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Abstract: The harmonic influence is a measure of the importance of nodes in social networks,
which can be approximately computed by a distributed message-passing algorithm. In this
extended abstract we look at two open questions about this algorithm. How does it perform on
real social networks, which have complex topologies structured in communities? How does it
perform when the network topology changes while the algorithm is running? We answer these
two questions by numerical experiments on a Facebook ego network and on synthetic networks,
respectively. We find out that communities can introduce artefacts in the final approximation
and cause the algorithm to overestimate the importance of “local leaders” within communities.
We also observe that the algorithm is able to adapt smoothly to changes in the topology.
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1. HARMONIC INFLUENCE AND MESSAGE
PASSING

In the study of social networks and dynamical processes
therein, it is important to identify the most influential
leaders. Several definitions have been used to evaluate
nodes as potential leaders, e.g. Lin et al. (2014); Fitch and
Leonard (2016); Van Mieghem et al. (2017). The harmonic
influence is a definition motivated by a linear opinion
dynamics model with stubborn agents. It was introduced
in Vassio et al. (2014) and implicitly used in Acemoglu
et al. (2013); Yildiz et al. (2013). We recall its equivalent
definition given by Rossi and Frasca (2018). Consider a
simple weighted graph 1 G = (I, E,C) with node set
I = {f, 1, 2, . . . , n} where f is a special node called field.
The edge set E contains unordered pairs of nodes and the
non-negative weight matrix C ∈ RI×I

+ is such that Cij

and Cji are both non-zero if and only if {i, j} ∈ E. We
also introduce the diagonal matrix D = Diag(C1) and the
Laplacian matrix L = D − C . We assume matrix C to
be symmetric and graph G to be connected. Given a node
` 6= f where ` stands for leader, let R` := I \ {f, `} be the
set of remaining nodes and consider the discrete Dirichlet
problem {

(Lx)R` = 0
x` = 1
xf = 0 .

(1)

1 Vectors are denoted with boldface letters and matrices with capital
letters. The all-zero and all-one vectors are denoted by 0 and 1,
respectively. A graph is said to be connected if for any pair of nodes
i, j there exists a sequence of adjacent edges that joins them.

The harmonic influence of ` is the sum of entries of the
vector x solution of (1), that is,

H(`) := 1>x . (2)

Then, the computation of the harmonic influence of the n
nodes in I \ {f} requires the solution of n linear systems.
A naive approach would then require global knowledge of
the graph and would not exploit apparent redundancies in
the computations. To overcome these issues, Vassio et al.
(2014) proposed the following distributed Message Passing
Algorithm (MPA) that computes the influences of all nodes
at the same time.

Let t ∈ {0, 1, . . .} be an iteration counter and let the set
Ni = {j ∈ I : {i, j} ∈ E} contain the neighbors of i in G.
At each step, every node i sends to all its neighbors j two
messages:

W i→j(t) ∈ [0, 1] , Hi→j(t) ∈ [0,+∞) .

The field node f sends null messages:

W f→j(t) = 0 , Hf→j(t) = 0 , ∀j ∈ Nf , ∀t ≥ 0 ,

whereas any other node i 6= f sends the initial messages:

W i→j(0) = 1 , Hi→j(0) = 1 , ∀j ∈ Ni (3)

and then synchronously updates the messages sent to his
neighbor j following the rules:

W i→j(t + 1) =
(

1 +
∑

k∈Nj
i

Cik

Cij

(
1−W k→i(t)

))−1
(4)

Hi→j(t + 1) = 1 +
∑

k∈Nj
i
W k→i(t)Hk→i(t) , (5)

where N j
i := Ni \{j} is the set of neighbors of i except the

one to which the message is sent. At any time, any node `
in I \ {f} can compute an approximation of H(`) by

H`(t) = 1 +
∑

i∈N`
W i→`(t)Hi→`(t) .



The MPA is exact on trees, where it converges in a number
of steps equal to the diameter of the graph. On general
graphs, the algorithm converges asymptotically as proved
in Rossi and Frasca (2016, 2018). Based on extended
simulations on random graphs, the typical convergence
time of the algorithm is conjectured to be O(m/n), where
m is the number of edges. A mean-field argument by
Rossi and Frasca (2017) corroborates this conjecture for
homogeneous networks. In general, the limit values over-
estimate the exact values of the harmonic influences (that
is, H`(∞) ≥ H(`)), but the algorithm provides a ranking
between the nodes that, on random graphs, is in very good
agreement with the exact ranking.

In Section 2, we look at the correctness and convergence
time for real social networks, which have a pronounced
community structure. While convergence is guaranteed by
the theoretical results, it not obvious whether that the
convergence time follows the conjecture and whether the
ranking remains meaningful. In Section 3, we extend the
algorithm to networks that change topology while the
MPA computation unfolds. For this case, convergence is
not guaranteed by the available theory.

2. THE EFFECTS OF COMMUNITY STRUCTURE

Real social networks have complex topologies of inter-
connections that are often organized in communities. On
one side, the degree distribution of real networks (i.e. the
distribution of the number of interconnection of each node)
is typically broad, with relatively few nodes of high degree
and many of low degree. On the other side, nodes can be
grouped in communities, such that most of the edges are
concentrated within each community Fortunato (2010). In
this section, we test the MPA on a real social network
with community structure, extracted from the dataset 2

collected by Leskovec and Mcauley (2012).

The dataset contains a collection of ego networks from
the Facebook social graph. Let F = (U,A) be the full un-
weighed Facebook social graph at the data collection time,
where U is the user set and A the edge set representing
the acquaintance relations. Given a user u ∈ U , the set Nu

is the set of Facebook friends of u. The ego network of u
is the subgraph of F induced by Nu, i.e(

Nu,
{
{v, w} ∈ A : v, w ∈ Nu

})
,

and does not contain u. From the dataset we extracted one
ego network with 885 nodes and 23960 edges. We identified
the communities of the ego network with the “Louvain
algorithm” by Blondel et al. (2008); in particular, we used
the implementation 3 by Rubinov and Sporns (2010) with
default parameters. We found three prominent communi-
ties with 326, 434 and 125 nodes, see Fig. 1.

From the ego network we build two weighted graphs for
the simulations. Graph G1 = (I1, E1, C1) contains all the
ego network augmented by the field node. The node set is
I1 = {f, 1, . . . , 885} and the edge set E1 contains all the
23960 edges of the ego network. The edge set also include
every edge of the form {f, i} with i ∈ {1, . . . , 885}: we can
interpret the field node f as the original user u and these

2 http://snap.stanford.edu/data/egonets-Facebook.html
3 https://sites.google.com/site/bctnet
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Fig. 1. The adjacency matrix of the selected ego network.
The rows and columns are reordered according to the
community structure, showing three prominent com-
munities with 326, 434 and 125 nodes, respectively. A
closer inspection reveals that within each communities
nodes with high and low degree coexist.

edges as those between u and his friends in Nu. Finally,
the entries of the matrix C1 ∈ RI1×I1

+ are{
(C1)if = (C1)fi = 0.040 for every i ∈ {1, . . . , 885}
(C1)ij = 1 if i, j 6= f and {i, j} ∈ E1

(C1)ij = 0 if {i, j} /∈ E1

Graph G2 = (I2, E2, C2) is the subgraph of G1 induced
by I2 = {f, 327, . . . , 760}. It is restricted to the second
community of the ego network, augmented with the field
node and his edges. The edge set E2 contains 16253 edges
between the 434 non-field nodes; the matrix C2 follows
accordingly.

We first discuss the simulation on graph G2, with a single
community but with nodes of very different degree. Fig. 2
represents the convergence of the MPA: the W i→j(t) mes-
sages take about 20 steps to converge while the estimates
H`(t) of the harmonic influence are very slow, taking
almost 49000 iterations. Fig. 3 compares the estimates
H`(∞) with the exact values H(`) computed with the
definition. The MPA algorithm largely overestimates the
harmonic influence, but the ranking remains well pre-
served.

The simulation on graph G1 presents interesting differ-
ences. Fig. 4 represents the convergence of the algorithm.
The W i→j messages take about 15 steps to converge while
H`(t) take about 34000 steps. Since graph G1 is larger
than G2, but less dense, this moderate decrease in the con-
vergence time is consistent with the O(m/n) conjecture.
Fig. 5 compares the estimates of the harmonic influence
G1 with their exact counterpart; the crosses are colored ac-
cording to the community of the nodes. The black crosses
correspond to nodes in the (largest) second community,
the blue crosses to nodes in the first community and the
red ones to nodes in the third (and smallest) community.
The community structure produces an interesting artefact,
which is made apparent by the alignment of the crosses:
the MPA assigns excess influence to leaders within smaller
communities, compared to leaders of larger communities.
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Fig. 2. The convergence of the MPA on the network G2.
The solid black line is the distance to convergence of
the estimates of the harmonic influence obtained by
the MPA. The dashed magenta line is the distance to
convergence of the messages W i→j(t).
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Fig. 3. The asymptotic values H`(∞) of the harmonic in-
fluence computed by the MPA against the correspond-
ing exact values H(`) computed by the definition for
graph G2. All crosses are above the 45◦ line.
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Fig. 4. The convergence of the MPA on the network G1.
The solid black line is the distance to convergence of
the estimates of the harmonic influence obtained by
the MPA. The dashed magenta line is the distance to
convergence of the messages W i→j(t).
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Fig. 5. The asymptotic values H`(∞) of the harmonic
influence computed by the MPA against the corre-
sponding exact values H(`) computed by the defini-
tion for graph G1. The different colors distinguish the
crosses corresponding to nodes of the three different
communities. All crosses are above the 45◦ line.

3. THE EFFECTS OF NETWORK CHANGES

The structure of the MPA makes it easily adaptable to
networks that change while the distributed computations
are unfolding. New nodes and links may appear while
other might disappear: if these changes happen without
notice, the MPA cannot be restarted from the proper
initial condition (3). For the sake of this discussion, we
assume that the network changes only once, after the
MPA has reached convergence on the initial network.
We may interpret the dynamics that follows the change
as an MPA running on the new network, but starting
from with a different initialization. The result in Rossi
and Frasca (2018) does not guarantee the convergence,
because its proof uses a monotonicity property of the
dynamics of W i→j(t) that is only valid for the standard
initialization (3). Moreover, it is not clear whether the
MPA would carry some memory of the initial network.

In order to test these two facts, we construct a pair of
small networks with partly similar topologies but very
different harmonic influence profiles. The networks are
G3 = (I3, E3, C3) and G4 = (I4, E4, C4), with I3 = I4 =
{f, 1, . . . , 50} , while the edge sets E3 and E4 have the form
of a “wheel” with additional connections. Both sets contain
all the possible edges involving the field node, i.e. {f, i} for
i ∈ {1, . . . , 50}, and the cycle

{{1, 2}, {2, 3}, . . . , {49, 50}, {1, 50}}
connecting among all non-field nodes. Both sets also con-
tain some extra edges of the form {i, j} with i /∈ {f, 1, 26}
and j 6= f: these are included with probability p = 0.01.
Up to here, sets E3 and E4 are identical. To distinguish
the networks, we include some additional edges {1, j} in
E3 and some additional edges {26, j} in E4: we pick these

edges with probability q = 0.25. The matrix C3 ∈ RI3×I3
+

has entries{
(C3)if = (C3)fi = 0.040 for every i ∈ {1, . . . , 50}
(C3)ij = 1 if i, j 6= f and {i, j} ∈ E3

(C3)ij = 0 if {i, j} /∈ E1

The entries of C4 are chosen similarly. The MPA starts
on the network G3 and, after a sufficiently large time T ,



0 10 20 30 40 50
10

15

20

25

30

35

40

Fig. 6. The harmonic influence H(`) of the nodes of
G3 compared with the harmonic influence of the
corresponding node in G4.

continues on the network G4. We use a bar to denote mes-
sages and estimates in this scenario. During the network
change, the messages W̄ i→j(T ) and H̄i→j(T ) correspond-
ing to edges in E3 ∩ E4 retain their values, while the
messages corresponding to missing edges in E3 \ E4 are
simply dropped. The messages corresponding to new edges
{i, j} ∈ E4 \ E3 are initialized by

W̄ i→j(T ) = 1 , H̄i→j(T ) = 1 where i 6= f .

We have repeated the simulation multiple times finding
consistent results; we discuss one of the outcomes in
what follows. The exact profiles of the harmonic influence
are compared in Fig. 6. The most influential nodes are
node 1 in G3 and node 26 in G4; their influences change
significantly between the two graphs. Some other nodes
hold very similar influences in G3 and G4, e.g. nodes from
28 to 34.

We compare the convergence and estimates of the MPA on
the changing scenario, with the convergence and estimate
of the MPA started directly on G4. The MPA on the
changing network converges and requires less additional
iterations (after T ) to converge than the MPA on G4: see
Fig. 7. The convergence values W̄ i→j(∞) and H̄`(∞) on
the changing network coincide exactly with those obtained
directly on G4. This result led us to conclude that the
convergence values only depend on the final topology.

In conclusion, the MPA appears to be able to adapt
smoothly to unforeseen changes in the network topology.
Mathematically, we conjecture that the MPA has a unique
equilibrium and converges to it from initial conditions
that are more general than the standard ones in (3).
While giving a full proof of this conjecture remains an
open problem, we have so far verified that the equilibrium
W i→j(∞) is locally asymptotically stable.
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