 17 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Keynote: From groupware to large-scale trustworthy
distributed collaborative systems

Claudia-Lavinia Ignat

To cite this version:
Claudia-Lavinia Ignat. Keynote: From groupware to large-scale trustworthy distributed collaborative
systems. CRIWG 2018 - 24th International Conference on Collaboration and Technology, Sep 2018,
Costa de Caparica, Portugal. �hal-01875534�

https://hal.archives-ouvertes.fr/hal-01875534
https://hal.archives-ouvertes.fr

From groupware to large-scale
trustworthy distributed
collaborative systems

CRIWG 2018
September 5, 2018
 claudia.ignat@inria.fr

Claudia-Lavinia Ignat, Inria, France

Douglas Engelbart: Augmenting Human Intellect

2

NLS: Online System
https://archive.org/details/dougengelbartarchives

The Mother of all Demos, December 9, 1968

Groupware, early 1990s

3

§  « Computer-based systems that support groups of

people engaged in a common task (or goal) and

that provide an interface to a shared

environment. » [EGR91]

§  Lotus Notes, one of the first commercial groupware

allowing remote group collaboration

Groupware Time Space Matrix [J88]

4

Face to face interactions
decision rooms, single display
groupware, shared table, wall

displays, roomware, …

Continuous task
large public display, team

rooms, shift work groupware,
project management, …

Remote interactions
video conferencing, instance

messaging, chats/MUDs/virtual
worlds, shared screens, multi-

user editors , …

Communication +
coordination

email, bulletin boards, blogs,
asynchronous conferencing,
group calendars, workflow,
version control, wikis, …

Time/Space
Groupware

Matrix

same time
synchronous

different time
asynchronous

sa
m

e
pl

ac
e

co
-lo

ca
te

d
di

ffe
re

nt
 p

la
ce

re

m
ot

e

Groupware: supported solutions

5

§  Turn taking: allow only one active

participant at a time
•  e.g. RTCAL [SG88], SHARE [G90]

§  Locking: concurrent editing allowed only

if users lock and edit different objects
•  e.g. Colab [SFBKLS88]

§  Operational transformation
•  e.g. GROVE [EG89]

Google Drive

6

March 2006
 Writely

(Google Docs)

June 2006
 XL2Web

(Google Sheets)

September 2007
Google Slides

2012
 Google Drive

7

GROVE, 1989

“Isn’t it chaotic to all edit in the same

document, even the same paragraph,

at the same time?”

“Why would a group ever want to edit

in the same line of text at the same

time?” [EGR91]

Collaborative Systems:
from users to community of users

Collaborative Systems:
from users to community of users

8

2013: MOOC “Fundamentals of Online Education:

Planning and Applications” with 40.000 participants

2016: Nuit debout, more than 70 people edit a pad

2018: online CSCW PC meeting with 120 members

Collaborative Systems:
from users to community of users

9

Real-time

Wikipedia

10

SC
A

LA
B

IL
IT

Y

P
R

IV
A

C
Y

Limitations of Central Authority Systems

Peer-to-Peer Collaborative Systems

11

Collaboration Modes – Concurrent Changes

12

Collaboration Modes – Offline Work

13

conflicts

Collaboration Modes – Ad-hoc Collaboration

14

Research issues

How to maintain consistency of different copies in the

face of concurrent modifications?

How to evaluate the design of collaborative systems
and approaches?

How to secure collaboration data?

15

1

2

3

Research issues

How to maintain consistency of different copies in the

face of concurrent modifications?

How to evaluate the design of collaborative systems
and approaches?

How to secure collaboration data?

16

1

2

3

Optimistic Replication [SS05]

17

§  Trade-off between consistency and availability
•  Optimistic replication : allows replicas to diverge

§  Strong Eventual Consistency
•  Eventual delivery: An update executed at some correct

replica eventually executes at all correct replicas

•  Strong convergence: Correct replicas that have executed

the same updates have equivalent states

•  No consensus in background, no need to rollback

§  Intention preservation
•  « Effect of each operation should be observed on all

copies »

Operational transformation (OT) [EG89]

18

•  n copies of an object hosted at n sites

•  An object is modified by applying operations

•  Each operation is

•  generated at a site (local execution),

and applied immediately on the local copy

•  broadcasted to other sites

•  integrated at those sites (remote execution)

•  System is correct if when it is idle all copies are identical (SEC)

Operational transformation (OT)

19

•  General architecture with two main components:

•  An integration algorithm (diffusion, integration)

•  A set of transformation functions (conflict resolution)

•  Running example for textual document = sequence of characters

 concurency contrl

Site 1

op1=ins(7,r)

concurrency contorl

Site 2

concurency contrl

op2=ins(17,o)

concurrency control

op2=ins(17,o) op1=ins(7,r)

concurrency control

op2=ins(18,o)

concurrency contrl
 concurency control

•  Operations:
•  ins(p, c)
•  del(p)

T(ins(p1,c1), ins(p2,c2)) :-
 if (p1<p2) return ins(p1,c1)
 else return ins(p1+1,c1)
 endif

Operational transformation
Correctness [EG89]

(TP1) op1 ∘ T(op2, op1) ≣ op2 ∘ T(op1,op2)

T(op2: operation, op1: operation) = op’2

•  op1 and op2 concurrent, defined on a state S

•  op’2 same effects as op2, defined on S.op1

op1 op2

op’2 op’1

Site 1 Site 2

Operational transformation
Correctness [RNG96]

(TP2) T(op3, op1 ∘ T(op2, op1))= T(op3, op2 ∘ T(op1,op2))
Site 1 Site 2

op1 op2

op’2

op3

Site 3

op’3 op’’3

op’1

Operational transformation (OT)
Existing approaches

•  Two main families:

•  Transformation functions satisfying both TP1 and

TP2: SOCT2 [SCF97] + TTF [OUMI06]

•  Control algorithms avoiding (needs of) TP2: SOCT4

[VCFS00], Jupiter [NCDL95]

Operational transformation (OT)
Summary

•  Transforms non commuting operations to make them

commute

•  Genericity

•  Time complexity
•  Average: O(H c) H: #ops

•  Worst case: O(H2) c: avg. #conc. ops

•  Difficult to write correct transformation functions

•  State vectors used for detecting concurrency ⇒

scalability limitations

•  Not very suitable for large scale peer-to-peer
collaboration

Conflict-free Replicated Data Types (CRDT)
[SPBZ11]

•  Design operations to be commutative by construction

•  Abstract data types
•  Designed to be replicated at multiple sites
•  Any replica can be modified without coordination
•  State convergence is guaranteed

•  State-based and operation-based approaches

24

Conflict-free Replicated Data Types (CRDT)
State-based Replication

•  Algorithm
•  Periodically, replica at pi sends its current state to pj
•  Replica pj merges received state into its local state by

executing m
•  After receiving all updates (irrespective of order), each replica

will have same state

25

s1

s2

s3

s1.u(a) s

s2.u(b) s1

s2.m(s1) s2

s3.m(s2)

s1.m(s2)

s2

•  Merge operator:
•  Commutative: x • y = y • x

•  Associative: (x • y) • z = x • (y • z)

•  Idempotent : x • x = x

•  A semi-lattice is a Partial order ≤ set S with a least

upper bound (LUB), denoted ⊔
•  m = x ⊔ y is a LUB of { x, y } under ≤ if and only if

 ∀ mʹ′, x ≤ mʹ′ ∧ y ≤ mʹ′ ⇒ x ≤ m ∧ y ≤ m ∧ m ≤ mʹ′

•  It follows that ⊔ is commutative, associative and idempotent

26

Conflict-free Replicated Data Types (CRDT)
State-based Replication

Conflict-free Replicated Data Types (CRDT)
Convergent Replicated Data Type (CvRDT)

•  Example

27

 27

{5}

{5}

{5}

{5}

{5}

{5}

{5} U {3} = {3, 5}

{5} U {7} = {5, 7}

{3, 5} U {5, 7} = {3, 5, 7}

{5, 7} U {3, 5} = {3, 5, 7}

{5} U {3, 5} = {3, 5}

{3, 5} U {5, 7} = {3, 5, 7}

Conflict-free Replicated Data Types (CRDT)
Operation-based Replication

•  An update split into (t,u): t is a side-effect-free prepare-update
method and u is an effect-update method

•  Algorithm
• Updates delivered to all replicas
• Causally-ordered broadcast, every message delivered to
every node exactly once w.r.t. happen-before order

•  Commutativity holds for concurrent updates
28

s1

s2

s3

s1.t(a);s1.u(a’) s

s2.t(b);
s2.u(b’)

S2.u(a’)

s3.u(b’)

s1.u(b’)

b’

b’ a’

s3.u(a’)

Conflict-free Replicated Data Types (CRDT)
Commutative Replicated Data Type (CmRDT)

•  Example

 29

{5}

{5}

{5}

{5}

{5}

{5}

{5} U {3} = {3, 5}

{5} U {7} = {5, 7}

{3, 5} U {7} = {3, 5, 7}

{5, 7} U {3} = {3, 5, 7}

{5} U {3} = {3, 5}

{3, 5} U {7} = {3, 5, 7}

Conflict-free Replicated Data Types (CRDT)
CvRDT vs. CmRDT

•  Both approaches are equivalent
•  A state-based object can emulate an operation-based

object, and vice-versa

•  Operation-based:
•  More efficient since you only ship small updates
•  But require exactly once causally-ordered broadcast

•  State-based:
•  Only require reliable broadcast
•  Communication overhead of shipping the whole state

•  Delta State-based [ASB18]:
•  Small messages
•  Dissemination over unreliable communication channels

30

Consistency Maintenance
Conflict-free Replicated Data Types (CRDT)

31

•  Register

•  Last-Writer Wins

•  Multi-Value

•  Set

•  Grow-Only

•  2-Phase

•  Observed-Remove

•  Observed-Update-Remove

•  Map

•  Counter

•  Graph
•  Directed

•  Monotonic DAG

•  Edit graph

•  Sequence

[Just-Right Consistency] 25 [Just-Right Consistency]

SwiftCloud edge +cloud

26

Update, commit shared store locally
Availability + consistency: DC switch
Causal + transactional
3000+ client replicas

DC

DC

DC

C

C C

C

Transmit

partial
database

app
Process
request 
& store
update Transmit

Transmit

fail-over

full
database

Transmit

[Just-Right Consistency]

Antidote
SyncFree EU project
High performance, sharded, transactional, causal
Aims to scale to 100s of DCs

• Very modular
• Partial replication
• Small but safe metadata (vector clock)

In DC: strong consistency, physical clocks (Clock-SI)
Industrial apps: Virtual Wallet, SocialApp,

configuration management, FMK

27 [Just-Right Consistency]

(4) NMSI: strong, parallel

28

T1

T2

x

y

x?

Wait-Free
Queries

y?
T2
x?

Forward
Freshness

Mini. Commit.
Synch + Genuine

Partial Repl.

T3
y? x?

Non-
Monotonic
Snapshot

Read from causal snapshot
Scalability properties:

• Wait-Free Queries
• Forward Freshness
• Mini. Commitment Synchronisation
• Genuine Partial Replication

Conflict-free Replicated Data Types (CRDT)
(Text) Sequence [PMSL09] [WUM09]

•  Document = linear sequence of elements
• Each element has a unique identifier
• Identifier constant for the lifetime of the document
• Dense total order of identifiers consistent with element order:

• ∀ idx , idy: idx < idy ⇒ ∃ idz : idx < idz < idy

• Different approaches for generating identifiers:
• TreeDoc, Logoot, LogootSplit, …

32

Conflict-free Replicated Data Types (CRDT)
Logoot [WUM09]

<1,2,1> c

<1,2,2> o

<2,1,2> n

<3,1,3> c

<3,1,3><8,4,5> u

<3,2,5> r

<4,1,7> e

<4,1,7><9,2,6> n

<7,2,8> c

<9,1,7> y

<10,2,8>

<12,3,1> c

<12,3,1><6,5,1> o

<12,3,1><7,8,2> n

<12,3,1><7,8,2><12,3,5> t

<12,3,1><7,8,2><13,3,6> r

<12,3,1><7,8,2><14,3,7> l

ins(<3,2,5><13,1,7>, r)

ins(<12,3,1><7,8,2><13,3,6><7,2,9>, o)

•  Time complexity
Average: O(k log(n))
Worst case: O(H*log(H))

 H: #ops
 n: doc. size (non deleted chars.)
 k: avg. size of Logoot identifier

•  No need for concurrency

detection

•  Identifiers storage cost

•  New design for each
data type

•  Suitable for large-scale
collaboration

33

•  Logoot identifiers: <p1,s1,h1><p2,s2,h2> ⋅⋅⋅ <pk,sk,hk>

 pi integer

 si site identifier

 hi logical clock at site si

Conflict-free Replicated Data Types (CRDT)
LogootSplit [AMOI13]

1,1,[0,5] concur

1,1,5,2,1,[0,0] r

1,1, [6,15] ency contr

1,1,15,3,1,[0,0] o

1,1,[16,16] l

1,1,[0,16] concurency contrl

1,1,[0,5] concur

1,1,5,2,1,[0,0] r

1,1, [6,16] ency contrl

Insert r between “concur” and “ency contrl”

Insert o between “ency contr” and “l”

p1 … pn site_id clock begin end

Base
Interval

 LogootSplit identifiers

OT vs. operation-based CRDT

•  CRDT: more formalised approach

•  OT: more generic and guided
•  Generic concurrency control algorithm

•  Operation transformations specific to application

domain

•  CRDT: different solutions for concurrency handling for

different data types

•  CRDT: Metadata overhead

35

Delays in MUTE [NEOIC17] https://coedit.re/

36

Delays in GoogleDocs [DI16]

37

Research issues

How to maintain consistency of different copies in the

face of concurrent modifications?

How to evaluate the design of collaborative systems
and approaches?

How to secure collaboration data?

38

1

2

3

User Study: The effect of delay on users

•  Delays in seeing modifications of other users
•  Network delay

•  Time complexity of consistency maintenance algorithms

•  Types of architecture

•  How does delay influence group performance?

Thin client architecture Thick client architecture

39

Experiment design

•  20 groups of 4 students
•  Perform several collaborative editing tasks

•  A proofreading task

•  A sorting task

•  A note taking task

•  Use the provided collaborative editor (Etherpad) + chat

•  Each group experienced a certain delay (0, 4, 6, 8, 10 s)

•  Registration of user keyboard inputs

•  Video recording of user activities on desktop

40

Note-taking [IOFSC15]

Editing zone

Chat dialogue

Editing zone

Chat dialogue

Editing zone

Chat dialogue

Editing zone

Chat dialogue

Figure 2. Etherpad editor – each modification is highlighted with a color corresponding to the user
who performed it..

The participants ranged in age from 21 – 27. All participants used French in
their daily activities. An electronic announcement solicited participation. One of
the researchers organized interested participants into sets of 4 and scheduled the
session. All participants received a 10 Euro gift certificate for their participation.

2.2 Apparatus

The experiment was conducted using four GNU/Linux desktop computers in a
classroom setting. Participants were separated by partitions and could not directly
observe other team members while they worked, although typing activity was audi-
ble. The server running the Etherpad application was hosted on an Amazon Elastic
Compute Cloud (EC2) instance located in the US East (Northern Virginia) Region.
Each desktop ran the Mozilla Firefox web browser executing the Etherpad web
client application. Etherpad hosted the task stimuli and a Chat dialogue facility (see
Figure 2). User operations appeared color-coded in both the text and chat. Ether-
pad relies on a client-server architecture where each client/user edits a copy of the
shared document. When a user performed a modification it was immediately dis-
played on the local copy of the document and then sent to the server. The server
merged the change received from the user with other user changes and then trans-
mitted the updates to the other users. When a user edited a sequence of characters,
the first change on the character was immediately sent to the server, while the other
changes were sent at once only upon reception of an acknowledgement from the
server. With each change sent to the server, it created a new version of the doc-
ument. Gstreamer software enabled the video recording of user activity. We also
instrumented Etherpad to register all user keyboard inputs on the client side and to
introduce delays on the server-side. The editor window displayed 50 lines of text.
Users editing above the field of view of a collaborator could cause the lines within
the collaborators’ view to “jump” inexplicably. Such a property is consistent with

41

Delay reduces Group Performance

•  Delay increases error rate and redundancy

42

0.20

0.25

0.30

0.35

0 2 4 6 8 10
Delay Condition (sec)

Er
ro

r R
at

e

Error Rate

5.0

7.5

10.0

12.5

15.0

0 2 4 6 8 10
Delay Condition (sec)

R
ed

un
da

nc
ie

s

Redundancy

Delay reduces Group Performance

•  Delay decreases proportion of keywords

43

0.10

0.12

0.14

0 2 4 6 8 10
Delay Condition (sec)

Ke
yw

or
d

Pr
op

or
tio

n

Keyword Proportion

Design implications

•  Reduce the delay by the choice of the architecture

and synchronisation algorithms

•  Make users aware of existing delays such that they

can compensate for the delay by coordination

strategies

•  Analyse real collaboration traces to understand

collaboration patterns and behavior [NI18]

44

Research issues

How to maintain consistency of different copies in the

face of concurrent modifications?

How to evaluate the design of collaborative systems
and approaches?

How to secure collaboration data?

45

1

2

3

Security in peer-to-peer collaboration

46

§  How to learn and verify the other party’s key ?

•  Trust-based access control

Trust establishment

•  How to learn and verify the other party’s key before

establish a secure communication channel ?
•  Out of band trust establishment

•  Trust establishment by the provider

47

Out of band trust establishment

•  Unintuitive, error-prone

48

Alice Bob

Bob, what is
a public key?

Alice, is
FGY345

your public
key?

Trust establishment by the provider
Centralized key server

•  Clients query providers for keys of other users

•  Users have to trust provider, e.g. WhatsApp

49

Alice Bob

Client A

Secure
Message
Provider

Client B

1 2
Register
Alice with PKA

Alice’s key
PK’A

Transparent log

50

Key
Server

Alice Bob

PK_A PK_B

Register Register

Query

Users

Certificate transparency[L14]/CONIKS [MBBFF15]

51

Alice Key server (Identity Provider)

Auditors

Root
,c,i,n

gossip

Alice

•  Gossiping
•  No client incentive

•  Subject to Sybil and

Eclipse attacks

Trusternity: Blockchain-based Auditing of
Transparent Log Servers [NEIP18]

Alice

Blk1 Blk2 Blk3

Loria.fr

Google.com

Microsoft.com

Trust-based access control

•  Dynamic trust values among users

•  How to define an access control based on trust and
how to compute trust based on collaborative
experience?

53

Trust computation

•  Respect/Violation of contracts
•  Contracts in collaborative editing (share, edit)

•  Reporting of fake news in Facebook

•  Quality of user contributions

contract: no

contract:
may share

contract: should not share

contract:
may share
should not
modify

A

D

B

C

A"insert(obj)"
A"insert(obj),
A.>B"should,not,share,

A"insert(obj),
A.>D"may,share,
A.>D"should,not,modify,
A.>B"should,not,share,
B.>D"may,share,
D"update(obj)"

A"insert(obj),
A.>D"may,share,
A6>D,should,not,modify,
A.>B"should,not,share,
B.>D"may,share,
D"update(obj),

B cheated B and D cheated

54

Validation of trust-based collaboration

•  Using game theory (trust game) [BDM95]

55

Balance: 10€ Balance: 10€ User1 sends 8€ to User2

User2 receives 3x8€=24€

 New balance: 2€ New balance: 34€

User1 User2

User2 sends back 17€ to User1

 Final balance: 19€ Final balance: 17€

Validation of trust-based collaboration

•  Proposal of a trust metric reflecting user behavior [DI16]

•  User studies on various trust game variations
•  Trust can replace knowing the identity of collaborators

•  People take into account the trust value of the partner in

their future collaboration

56

Large-scale trustworthy distributed collaborative
systems

•  New uses and new practices due to large scale

adoption

•  New challenges
•  Consistency of replicated data

•  User studies

•  Trust and Security

57

References

58

§  [EGR91] Groupware: Some issues and experiences, C.A. Ellis, S. J.

Gibbs and G. Rein, Communications of the ACM,1991

§  [J88] GroupWare: Computer Support for Business Teams. R.

Johansen. The Free Press, New York, NY, USA, 1988.

§  [SG88] Computer-based real-time conferencing systems. Sunil Sarin

and Irene Greif. Morgan Kaufmann Publishers Inc., 1988, page

397−422.

§  [G90] Sharing views and interactions with single-user applications.

Saul Greenberg. ACM SIGOIS and IEEE CS TC-OA conference on

Office information systems,1990.

§  [SFBKLS88] Beyond the chalkboard: computer support for

collaboration and problem solving in meetings. Mark Stefik, Gregg

Foster, Daniel G. Bobrow, Kenneth Kahn, Stan Lanning, and Lucy

Suchman. Morgan Kaufmann Publishers Inc., 1988, page 335−366

References

59

§  [EG89] Concurrency Control in GroupWare Systems, C.A. Ellis and S.J.

Gibbs. ACM SIGMOD Record 18(2), 1989.

§  [SS05] Optimistic replication. Y. Saito and M. Shapiro. ACM

Computing Surveys. 37(1), 2005.

§  [RNG96] An integrating, transformation-oriented approach to

concurrency control and undo in group editors, M. Ressel, D.

Nitsche-Ruhland, and R. Gunzenhäuser. CSCW 1996.

§  [OUMI06] Tombstone transformation functions for ensuring

consistency in collaborative editing systems, G. Oster, P. Urso, P.

Molli, and A. Imine. CollaborateCom 2006.

§  [SCF97] Serialization of concurrent operations in a distributed

collaborative environment, M. Suleiman, M. Cart, and J. Ferrié.

GROUP 1997.

References

60

§  [VCFS00] Copies convergence in a distributed real-time

collaborative environment. N. Vidot, M. Cart, J. Ferrié, and M.

Suleiman. CSCW 2000.

§  [NCDL95] High-latency, low-bandwidth windowing in the Jupiter

collaboration system, D. A. Nichols, P. Curtis, M. Dixon, and J.

Lamping. UIST 1995.

§  [SPBZ11] Conflict-free Replicated Data Types, M. Shapiro, N.

Preguica, C. Baquero, M. Zawirski. Research Report, RR-7687, INRIA,

2011

§  [PMSL09] A commutative replicated data type for cooperative

editing, N. Preguica, M. Joan, M. Shapiro, and M. Letia. ICDCS 2009.

§  [WUM09] Logoot : a Scalable Optimistic Replication Algorithm for

Collaborative Editing on P2P Networks, S. Weiss, P. Urso and P. Molli.

ICDCS 2009.

References

61

§  [AMOI13] Supporting Adaptable Granularity of Changes for

Massive Scale Collaborative Editing, L. André, S. Martin and G. Oster

C.-L. Ignat. CollaborateCom 2013.

§  [ASB18] Delta state replicated data types. Paulo Sérgio Almeida, Ali

Shoker, Carlos Baquero. Journal of Parallel and Distributed

Computing, 2018

§  [NEOIC17] MUTE: A Peer-to-Peer Web-based Real-time Collaborative

Editor. Matthieu Nicolas, Victorien Elvinger, Gérald Oster, Claudia-

Lavinia Ignat, François Charoy. ECSCW, 2017

§  [DI16] Performance of real-time collaborative editors at large scale:

User perspective. Quang Vinh Dang, Claudia-Lavinia Ignat.

Networking 2016

References

62

§  [IOFSC15] How Do User Groups Cope with Delay in Real-Time

Collaborative Note Taking. Claudia-Lavinia Ignat, Gérald Oster,

Olivia Fox, Valerie L. Shalin, François Charoy. ECSCW 2015
§  [NI18] An Analysis of Merge Conflicts and Resolutions in Git-Based

Open Source Projects. Hoai Le Nguyen, Claudia-Lavinia Ignat.

Journal of Computer Supported Cooperative Work, 2018

§  [MBBFF15] CONIKS: Bringing key transparency to end users. M.

Melara, A. Blankstein, J. Bonneau, E. W. Felten, M. J. Freedman.

USENIX Security. 2015.

§  [L14] Certificate transparency. B. Laurie. Queue 12(8), 2014

§  [NEIP18] Blockchain-Based Auditing of Transparent Log Servers.

Hoang-Long Nguyen, Jean-Philippe Eisenbarth, Claudia-Lavinia

Ignat, Olivier Perrin. DBSec 2018

References

63

§  [BDM95] Trust, social history, and reciprocity. J. Berg, J. Dickhaut, and

K. McCabe, Games and Econ. Behav.1995.

§  [DI16] Computational Trust Model for Repeated Trust Games. Quang

Vinh Dang, Claudia-Lavinia Ignat. Trustcom 2016

COAST Team

http://team.inria.fr/coast/

Thank you

