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Abstract

This thesis presents a complete framework for 3D shape reconstruction using
inertial andmagnetic sensors. When placed onto a shape, these sensors provide
local surface orientations along a curve network on the shape, but their absolute
position in the world space is unknown. The challenges with this type of 3D ac-
quisition are threefold. First, sensor measurements are noisy and inconsistent.
Second, since positions are unknown, the acquired curve network has to be re-
constructed from orientations. Finally, the smooth surface needs to be inferred
from a collection of curves with normals. To compute the shape from measured
data, our main insight is to formulate the reconstruction as a set of optimiza-
tion problems. Using discrete representations, these optimization problems are
resolved e ciently and at interactive time rates.
Wepresent twomain contributions. First, we introduce a novelmethod for creat-
ing well-connected networks with cell-complex topology using only orientation
and distance measurements and a set of user-de ned constraints. By working
directly with orientations, our method robustly resolves problems arising from
data inconsistency and sensor noise. Our approach is driven by a simple prin-
ciple mostly overlooked in previous works: at each intersection in a curve net-
work, the positions and the normals of two intersecting curves have to coincide.
Second, we address the problem of surfacing a closed 3D curve network with
given surface normals. Thanks to the normal vector input, the patch- nding
problem can be solved unambiguously and an initial piecewise smooth triangle
mesh is computed. The input normals are propagated throughout themesh. To-
gether with the initial mesh, the propagated normals are used to estimate mean
curvature vectors. We then compute the nal mesh by combining the standard
Laplacian-based variational methods with the curvature information extracted
from the input normals. The normal input increases shape delity and allows
to achieve globally smooth and visually pleasing shapes.
Previous approaches used static devices placed along a network with xed con-
nectivity between the sensors (ribbon, grid). We explore a new dynamic setup,
which uses a single mobile node of sensors. As a consequence, a dense set of
data can be acquired along an arbitrary smooth curve network on a surface.
The proposed framework was tested on real-world data acquired using two de-
vices equipped with mobile sensors. A quantitative evaluation was performed
by computing the error of reconstruction for fabricated surfaces with known
ground truth. Even for complex shapes, the mean error remains around 1%.

keywords: 3D shape reconstruction — inertial and magnetic sensors — curve net-
works — smooth surfaces — variational modeling — mesh processing





Résumé

Cette thèse porte sur le développement de méthodes pour la reconstruction de
formes 3D à l’aide de capteurs inertiels et magnétiques. Lorsqu’ils sont placés
sur une forme, ces capteurs fournissent des orientations locales de surface mais
leur position absolue dans l’espace 3D est inconnue. Les dispositifs que nous
considérons dans cette thèse produisent des orientations locales de surface le
long d’un réseau de courbes. Reconstruire des formes 3D à l’aide de telles don-
nées pose trois types de dé s. Tout d’abord, les mesures des capteurs sont
bruitées et incohérentes. Deuxièmement, comme les positions sont inconnues,
le réseau de courbes acquis doit être reconstruit à partir des orientations. En n,
une fois le réseau de courbes reconstruit, il est nécessaire de calculer une surface
lisse interpolant ce réseau de courbes et les orientations associées. Pour relever
ces dé s, on formule les di érentes étapes de reconstruction comme un ensem-
ble de problèmes d’optimisation. En utilisant des représentations discrètes, ces
problèmes sont résolus e cacement et interactivement.
Nous présentons deux contributions principales. Tout d’abord, nous intro-
duisons une méthode produisant un réseau de courbes lisses et cohérentes en
utilisant les mesures d’orientation et de distance, ainsi qu’un ensemble de con-
traintes topologiques fournies par l’utilisateur. Notre méthode se base notam-
ment sur une procédure de lissage des orientations motivée par un principe
simple: les positions et les normales des courbes doivent coïncider en chaque
intersection d’un réseau.
Une fois le réseau de courbes reconstruit, nous proposons une méthode perme-
ttant de calculer une surface lisse interpolant ce réseau de courbes, ainsi que les
orientations associées. Cette méthode a trois étapes. Tout d’abord grâce aux
orientations, les cycles de courbes entourant les patchs surfaciques sont déter-
minés sans ambiguïté. Ensuite les orientations connues le long des courbes
sont propagées à travers le maillage initial et utilisées pour estimer la cour-
bure moyenne. En n le maillage nal est calculé par une méthode basée sur
le Laplacien et utilisant l’information de courbure. Les orientations connues sur
le réseau de courbes permettent d’obtenir des maillages lisses et de diminuer les
erreurs de reconstruction.
Les approches précédentes utilisaient des dispositifs statiques placés le long
d’un réseau de connectivité xe entre les capteurs (ruban, grille). Nous ex-
plorons dans cette thèse une nouvelle con guration dynamique, consistant à
déplacer un dispositif ponctuel sur la surface. En conséquence, il est possible
d’acquérir des données le long d’un réseau arbitraire de courbes lisses sur une
surface. Lesméthodes proposées dans cette thèse ont été testées sur des données
réelles acquises avec ces dispositifsmobiles. Des surfaces physiques fabriquées à
partir demodèles numériques nous ont permis de faire une évaluation quantita-
tive en calculant l’erreur de reconstruction entre la vraie surface et notre modèle
reconstruit. Même pour des formes complexes, l’erreur moyenne reste autour
de 1%.

mots clés: reconstruction des formes 3D — capteurs inertiels et magnétiques —
réseaux de courbes — surfaces lisses — modélisation variationnelle — traitement de
maillages
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1
Introduction

W 3D - .
Recent research enabled novel techniques for 3D acquisition of physical objects
based on inertial sensors (accelerometers, gyroscopes) and magnetic sensors (mag-
netometers). Today, these techniques already serve as an alternative to traditional
acquisition methods, forming the basis for a recently launched start-up [Morpho-
sense].

Most state-of-the-art methods in sensor shape reconstruction focus on a static setup,
in which a xed array of sensors is placed on the surface of the scanned object. In
this thesis, we explore a dynamic setup – a xed array of static sensors is replaced by
a single moving sensor node which acts as a virtual sensor network. Such dynamic
setup is versatile and free of assumptions that would considerably limit topology
and geometry of the scanned shape.

Using new kinds of acquisition devices, we propose novel algorithms for recon-
struction of scanned curves and surfaces. Our shape-from-sensors framework is de-
signed for use with dynamic devices. Nevertheless, the proposed algorithms are
backed by rigorous mathematical formulations and are directly extensible to data
coming from static devices.

1



2 1 Introduction

In the dynamic setup, we suppose the scanned object is rigid, i.e. it is not being
deformed during acquisition – otherwise, the dynamic setup makes no sense. All
the algorithms are formulated with this hypothesis in mind, and we do not explore
what happens when the object deforms over time.
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Figure 1.1: Shape from sensors in the taxonomy of 3D acquisition techniques [Cur97;
CS00; Rus16; Wim16].

1.1 Shape acquisition

Physical properties of real-world objects (shape, color, texture) are acquired us-
ing 3D scanners. This umbrella term encompasses a multitude of devices, rang-
ing from coordinate measuring machines (CMMs) to magnetic resonance imaging
(MRI). 3D reconstruction has numerous applications, for instance digitization of
cultural heritage [Lev+03; Tau08; Ike+07; Stanford3D], medical scanning [Bau+16;
ABP16], monitoring of large structures (e.g. buildings or bridges) [Sag+16; Mor-
phosense], and real-time geometry reconstruction for augmented/mixed/virtual
reality [Dou+16; Ort+16; New+11; Guo+17; Tka+17]. See the examples on p. 4.

Most 3D scanners used in vision and graphics are optical. Optical scanners use data
from optical sensors to measure shapes, and typically employ a set of cameras, pro-
jectors and lasers [Roc+01]. A particular con guration of scanner’s components is
tightly linkedwith the scanning technique used for inferring the depth information.
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See Fig. 1.1 for the taxonomy of scanning techniques and Fig. 1.2 for an example of
a structured light scanner.

Regardless of which device setup and acquisition technique are used, the output of
the scanning process is either a point cloud or a range image – the latter is a height
function (a set of depth values) sampled over a regular lattice (typically Euclidean
or cylindrical). Data processing pipeline is similar in both cases. First, multiple
scans taken from di erent directions and/or with varying object orientation need
to be aligned or registered. The registration can be done semi-manually, using a set of
markers (Fig. 1.2); or automatically, via a registration algorithm such as the iterative
closest point (ICP) [BM92]. Second, reconstruction algorithms are applied on the
registered data to compute the nal shape. For range images, common reconstruc-
tion algorithms are the zippering [TL94] and the volumetric range image processing
(VRIP) [CL96]. Poisson surface reconstruction [KBH06; KH13] is commonly used
with point clouds. For a detailed comparison of point-cloud-based algorithms, see
the recent survey of Berger et al. [Ber+14].

With rise of a ordable devices such as Kinect [New+11], shape acquisition became
ubiquitous in recent years (Figs. 1.3 and 1.4). Researchers now focus on the devel-
opment of online calibration and reconstruction methods using data from RGB or
RGB-D cameras [Guo+17; Tka+17]. Even smartphones are starting to act as 3D scan-
ners, making shape acquisition more accessible than ever before (Fig. 1.5) [Tan+13;
Mur+16].

Still, there is no universal 3D scanner suitable for every application. The choice
of a device is in uenced by the concrete application in mind, which explains the
diversity of shape acquisition devices and techniques (Fig. 1.1). New kinds of ac-
quisition devices [Abe+17] and surface reconstruction methods [BL17; Sch+17] are
constantly emerging.

1.1.1 Issues of optical scanners

Though widely used, optical 3D scanners are not a universal tool – there are situa-
tions inwhich these devices cannot be used. This section summarizes common lim-
itations, grouped into three categories – environment, object, and deformation.

Environment. Data measured by optical sensors strongly depend on the environ-
ment in which they are captured. First, appropriate light conditions are crucial for
a correct acquisition. Excluding specialized scanners such as LiDAR, most optical
devices are limited to indoor acquisition with a controlled lighting. Furthermore,
since a scanner needs to be controlled by a human operator, traditional scanners do
not enable acquisition in hostile environments: high altitudes, underground, dan-
gerous places. Examples of acquisition in hostile environments include structural
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Figure 1.2: Acquisition of a car body using a portable handheld scanner. The scan-
ner uses active stereo and a laser cross to reconstruct the depth. Indi-
vidual scans are registered via manually-placed markers – white dots
on the car body. Image from [Creaform].

Figure 1.3: Real-time scene reconstruction using a single RGB-D camera. Image
from [Guo+17].

Figure 1.4: Personalized anatomy model computed using medical imaging data
(MRI/CT scans). Image from [Bau+16].

Figure 1.5: Reconstruction of a Shakyamuni Buddha statue (height: 1.6 meters) us-
ing a smartphone. Image from [Tan+13].
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(a) ©pgasston@ ickr (b) ©pasfam@ ickr (c) Image from [Abe+17].

Figure 1.6: Issues of optical scanners. (a-b) Traditional 3D scanning methods can-
not be used with large, inaccessible, moving and/or deforming objects.
(c) Optical scanner reconstruction of a self-occluding object with high
genus fails to recover the interior part.

health monitoring of a wind turbine (Fig. 1.6a) or leak detection in underground
pipes [Sag+16].

Object. Optical scanners do not scale well. Small objects are not di cult to acquire,
but the acquisition gets more complicated and time-consuming with increasing
object size. Furthermore, there are limitations on materials that can be scanned.
Di use materials work well, specular and transparent materials are challenging
or even impossible to handle. Problems due to self-occlusions are minimized by
scanning the object from various angles, but often cannot be resolved completely
(Fig. 1.6c).

Deformation. Though some optical systems are capable of reconstructing deforming
and non-rigid geometry (Fig. 1.3), deformation tracking remains a challenging task.
For an example, consider the problem of reconstructing the surface of a sail moving
and deforming in the wind (Fig. 1.6b). Due to many self-occlusions and varying
lighting, this problem is unsolvable using optical methods. It requires a di erent
approach – for instance, by instrumenting the fabric of the sail with sensors.

To overcome the limitations of traditional 3D scanners, one typically needs to use
alternative shape acquisition tools (Fig. 1.1). One such alternative, which we intro-
duce in the following section, is to exploit orientation data from inertial and mag-
netic sensors.

1.2 Shape from sensors

This section describes how inertial and magnetic sensors can be used for 3D acqui-
sition of shapes.

Principle. Attached to an object, inertial and magnetic sensors measure vectors in
a local coordinate frame. Accelerometer – when stationary – measures the direction
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Magnetic North Pole

Geographic North Pole

Figure 1.7: Earth’s gravitational eld (left) and magnetic eld (right).

(a) Image from [ESA17]. (b) Image from [Mau10].

Figure 1.8: (a) Variation in the strength of the gravitational eld and (b) the direc-
tion of the magnetic eld, data from 2010.

eacc of acceleration due to Earth’s gravitational eld, which is the vector pointing
straight upwards (Fig. 1.7 left). Magnetometer positioned far enough from any ferro-
magnetic object measures the direction emag of the geomagnetic eld, which is the
vector pointing towards the magnetic North pole (Fig. 1.7 right). Gyroscope mea-
sures object’s angular velocity.

Note that the vectors eacc and emag depend on the location and the time of measure-
ment. The geomagnetic eld and the gravitational eld vary around the Earth due
to various anomalies and constant movement of magnetic poles.1

Fig. 1.8a shows the variation in the gravitational eld visualized as a geoid. Using
this technique, the magnitude of the relative deviation is visualized as a colored
height eld over Earth’s surface. For practical purposes, gravitational variations
are negligible, and the gravity vector is assumed to be constant.

Fig. 1.8b shows how the direction of the magnetic eld varies over the surface of
the Earth. These variations are not negligible, and data measured by magnetome-
ters have to be calibrated in order to consider the location of measurement. At the
1 According to recent surveys, the North Magnetic Pole is moving approximately north-northwest

at 55 km per year [Nai06].
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magnetometer

gyroscope

accelerometer

Figure 1.9: The 9DOF Razor Inertial Measurement Unit (IMU) featuring a triple-
axis gyroscope, a triple-axis accelerometer and a triple-axismagnetome-
ter. Image from [Sparkfun].

end of Section 3.4, we describe the speci c reference vectors used for orientation
acquisition in Grenoble, France.

Hypotheses. To reliably measure local orientation of the object for the purposes of
shape reconstruction, the following two conditions are assumed to be true [HS08]:

1. Device acceleration is negligible with respect to gravity acceleration.

2. There is no considerable magnetic eld except for the Earth’s magnetic eld.

Inertial measurement unit (IMU). In 3D, a single measured vector is not su cient
to determine object’s orientation. Two linearly independent vectors are needed to
x all rotational degrees of freedom. Accelerometers cannot determine rotation

around the vertical axis (vector eacc). Similarly, magnetometers cannot determine
rotation around the vector emag. To estimate object’s full rotation, the sensor mea-
surements have to be combined.

In practice, sensors are assembled into a microelectromechanical system (MEMS)
called inertial measurement unit or IMU (Fig. 1.9). A typical IMU features a combi-
nation of a triple-axis accelerometer, a triple-axis gyroscope and a triple-axis mag-
netometer. Here, triple-axis refers to the fact that the sensor measures data along
three orthogonal axes, and outputs a single three-dimensional vector. We refer to
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devices equipped with IMUs as sensor devices. An example of a sensor device is a
smartphone.

Shape acquisition with sensors. Unlike traditional 3D scanners, sensor devices do not
measure the spatial position of points on a shape. Rather, they measure the lo-
cal orientation of a shape. In order to retrieve the position, orientations have to be
coupled with geodesic distance between adjacent measurements.

We refer to this as the problem of shape from sensors. The main goal of this thesis is
to adopt a novel view on this problem and present new reconstruction algorithms.
Before introducing our setup, let us have look at the state of the art.

1.3 State of the art

In this section, we look at previousmethods that focus on resolving the shape-from-
sensors problem introduced in the previous section.

The pioneering work in this domain was done in the thesis of Nathalie Sprynski
[Spr07]. Since then, many other methods have followed, improving on the initial
work or introducing new approaches; see the overview in Table 1.10. We present
a summary of the state of the art, along with technical challenges and proposed
solutions.

Certain parts of the exposition are formulated using mathematical notions de ned
in the next chapter, speci cally in Sections 2.1 to 2.5. We believe this is not an issue;
methods presented in this section serve as an overview of what has already been
done, and we skip most technical details.

This section only summarizesmethods dealingwith the problemof shape from sen-
sors. Other methods related to the individual parts of our framework are included
in the subsequent chapters (Section 3.1 and Section 4.1).

1.3.1 Curves

The use of sensors for shape acquisition was rst explored by Sprynski [Spr07].
Since the sensors do notmeasure the absolute position of points in the world space,
the reconstruction algorithms need to be formulated in terms of orientations pro-
vided by sensors and geodesic distances between samples (known a priori or mea-
sured). Curves are represented using natural parametrization and reconstructed
via numerical integration. Surfaces are de ned via geodesic interpolation [Spr+08]
or using parallel ribbons of sensors [Sag+14]. Huard et al. [Hua+13] introduced
a method for computing smooth patches from a given piecewise geodesic bound-
ary curve. Hoshi and Shinoda [HS08] reconstructed the target surface using two
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Shape from sensors: state of the art

Acquisition

device sensors structure

[Spr+07a]
[SLB11]

Morphosense fixed ribbon

[Car+15]
[Sag+16]

Morphopipe fixed ribbon

[ABP16] spine tracker fixed ribbon

[HS08] 3DCS fixed lattice

[Sag+14] Morphoshape fixed lattice

[HCG16] instrumented fabric fixed lattice

Chapter 5
Morphorider,
smartphone

dynamic single IMU, virtual network

Curve reconstruction

topology principle

[Spr+07b]
[Spr+07a]

single curve spherical interpolation of tangents, num. integration

[Hua+14] single curve Pyhagorean-hodograph curves

Chapter 3 curve network filtering in SO(3), Poisson rec. with fixed topology

Surface reconstruction

topology principle

[Spr+08] ‘parallel’ curves geodesic interp. along parallel curv. directions

[HS08] lattice surface as lattice, fixed link length and flexible joints

[SLB11] lattice Coons patches

[Sag+14] lattice same as [Spr+08]

[HCG16] lattice piecewise-linear approximation of surface patches

[Hua+13] n-sided patch geodesic interpolation in parametric space

Chapter 4 curve network mesh-based variational approach with Laplacian energy

Table 1.10: State of the art in 3D shape acquisition using inertial and magnetic sen-
sors. Prior research focused on devices with sensors organized in xed
structures (ribbon, lattice) . The algorithms presented in this thesis (last
rows) enable acquisition with dynamic sensors, e.g. by sliding a smart-
phone along curves on the scanned surface.
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families of sensors placed in orthogonal directions. Hermanis et al. [HCG16] con-
structed sensor-instrumented fabric and compared their reconstruction resultswith
a Kinect reconstruction. Antonya et al. [ABP16] used an array of sensors for real-
time tracking of the human spine.

In this line of research, the rst and foremost problem that needs to be addressed is
the following: given a sequence of orthonormal frames along a curve with known
geodesic distances between adjacent frames, how to reconstruct the curve? The
basic idea is to represent the curve via arc-length parametrization, do the recon-
struction in the tangent space, and perform numerical integration to get positions
in the world space. Building on the curve reconstruction, surfaces are speci ed via
networks of curves.

The following approach is due to Sprynski [Spr07]. Consider a planar curve γwith
length L, parametrized by arc length as

x : [0, L] → �2.

Since x is the arc-length parametrization, the tangent vector t � x′ is unit and can
be represented by the oriented angle α between t and the horizontal axis:

x′ �

(
cos α
sin α

)
.

The basic problem of curve reconstruction from sensor data is formulated as fol-
lows. Let αi ∈ [0, 2π) be a sequence of k + 1 tangent angles sampled from an un-
known planar curve along a sequence of parameters (Fig. 1.11 top)

0 � s0 < s1 < · · · < sk � L.

Find a di erentiable planar curve x : [0, L] → �2 such that

x′(si) � (cos αi , sin αi)⊺ . (1.1)

Sprynski [Spr07] proposed to nd a continuous angle function α : [0, L] → �,
which interpolates the given samples: α(si) � αi . The curve x, which satis es
Eq. (1.1), is de ned via

x′(s) � (cos α(s), sin α(s))⊺ .

The continuous function α(s) is computed using a natural cubic spline (Fig. 1.11
bottom) [HF02]. In the additional pre-processing step, one needs to make sure the
neighboring angles are not too distant from each other in the Euclidean sense: this
is done by requiring |αi+1 − αi | < π and adding an integer multiple of 2π to αi+1 if
needed.
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Figure 1.11: Schema of 2D curve reconstruction from sensor data

After the angle function α(s) has been estimated, the translational degree of free-
dom is xed by setting the initial position x0 � x(0) and the discrete curve points
are reconstructed by numerical integration:

x(s) � x0 +

(∫ s

0
cos α(s) ds∫ s

0
sin α(s) ds

)
.

The above approach can be directly extended to space curves by representing the
tangent x′ � t using spherical coordinates and reconstructing both angle functions.
This however does not yield satisfactory results. Better results are obtained using
splines on the unit sphere [Nie04]. These splines can be evaluated e ciently us-
ing Bézier representation and a modi ed version of the De Casteljau’s algorithm,
replacing the linear interpolation with the spherical linear interpolation [Sho85]:

Slerp(t0, t1, t) �
sin

[
(1 − t)θ

]
sin θ

t0 +
sin [tθ]

sin θ
t1, (1.2)

where t0, t1 are unit tangent vectors with cos θ � t0 · t1. Huard [Hua13] introduced



12 1 Introduction

Figure 1.12: Some of the demonstrators developed at CEA-Leti: the Morphosense
ribbon [Spr+07a] (left) and the Morphoshape patch [Sag+14] (right).

a modi ed algorithm of Nielson [Nie04] using Hermite interpolation on the sphere
exploiting the knowledge of surface normals along the acquired curves.

Methods that reconstruct the curve in the tangent space (angle function α(s), spher-
ical splines) require numerical integration to retrieve the actual curve points in �2

or �3. Huard et al. [Hua+14] proposed an alternative formulation for space curves
using Pythagorean-hodograph quintic splines. A Pythagorean-Hodograph curve x is
characterized by the fact that its hodograph x′ � x′(s) satis es the Pythagorean rela-
tion ∥x′∥ � σ for some polynomial σ � σ(s). This formulation allows reconstructing
the curve in its analytic form, but is signi cantly slower compared to the methods
using numerical integration.

1.3.2 Surfaces

Sprynski [Spr07] also introduced the rst algorithms for surface reconstruction and
deformation in the context of shape from sensors. She considered curve networks
consisting of two families of parallel curves orthogonal to each other (Fig. 1.12
(right)). Such networks de ne a collection of quadrilateral surface regions, which
can be modeled via Coons patches [Coo67; Far02]. When working with actual
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sensor-acquired curves, obtaining a closed networkwith proper curve intersections
is challenging if each curve is reconstructed individually. Various heuristics for
aligning the curves were proposed by Sprynski [Spr07].

Huard [Hua13] focused on reconstruction of developable surfaces, which are isometric
to a planar region (and thus have zero Gaussian curvature). First, he presented an
algorithm for reconstruction of a developable surfaceS froma single geodesic curve
γ, exploiting the fact that a developable surface S is also a ruled surface [Hua+12].
A ruled surface is parametrized by

x(t , v) � p(t) + vd(t), t ∈ I , v ∈ �,
where

{
p(t) ∈ �3, d(t) ∈ V(�3)

}
t∈I

is a one-parameter family of lines [doCa16]. For
a xed t, Lt � x(t , v) is a straight line called a ruling; the curvep(t) is called a directrix
ofS. The knowledge of a single geodesic curve γ ⊂ S enables reconstruction of the
portion of S whose rulings intersect γ.

Second, Huard [Hua13] presented amethod for reconstruction of an n-sided region
on a quasi developable surface, delimited by a closed sequence of geodesic curves
(Fig. 1.13) [Hua+13]. The main idea is to split the n-sided patch into a collection of
triangular patches by estimating the missing geodesics. The missing geodesics are
estimated using the fact that a geodesic on a developable surface corresponds to a
straight line in plane under isometric mapping. The resulting triangular patches
are interpolated with C1 parametric interpolants.

Figure 1.13: In Huard et al. [Hua+13], the n-sided region on a developable surface
is split into triangular patches by estimating interior geodesics. Image
from [Hua+13].

1.3.3 Limitations

Previous works on shape from sensors used devices with a xed connectivity and
known distances between sensor nodes. The sensors were organized uniformly on
a 1D ribbon (Fig. 1.12 left) or on a regular 2D grid (Fig. 1.12 right). Multiple ribbons
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were employed to acquire networks of curves on a surface, using a comb structure
[SLB11] or patches with boundary from geodesic curves [Hua+13]. However, these
ribbons cannot be placed on the surface arbitrarily as they will inevitably follow
geodesic curves. Grids of sensor nodes are limited to speci c types of surfaces (e.g.
developable surfaces isometric to planar sheets). Whilemost existingmethodswork
in real time, they adopt various heuristics to glue the acquired curves together in
order to have a closed network with proper topology.

1.4 Context, input data & scanning devices

We explore a novel dynamic setup for acquisition of orientations with sensor-instru-
mented devices. In our setup, a device with a single IMU is moved along a virtual
network of curves on the scanned surface, and the data are acquired interactively.
Until now, this type of acquisition setup using sensors has not been studied.

Our dynamic setup has several advantages compared to the existingmethods. Since
a dynamic device can be moved freely on the surface, the topology of the curve net-
work is no longer xed, in contrast to a static setup. This allows us to acquire more
curve networks and reconstruct a broader family of shapes than what is possible
with the existingmethods. Moreover, in our dynamic setup, the size of the scanned
object is not limited by the acquisition device.

Data acquired with dynamic devices typically have much higher sampling density
than data acquired using static devices. We exploit this fact to improve the esti-
mated orientations by ltering the dense sample with our custom methods. Our
reconstruction algorithms bene t from this and result in accurate reconstruction of
the acquired shape.

The two devices that we use are a standard smartphone, and a custom-made device
called Morphorider. In this section, a short description is given for each of the two
devices. Concrete details on how the devices work and how the data are acquired
will be given in Chapter 5.

Morphorider (Fig. 1.14 left and Fig. 1.15) is a wireless MEMS-based device for mea-
suring local orientation, containing a single IMU (with a tri-axial accelerometer and
a tri-axial magnetometer) and an odometer for tracking distance. It is a prototype
speci cally designed for dynamic acquisition of curves on surfaces.

Similarly, orientation data can be measured with a smartphone (Fig. 1.14 right). In
addition to an accelerometer and a magnetometer, a smartphone also contains a gy-
roscope. This enables orientation acquisition that is more robust to magnetic per-
turbations. We use a state of the art sensor fusion algorithm to robustly estimate
orientation from sensor measurements [MHV11; Pac13]. On the other hand, mea-
suring distances with a smartphone is di cult. GPS does not provide the stability
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Figure 1.14: Two dynamic devices used for data acquisition in this thesis. (Left) a
custom-made device called Morphorider and a screenshot of our MAT-
LAB acquisition interface. (Right) a standard smartphone, showing the
Android application with simple acquisition interface.

12cm 7cm

r− � −14cm
r+ � +9cm

r− � −9cm
r+ � +4cm

Figure 1.15: (Left)Morphoriderwith awireless numpad used for recording the topol-
ogy (indices of nodes) during acquisition. (Right) limitations of the
device with respect to radius of curvature at locally convex (red) and
concave (blue) surface points.

and the precision needed for our algorithms. To overcome this limitation, we as-
sume the speed of acquisition is constant, then we parametrize each curve using
acquisition timestamps. Optionally, manual distance measurements can be used to
increase the precision of reconstruction.

1.5 Contributions

In this thesis, we propose a novel shape-from-sensors framework. To the best of our
knowledge, we present the rst reconstruction framework developed for data from
dynamic sensor devices (Section 1.4). In this section we outline the core ideas that
guide our approach, and we give an overview of the main contributions of this
thesis.

Our approach for computing shapes from the measured data is to formulate the
reconstruction as a set of optimization problems. Using discrete representations of
shapes (polylines, meshes), the optimization problems are resolved e ciently and
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at interactive time rates. Constrained optimization and discrete formulation are the
two main ingredients, di erentiating our methods from the existing approaches
(Section 1.3). Existing methods mostly use continuous representation and spline-
based techniques, which limits the family of shapes that can be reconstructed (see
the summary of limitations in Section 1.3.3).

The result is a uni ed reconstruction framework with two main parts described in
the core chapters of this thesis.

In Chapter 3, we describe the rst part of the framework, which is dedicated to re-
construction of a smooth curve network from acquired orientations and distances.
By working directly with orientations, our method robustly resolves problems aris-
ing from data inconsistency and sensor noise. Our approach is driven by a sim-
ple principle mostly overlooked in previous works: at each intersection in a curve
network, the positions and normals of the two intersecting curves have to coincide.
Guided by this idea, we develop automatic network reconstruction procedures that
enforce the constraints at intersections by design.

In Chapter 4, we present the second part of the framework, which is an original
method for surfacing awell-connected and smooth curve networkwith surface nor-
mals.

Thanks to the normal vector input, the patch- nding problem can be solved unam-
biguously and an initial piecewise smooth triangle mesh is computed. The input
normals are propagated throughout the mesh. Together with the initial mesh, the
propagated normals are used to estimate mean curvature vectors. We then com-
pute the nal mesh by combining the standard Laplacian-based variational meth-
ods with the curvature information extracted from the input normals. The normal
input increases shape delity and allows to achieve globally smooth and visually
pleasing shapes.

In Chapter 5, we show how we combine the algorithms for network reconstruction
(Chapter 3) and network surfacing (Chapter 4) in order to acquire digital models
of physical shapes. We describe the test surfaces used for the evaluation, as well as
the process of data acquisition. In addition to reconstruction, we demonstrate how
the same framework can be used to sketch 3D shapes using nothing but a smart-
phone.

The reconstruction methods that we introduce were originally designed for use
with dynamic devices (Section 1.4). Nevertheless, our framework is not limited to
the dynamic setup, and could also be used in combination with xed-topology de-
vices without modi cation. Possible applications are countless and include smart
materials [Hua+13], shape digitization [Sta+17a], medical scanning [HCG16] and
Structural Health Monitoring (SHM) [Sag+14].
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Remarks on terminology. Throughout the thesis, we sometimes use the term scanning
to describe the acquisition of shapes. By this, we do not mean the usual 3D acquisi-
tion associated with optical 3D scanners, but rather the acquisition of orientations
and distances using one of our devices.

Likewise, the meaning of the term reconstructionmight slightly vary, but the mean-
ing is always clear from the context. In Chapter 3, reconstruction refers to the com-
putation of a curve network. In Chapter 5, reconstruction refers to the whole pro-
cess of computing a smooth surface from sensor data.





2
Foundations

W E �3.
This chapter establishes theoretical background for working with such objects. The
common denominator is the concept of a smooth manifold: Darboux frames from
the group of rotations (3-manifold) are used to describe a curve network (collection
of 1-manifolds) on a surface (2-manifold).

This chapter is organized as follows. Sections 2.1 to 2.3 summarize important facts
about curves and surfaces in �3, respectively. Section 2.4 generalizes the concept
of manifold immersed in n-dimensional Euclidean space and introduces essential
notions from Riemannian geometry. Section 2.5 describes rotations in three dimen-
sions as points on the manifold SO(3). Section 2.6 introduces the concept of a cell
complex, which we use to de ne curve networks and triangle meshes. Section 2.7
describes discretization of the Laplace-Beltrami operator for triangle meshes. Sec-
tion 2.8 summarizes variational methods for shape modeling.

Let us start by introducing the notation and conventions used throughout the the-
sis. �n denotes both the n-dimensional vector space over real numbers and the
n-dimensional Euclidean space with the usual metric. We adopt the column vector
convention: a point x ∈ �n is a n-tuple (x1, . . . , xn)⊺. The standard dot product
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u⊺v for two vectors in �n is denoted by a dot u · v or by angle brackets ⟨u, v⟩. The
canonical basis in �3 is denoted by

e1 � (1, 0, 0)⊺ , e2 � (0, 1, 0)⊺ , e3 � (0, 0, 1)⊺ .

Let u � (ux , uy , uz)⊺ , v � (vx , vy , vz)⊺ ,w � (wx , wy , wz)⊺ ∈ �3. The cross product
of two vectors is de ned as

u × v � det
©«
e1 ux vx

e2 uy vy

e3 uz vz

ª®¬
� e1 det

(
uy vx

uz vz

)
− e2 det

(
ux vx

uz vz

)
+ e3 det

(
ux vx

uy vy

)
.

It follows that e1 × e2 � e3. The mixed product of three vectors is de ned as

w·u×v � det
©«

wx ux vx

wy uy vy

wz uz vz

ª®¬
� wx det

(
uy vx

uz vz

)
−wy det

(
ux vx

uz vz

)
+wz det

(
ux vx

uy vy

)
.

If the vectors u and v are unit and orthogonal, the orthonormal frame {u, v, u × v}
is right-handed and positively oriented.

The trace of a square n×n matrix A � (ai j) is de ned as the sum of elements on the
main diagonal, and is equal to the sum of eigenvalues,

trace (A) �
n∑

i�1

aii �

n∑
i�1

σi .

For two vectors x, y ∈ �n , the standard dot product is related to the matrix trace by
the following relations:

trace
(
xy⊺

)
� x⊺y � x · y � y⊺x � trace

(
yx⊺

)
.

The cross product matrix operator [u×] is de ned via the relation u× v � [u×]v. It
holds that

[u×] � ©«
0 −uz uy

uz 0 −ux

−uy ux 0

ª®¬
.

The matrix [u×] is an example of a skew-symmetric or antisymmetric matrix. In gen-
eral, a square matrix A is skew-symmetric if its transpose equals its negative,

A −A
⊺
� 0.

Note that the trace of a skew-symmetric matrix always vanishes since its diagonal
is zero.
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The Frobenius inner product of two m × n matrices A � (ai j), B � (bi j) ∈ �m×n is

⟨A, B⟩F � trace
(
A
⊺
B
)
�

m∑
i�1

n∑
j�1

ai j bi j (2.1)

and induces the Frobenius norm:

∥A∥F �

√
⟨A,A⟩F �

√√√ m∑
i�1

n∑
j�1

a2
i j
. (2.2)

Both I and In will denote the n× n identity matrix. 0m×n or 0 denotes the m× n zero
matrix and 0 � 0m×1 is the zero vector.

Let U ⊂ �m and V ⊂ �n be open sets. Consider a mapping f from U to V :

f : U ⊂ �m −→ V ⊂ �n

x � (x1, . . . , xm)⊺ 7−→ f (x) � ( f1(x), . . . , fn(x))⊺

• f is continuous or of class C0 if all components fi are continuous.

• f is di erentiable if all partial derivatives ∂ f /∂x j exist.

• f is continuously di erentiable if f is di erentiable and all partial derivatives
∂ f /∂x j are continuous.

• f is of class Ck if all partial derivatives ∂ f /∂x j are of class Ck−1.

• f is of class C∞ if all partial derivatives ∂k f /∂xi1 . . . ∂xik
exist and are contin-

uous for any k.

For a one-parameter curve x : I ⊂ �→ �3, the prime and the double prime denote
rst and second spatial derivatives:

x′ �
dx

ds
, x′′ �

d2x

ds2
.

For a two-parameter surface x : Ω ⊂ �2 → �3, the partial derivatives are denoted
by subscripts:

xu �
∂x

∂u
, xuv �

∂2x

∂u∂v
.
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2.1 Space curves

Definition 2.1 (Curve, length). A parametric space curve γ is an image of a di eren-
tiable map

x : [a , b] ⊂ �→ �3 : s 7→ x(s) �
(
x(s), y(s), z(s)

)⊺
.

The map x is called a parametrization of γ. The derivative of the curve de nes the tangent
eld t � x′. The curve γ is called regular i the tangent eld never vanishes, i.e. i x′ , 0

for all s ∈ [a , b].

For a regular curve, the length of the segment between the starting point x(a) and a point
x(s) on the curve is

l(s) �
∫ s

a

x′(t)
dt .

The total length of γ is L � l(b).

Definition 2.2 (Natural parametrization). A regular curve γ is parametrized by its
arc length if l(s) � s − a for all s ∈ [a , b]. Setting a � 0 then yields the unique natural
parametrization

x : [0, L] ⊂ �→ γ ⊂ �3.

Since l(s) �
∫ s

0

x′(t)
dt � s, the derivative of the natural parametrization has unit

length everywhere:
x′(s)

 �

t(s)
 ≡ 1 for all s ∈ [0, L].

The natural parametrization is an isomorphism and is also called the arc-length or
the unit-speed parametrization. Intuitively, a curve parametrized by the arc length
is an image of the line segment [0, L] with no stretching or squishing. Any regular
curve can be reparametrized by the arc length.

Unless stated otherwise, we assume that all curves are regular and given by the
natural parametrization.

Proposition 2.3. For an arc-length parametrized curve γ, the vectors t � x′ and t′ � x′′

are orthogonal.

Proof. Di erentiating the relation ∥t∥2 � t · t � 1 once yields t · t′ � 0.

Definition 2.4 (Frame). Aframeof the curve γ is an orthonormal frameA � {t, n1, n2}
de ned by the unit tangent t � x′ and the choice of the vector n1 ⊥ t varying smoothly along
the curve. The frame is then completed by n2 � t × n1.
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Proposition 2.5 (Framing formulas). The following relations hold:

©«
t′

n′1
n′2

ª®¬
�

©«
0 κ1 κ2

−κ1 0 τ
−κ2 −τ 0

ª®¬
©«

t
n1

n2

ª®¬
, (2.3)

where t′ � κ1n1 + κ2n2 is the curvature vector of γ, and the torsion τ measures the
twisting of the orthonormal frameA.

If the curvature vector t′ � x′′ never vanishes, we canwrite it in terms of the principal
normal n and the curvature κ � 1/r as t′ � κn. Here, r is the radius of the osculating
circle at γ(s), which is locally the closest second-order approximation of the curve
(see Fig. 2.3 left, p. 27). Intuitively, the curvature κmeasures the deviation of γ from
a straight line; the torsion τ measures the deviation of γ from a planar curve.

Definition 2.6 (Frenet-Serret frame). The Frenet-Serret frame F � {t, n, b} is given
by

t � x′, n � x′′/
x′′

 , b � t × n.

The vector b is called the binormal. Substitution into Eq. (2.3) yields the Frenet-Serret
formulas

©«
t′

n′

b′

ª®¬
�

©«
0 κ 0
−κ 0 τ
0 −τ 0

ª®¬
©«

t
n
b

ª®¬
. (2.4)

At in ection points (κ � 0), the Frenet-Serret frame is not de ned. Among the
in nity of frameswhich exist for the curve γ, the Frenet-Serret frame arises from the
orthogonality of the rst two derivatives of the curve (x′ ·x′′ � 0, cf. Proposition 2.3)
and naturally re ects the local di erential properties of the curve.

One of the central concepts in this thesis is the Darboux frame, which is useful for
studying curves on surfaces. Before we de ne it in Section 2.3, let us formalize the
notion of a regular surface.

2.2 Regular surfaces

Definition 2.7 (Regular surface in �3). A subset S ⊂ �3 is called a regular surface
if for each point p ∈ S, there exists a neighborhood V ⊂ �3 of p and a di erentiable
homeomorphism of an open set U ⊂ �2 (Fig. 2.1)

x : U → V ∩ S : (u , v) 7→ x (u , v) ,

such that the Jacobian matrix

J(x)(u , v) �
(
∂x
∂u

∂x
∂v

)
�

(
xu xv

)
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has rank 2 for all (u , v) ∈ U. The map x is called a parametrization of the region V ∩ S.

�2 �3

U

(u , v)

x
p � x(u , v)

V

Figure 2.1: Parametrization of a regular surface

Fixing a point x ∈ S, the local properties of the surface are studied via the Gauss
map N.

Definition 2.8 (Gauss map. Tangent plane. Shape operator). Gauss map associates
a surface point x with the unit surface normal N at x, represented by a point on the unit
sphere �2 (Fig. 2.2 right). If the surface is locally parametrized by x � x(u , v), Gauss map
can be written explicitly as

N : S → �2 : x 7→ N (x) � xu × xv

∥xu × xv ∥
. (2.5)

The tangent plane of S at x, denoted by TxS, is the two-dimensional orthogonal comple-
ment of the one-dimensional vector space induced by N:

TxS �

{
t ∈ �3 : t ⊥ N(x)

}
The shape operator – also called the Weingarten map – is the di erential of the Gauss map
N � N(x) with negative sign:

S : TxS → TN�
2 : x 7→ −dN. (2.6)

The tangent spaces TxS and TN�
2 are naturally identi ed since they are parallel

planes in �3. Therefore, the shape operator at x can be seen as an endomorphism
acting on the tangent space TxS – it is a linear map from TxS to itself.

Local bending of the surface is measured by curvatures.

Definition 2.9 (Normal curvature. Principal curvatures and directions). For every
unit direction t in the tangent plane TxS at a xed point x, the normal curvature κn(t) is
de ned as the curvature of the curve that is the intersection of S and the plane de ned by N
and t. The principal curvatures κ1, κ2 are the extrema of κn and the principal directions
are the corresponding tangent vectors t1, t2.
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Figure 2.2: (Left) sphere �2 as the union of six parametrized hemispheres. Image
from [doCa92]. (Right) Gauss map of locally elliptic and hyperbolic sur-
faces. Image from [HC52].

Alternatively, the principal curvatures and directions can be seen as the eigenvalues
and eigenvectors of the shape operator S. Two important quantities are associated
with the principal curvatures.

Definition 2.10 (Gaussian curvature. Mean curvature). The intrinsicGaussian cur-
vature is the product of principal curvatures

K � κ1κ2 (2.7)

The non-intrinsic mean curvature is de ned as

H �
1

2π

∫ 2π

0
κn(t)dϕ, (2.8)

where ϕ is the angle between t and t1.

Euler’s theorem states that κn(t) � κ1 cos2 ϕ + κ2 sin2 ϕ. Using this relation, the
mean curvature H can be written as the arithmetic mean of principal curvatures:

H �
1
2 (κ1 + κ2) . (2.9)

The Gaussian curvature K is intrinsic to the surface and is invariant under isomet-
ric deformations of the surface. This was rst proven by Gauss in his Theorema
Egregium [doCa16, p. 237].

On the other hand, themean curvatureH is not intrinsic. To seewhy, take a at sheet
of paper, whose curvature is zero in all directions – this implies that themean curva-
ture is zero everywhere. Now, isometrically deform this sheet into a cylinder. The
principal curvature along the axis of the cylinder remains zero, but the principal
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curvature along the circular cross-section of the cylinder is positive. Since the mean
curvature changed from zero ( at sheet) to a positive number (cylinder) under an
isometric deformation, it cannot be intrinsic to the surface.

The sign of H depends on the choice of orientation; therefore, it is more natural to
work with the mean curvature normal

H � −2HN (2.10)

where N is the unit outward normal.

Let us nowdiscuss the relation between themean curvature normal and the Laplace
operator. For a su ciently di erentiable scalar function

f : Ω ⊂ �2→ � : (u , v) 7→ f (u , v),

the Laplace operator is de ned as the divergence of the gradient,

∆ f � ∇ · ∇ f � fuu + fvv ,

where we used the notation fuu � ∂2 f /∂u2, fvv � ∂2 f /∂v2. Mean curvature H is
the geometric interpretation of the Laplace operator∆ for surfaces; this is analogical
to curves where the curvature κ is the geometric version of the second derivative.
Fixing a point x on S and, the surface S can locally be seen as the graph of the
height function fh : TxS → � de ned over the tangent plane at x. Applying the
Laplacian to the height function yields the mean curvature at x:

∆ fh � H.

Extending the Laplacian to functions de ned on the surface f : S → �d , the
Laplace-Beltrami operator, the intrinsic surface Laplacian, is de ned as the divergence
of the gradient with respect to the metric of the surface:

∆S f � ∇S · ∇S f .

Substituting the coordinate function f � x, we get the following connection be-
tween Laplace-Beltrami and the mean curvature normal [doCa16]:

∆Sx � H. (2.11)

2.3 Curves on surfaces

The Frenet-Serret frame de ned in Section 2.1 is one example of a frame along a
curve. When studying curves on surfaces, it is convenient to de ne another type of
frame, which carries the properties of the surface.
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Figure 2.3: (Left) the Frenet-Serret frame and osculating circles along a space curve
on a Bézier surface and (right) the Darboux frame along the same curve.
[red – tangent t, dark blue – principal normal n / surface normal N, light blue
– binormal b / conormal B]

Definition 2.11 (Darboux frame). Suppose the curve γ is lying on a surface, γ ⊂ S ⊂
�3 (Fig. 2.3). TheDarboux frameD � {t,N,B} is de ned by the unit tangent t, the unit
surface normal N, and the conormal or the tangent normal B � t ×N.

Note that unlike Frenet-Serret frame, Darboux frame is de ned even at in ection
points where the curvature κ vanishes. Since the curvature vector t′ � κn lies in the
normal plane spanned by N and B (Proposition 2.3), t′ decomposes into the normal
component and the binormal component as

t′ � κn � κ
(
cosψN − sinψB

)
,

where ψ � ∢ (n,N) is the (oriented) angle between the principal normal n and the
surface normal N. This leads to the following di erential characterization of the
Darboux frame.

Proposition 2.12. The change of the Darboux frameD � {t,N,B} is given by

©«
t′

N′

B′

ª®¬
�

©«
0 κn κg

−κn 0 τg

−κg −τg 0

ª®¬
©«

t
N
B

ª®¬
(2.12)

where κn is the normal curvature, κg is the geodesic curvature, and τg is the geodesic
torsion.
Proof. Since both the Frenet-Serret frame F � {t, n, b} and the Darboux frame
D � {t,N,B} are right-handed and share the same tangent t,D can be obtained by
rotating F around t(s) by some angle ψ � ψ(s) (cf. Fig. 2.3)

©«
t
N
B

ª®¬
�

©«
1 0 0
0 cosψ sinψ
0 − sinψ cosψ

ª®¬
©«

t
n
b

ª®¬
.
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Di erentiating this relation yields

N′ � dN
ds �

d cosψ
dψ

dψ
ds n + cosψ dn

ds +
d sinψ

dψ
dψ
ds b + sinψ db

ds ,

B′ � dB
ds � − d sinψ

dψ
dψ
ds n − sinψ dn

ds +
d cosψ

dψ
dψ
ds b + cosψ db

ds .
(2.13)

Using the Frenet-Serret formulas (2.4) and multiplying the above identities by the
length element ds gives

dN � − sinψ dψ n + cosψ (−κt + τb)ds + cosψ dψ b + sinψ (−τn)ds

� t
(
−κ cosψ

)
ds +

(
dψ + τ ds

) (
− sinψ n + cosψ b

)
︸                    ︷︷                    ︸

B

,

dB � − cosψ dψ n − sinψ (−κt + τb)ds − sinψ dψ b + cosψ (−τn)ds

� t
(
κ sinψ

)
ds −

(
dψ + τ ds

) (
cosψ n + sinψ b

)
︸                  ︷︷                  ︸

N

.

(2.14)

Recall that t′ � dt
ds � κn � κ

(
cosψN − sinψB

)
. In matrix notation, we therefore

have

©«
dt
dN
dB

ª®¬
�

©«
0 κ cosψ ds −κ sinψ ds

−κ cosψ ds 0 τ ds + dψ
κ sinψ ds −τ ds − dψ 0

ª®¬
©«

t
N
B

ª®¬
.

Eq. (2.12) is obtained by multiplying the last identity by 1/ds and setting κn �

κ cosψ, κg � −κ sinψ, τg � τ +
dψ
ds .

The normal curvature κn is intrinsic to the surfaceS and depends only on the direc-
tion of the tangent t, not on the actual choice of the curve γ. The geodesic curvature
κg is intrinsic to the curve γ and describes the embedding of γ into the surface
S. The geodesic torsion τg measures the twisting of the Darboux frame around
the tangent vector. The following special cases are recognized when one of these
quantities vanishes along γ:

• γ is a geodesic curve if κg ≡ 0.

• γ is an asymptotic curve if κn ≡ 0.

• γ is a line of curvature if τg ≡ 0.

Note that Darboux frame is rotation-minimizing along lines of curvature – for such
curves, the framedoes not rotate around the instanteneous tangent [BFS10;Wan+08].
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2.4 Smooth manifolds

Curves and surfaces in �3 introduced in previous sections are examples of mani-
folds. Informally, manifolds are objects that are locally Euclidean. In this section,
we formalize the notion of a smoothmanifold (embedded in�n) and introduce con-
cepts fromRiemannian geometry such as tangent bundle, inner product, scalar and
vector elds on a manifold, distance, geodesic curve, exponential map, logarithmic
map. These concepts will serve us for generalization of energy-minimizing splines
from Euclidean spaces to Riemannian manifolds in Section 3.5.4.

We closely follow Boumal [Bou10] and Absil et al. [AMS08]; some de nitions are
inspired by Milnor [Mil65], Berger [Ber03] and do Carmo [doCa16; doCa92]. All
results are given without proofs.

Definition 2.13 (Di eomorphism). A map f : X → Y is called a di eomorphism if
f carries X homeomorphically onto Y and both f and its inverse f −1 are C∞.

Note that the above de nition implies that f is a one-to-one mapping.

Definition 2.14 (Smooth manifold of dimension k). A subsetM ⊂ �n is called a
smooth manifold of dimension k if each x ∈ M has a neighborhood V ∩ M that is
di eomorphic to an open subset U of the Euclidean space �k .

Any particular di eomorphism g : U → V ∩M is called a parametrization of the region
V ∩M. The inverse di eomorphism g−1 : V ∩M → U is called a system of coordinates
on V ∩M or a chart.

An example of a parametrization (of a regular surface) is shown in Fig. 2.1.

Similarly to vector spaces, the tangent space to a manifoldM at x is intuitively the
best linear approximation ofM in the neighborhood of x – it is the vector space
induced by the hyperplane which is tangent toM at x. Vectors in the tangent space
are de ned via equivalence classes of curves passing through x. Here, a curve is
a di erentiable map c : (−ϵ, ϵ) → M. Consider the set of all such di erentiable
curves c(t) passing through a xed point x ∈ M at t � 0:

Cx �

{
c : (−ϵ, ϵ) → M such that c ∈ C1 and c(0) � x

}
and an equivalence relation ∼ on Cx de ned by

c1 ∼ c2⇔ d
dt g−1

(
c1(t)

) ���
t�0

�
d
dt g−1

(
c2(t)

) ���
t�0

(2.15)

where c1, c2 ∈ Cx are two curves passing through x and g−1 : V ∩M → U ⊂ �k is a
chart (a system of coordinates) onM such that x is contained in V . The de nition
of ∼ is independent from the choice of a chart g−1.
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Definition 2.15 (Tangent space TxM). The tangent space to the smooth manifoldM
of dimension k at a xed point x is a (k-dimensional) vector space denoted by TxM and
de ned as the quotient space

TxM � Cx /∼
For a curve c ∈ Cx, the equivalence class [c] ∈ TxM is called a tangent vector toM at x.

Definition 2.16 (Tangent bundle TM). The tangent bundle TM of a smooth manifold
M is the disjoint union of tangent spaces TxM,

TM �

⨿
x∈M

TxM .

We de ne the natural projection on the roots of vectors as the mapping π : TM →M such
that

π(u) � x i u ∈ TxM .

Since each tangent space TxM is a vector space, we can associate an inner prod-
uct to TxM. A collection of such inner products with special properties de nes a
Riemannian metric.

Definition 2.17 (Inner product on TxM). An inner product ⟨·, ·⟩x on a tangent space
TxM is a bilinear, symmetric, positive-de nite form. For any u, v,w ∈ TxM and α, β ∈ �,

(i)
⟨
αu + βv,w

⟩
x
� α ⟨u,w⟩x + β ⟨v,w⟩x (bilinearity)

(ii) ⟨u, v⟩x � ⟨v, u⟩x (symmetry)

(iii) ⟨u, u⟩x ≥ 0 and ⟨u, u⟩x � 0 i u � 0 (positive-de nitness)

We now describe how a family of inner products de ned on the tangent bundle
induces a Riemannian structure onM.

Fix a point x ∈ M and let f : V∩M → U ⊂ �k be a chart such that x is contained in
V . Let {e1, . . . , ek} be a basis of �k . Denote by Ei � f −1ei its inverse image, which
is a basis of TxM. Fixing two tangent vectors u, v ∈ TxM, we can therefore write

u �

k∑
i�1

uiEi , v �

k∑
j�1

v jE j ,

or, using the vector notation: u � (u1, . . . , uk)⊺ and v � (v1, . . . , vk)⊺. The inner
product of u and v is

⟨u, v⟩x �

⟨
k∑

i�1

uiEi ,
k∑

j�1

v jE j

⟩
x

�

k∑
i�1

k∑
j�1

ui v j

⟨
Ei , E j

⟩
x
� u⊺Gxv
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whereGx is a symmetric positive-de nitematrixwhose elements are given by (Gx)i j �

⟨Ei , E j⟩x. A family of smoothly-varyingmatricesGx induces a Riemannian structure
onM.

Definition 2.18 (Riemannian manifold). A Riemannian manifold is a smooth man-
ifoldM equipped with a Riemannian metric g. A Riemannian metric onM is a family
of inner products on TxM such that the corresponding matrices Gx are smoothly-varying,
meaning the maps (Gx)i j : U → � are C∞.

Definition 2.19 (Riemannian submanifold of�n). A Riemannian submanifoldM
of �n is a Riemannian manifold immersed in �n equipped with the Riemannian metric
inherited from �n .

Definition 2.20 (Scalar and vector elds, directional derivative). A scalar eld on
a smooth manifoldM is a C1 function f :M → �.
A directional derivative of a scalar eld f onM at x in the direction u � [c] ∈ TxM is
the scalar

D f (x)[u] � d
dt f (c(t))

���
t�0

A vector eld on a smooth manifoldM is a mapping which associates to each point x a
vector X(x) � Xx from the tangent space TxM:

X : M → TM : x 7→ Xx

Moreover, X satis es the condition that the composition π ◦ X is the identity map (each
x ∈ M is mapped to itself).

An important vector eld is the gradient of a scalar eld f on M. Analogously
to Euclidean spaces, the gradient at a xed point x is the direction of the steepest
ascent of f at x. Note that for scalar elds onM � �n , the Riemannian gradient
agrees with the usual Euclidean gradient ∇ f � (∂ f /∂x1, . . . , ∂ f /∂xn).

Definition 2.21 (Riemannian gradient). The gradient of a scalar eld f onM at x,
denoted by grad f (x), is the unique element of TxM that satis es

D f (x)[u] �
⟨
grad f (x), u

⟩
for all u ∈ TxM .

Computationally, this de nition is often inconvenient. For a submanifold M of
�n , the Riemannian gradient can be obtained by projecting the Euclidean gradient
to the tangent bundle TM. For a xed point x ∈ M, let us de ne the (unique)
orthogonal projectors which decompose any v ∈ �n into the tangent component in
TxM and the orthogonal component in T⊥xM:

Px : �n → TxM : v 7→ Pxv,

P⊥x : �n → T⊥xM : v 7→ P⊥x v.
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Lemma 2.22 (Riemannian gradient as projection). Let f be a scalar eld on the Rie-
mannian submanifoldM of �n de ned as the restriction f � ϕ

��
M of a scalar eld ϕ :

�n → � to the manifoldM. Then

grad f (x) � Px∇ϕ(x).

Let us repeat the purpose of this section: our goal is to introduce basic notions
from Riemannian geometry that we later use to de ne energy-minimizing splines
in the space of orientations in �3 – this space is indeed a 3-manifold (see the next
section). Energy-minimizing splines on Riemannian manifolds can be seen as a
generalization of classical (Euclidean) splines to curved spaces. In order to de ne
such splines, we need to de ne the concepts of velocity Ûc and acceleration Üc for a
curve lying on a manifold.

Definition 2.23 (Velocity along a curve). Let c : [a , b] → M be a C1 curve on the
manifoldM ⊂ �n . The velocity along c is given by

Ûc(t) � [ct]

where ct : [a − t , b − t] → M : ct(s) � c(s + t) is the reparametrization of c such
that ct(0) � c(t). Recall that the tangent vector [ct] is de ned in De nition 2.15 via the
equivalence relation from Eq. (2.15).

For the de nition of acceleration D2/dt2c using the concept of covariant derivative,
see Appendix A. Note that ifM is a submanifold of�n , the velocity Ûc reduces to the
usual derivative c′. The relation to the usual acceleration c′′ is almost as straight-
forward – similarly to the computation of gradient, the curvature vector c′′ has to
be reprojected back onto the manifold, as given by the following proposition.

Proposition 2.24 (Acceleration along a curve as projection). Let c : �→M be a C2

curve on the submanifoldM ⊂ �n . The acceleration along c is given by

D2

dt2
c(t) � Pc(t)

d2

dt2
c(t) � Pc(t)c

′′(t).

Having introduced velocity along a curve, we can proceed to de nitions of curve
length and geodesic distance onM. As before, these are analogical to the Euclidean
case – length is de ned as integral of velocity, and geodesic distance is the length
of the shortest path c ⊂ M between two points.

Definition 2.25 (Length of a curve). The length of a C1 curve c : [a , b] → M on a
Riemannian manifold isM

L(c) �
∫ b

a

√⟨
Ûc(t), Ûc(t)

⟩
c(t) dt �

∫ b

a

Ûc(t)
c(t) dt .



2.4 Smooth manifolds 33
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Figure 2.4: Exponential map. On the right, an example on the unit circle �1 ⊂ �
viewed as a 1-manifold in the complex plane.

WhenM is embedded in �n , this reduces to the computation of length from De nition 2.1
for regular curves, i.e. Ûc is replaced by c′.

Definition 2.26 (Riemannian distance). Riemannian distance or geodesic distance
on the manifoldM is given by

dist :M ×M → �+ : (x, y) 7→ dist
(
x, y

)
� inf

c∈Γ
L(c).

Here, Γ is the set of all C1 curves c : [0, 1] → M connecting x and y i.e. c(0) � x and
c(1) � y.

Definition 2.27 (Geodesic curve). A curve c : [a , b] → M is geodesic i it has zero
acceleration on all its domain.

Distance, velocity and acceleration respectively control data interpolation, stretch-
ing, and bending of a smoothing spline on a Riemannianmanifold. In Chapter 3 we
work with discrete splines on Riemannian manifolds: in such setting, a continuous
curve c ∈ M is approximated by a nite sequence of points xi ∈ M. To discretize
distance, velocity and acceleration, we need the concepts of exponential map, and
its inverse, the logarithmic map. Loosely speaking, the exponential map generalizes
addition in vector spaces, while the logarithmic map generalizes di erence.

Definition 2.28 (Exponential map). LetM be a Riemannian manifold and x ∈ M. For
every tangent vector ξ ∈ TxM, there exists an open interval I ∋ 0 and a unique geodesic
c(t; x; ξ) : I → M such that c(0) � x and Ûc(0) � ξ. Moreover, we have the homogeneity
property

c(t; x; aξ) � c(at; x; ξ).



34 2 Foundations

The exponential map at x is de ned as (Fig. 2.4)

Expx
: TxM →M : ξ 7→ Expx (ξ) � c(1; x; ξ).

Definition 2.29 (Logarithmic map). The inverse of the exponential map is called the
logarithmic map at x; it is de ned as

Logx
:M → TxM : y 7→ Logx

(
y
)
� ξ such that Expx (ξ) � y and ∥ξ∥x � dist

(
x, y

)
.

2.5 Rotations in 3D

The notion of Darboux frameD � {t,N,B}, introduced in Section 2.3, is convenient
for relating surfaces with curves lying on them. The Darboux frame is de ned us-
ing the tangent vector t of the curve, the normal vector N of the surface, and the
binormal B � t×N. Later, we will see that it is convenient to represent the Darboux
frameD using the rotation between the canonical frame {e1, e2, e3} andD.

2.5.1 Rotations as special orthonormal matrices

A rotation is a linear transformation of a vector space, which preserves lengths (no
stretching) and orientation (no ipping). Mathematically, this corresponds to a
change of basis that does not change the orientation; it transforms a right-handed
frame into another right-handed frame. Conversely, any rotation R can be thought
of as a transformation, which takes the canonical frame E � {e1, e2, e3} and trans-
forms it into a di erent (right-handed) frame

A � {a1, a2, a3} , ai ∈ �3 : ai · ai � 1, ai · a j � 0 for i , j, a1 × a2 � a3,

so that
R(e1) � a1, R(e2) � a2, R(e3) � a3.

Such linear transformation R can be represented by an orthogonal matrix A with
the vectors ai in columns:

A �

(
a1 a2 a3

)
. (2.16)

Using this representation, the transformation R is computed via the matrix-vector
multiplication:

R(v) � Av.

The inverse rotation is given by A−1
� A
⊺. Indeed,

A
⊺
A �

©«
a
⊺

1

a
⊺

2

a
⊺

3

ª®®¬
(
a1 a2 a3

)
� I3. (2.17)
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Set: SO(3) �

{
A ∈ �3×3 : A

⊺
A � I3 and det(A) � 1

}
Tangent spaces: TASO(3) �

{
AΩ ∈ �3×3 : Ω + Ω

⊺
� 0

}
Inner product: ⟨AΩ1,AΩ2⟩ � trace

(
Ω
⊺

1Ω2

)
Vector norm: ∥AΩ∥ �

√
⟨AΩ,AΩ⟩

Distance: dist (A, B) �

log
(
A
⊺
B
)

F
Exponential: ExpA (AΩ) � A exp (Ω)
Logarithm: LogA (B) � A log

(
A
⊺
B
)

Projector: PA (H) � A skew
(
A
⊺
H

)
Table 2.5: Toolbox for the special orthogonal group SO(3) [Bou13].

The determinant of A is computed as the mixed product of the frame vectors:

det(A) � a3 · (a1 × a2) � a3 · a3 � 1. (2.18)

Note that Eq. (2.18) does not hold if the frameA is left-handed, i.e. if a1×a2 � −a3: in
this case, the determinant is negative. This corresponds to the change of orientation
and the resulting transformation is no longer a rotation, even though it preserves
lengths.

The natural bĳection between the set of rotations in �3 and the set of right-handed
orthonormal frames in �3 means that rotations can be represented by orthogonal
matrices with unit determinant. The set of all such matrices is the special orthogonal
group of dimension 3:

SO(3) �
{
A ∈ �3×3 : A

⊺
A � identity and det(A) � 1

}
. (2.19)

2.5.2 Riemannian structure of SO(3)

SO(3) is a Lie group: it has a structure of a compact closed 3-manifold. The usual
Riemannian structure on SO(3) is that of a Riemannian submanifold of �3×3 with
the Frobenius inner product de ned as ⟨A, B⟩ � trace

(
A
⊺
B
)
. Using this structure,

the exponential and logarithmic maps reduce to matrix exponential and logarithm.
The matrix exponential is de ned via the following power series:

exp (A) �
∞∑

n�0

An

n!
.

Matrix logarithm is de ned as the inverse of matrix exponential: we say that A is a
matrix logarithm of B, log (B) � A, if exp (A) � B. Riemannian toolbox for SO(3) is
summarized in Table 2.5, with the skew matrix operator de ned as

skew (M) � 1

2

(
M −M

⊺)
. (2.20)
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The chordal (Frobenius) metric

dF (A, B) � ∥B −A∥F
di ers from the geodesic Riemannian metric on SO(3), which is de ned as (cf. Ta-
ble 2.5)

dist (A, B) �
log

(
A
⊺
B
)

F
.

However, for rotations that are (geodesically) not too distant from each other, the
chordal metric is a good approximation of the Riemannian metric [Bou13]. Indeed,
let Ω ∈ �3×3 be skew-symmetric with ∥Ω∥F � 1 meaning that AΩ is an element of
the tangent space TASO(3). Moreover, let B � ExpA (AΩ) � A exp(tΩ). Then the
geodesic distance of A and B is

dist2(A, B) �
log

(
A
⊺
B
)2

F
�

log
(
A
⊺
A exp(tΩ)

)2

F
�

log
(
exp(tΩ)

)2

F

� t2 ∥Ω∥2F � t2.
(2.21)

For the chordal distance of A and B we have

∥B −A∥2F �

A exp (tΩ) −A
2

F
�

A
(
exp (tΩ) − I3

)2

F
�

(exp (tΩ) − I3

)2

F

�

∑∞
n�0
(tΩ)n /n! − I3

2

F
�

Ω +
1
2 t2Ω2

+ O(t3)
2

F

� t2
+ t3

⟨
Ω,Ω2

⟩
+ O(t4) � t2

+ O(t4) � dist2(A, B) + O(t4).

(2.22)

Here we used the fact that
⟨
Ω,Ω2

⟩
� trace

(
Ω3

)
vanishes since the matrix Ω3 is

skew-symmetric.

To conclude, the Frobenius metric is locally a cubic approximation of the Rieman-
nian metric. The motivation for replacing the geodesic distance by the chordal dis-
tance is the computational e ciency – using the chordal distance takes less time
since it avoids the computation of the logarithmic map. This important fact will
be used later, in Section 3.5.4, in order to simplify a cost function for a smoothing
spline de ned on the manifold SO(3).

2.5.3 Rotations as unit quaternions

First described by Hamilton, quaternions � are a non-commutative algebra of di-
mension four well-suited for representing rotations in �3. A quaternion is a 4-
tuple q � (x , y , z , w) of real numbers, which de nes a point in �4. Denoting by
i � (1, 0, 0), j � (0, 1, 0), k � (0, 0, 1) the canonical basis in �3, the quaternion q is
sometimes symbolically written as the sum of the scalar part w and the vector part
v � (x , y , z),

q � w + v � w + xi + yj + zk. (2.23)
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Quaternion algebra is de ned by the equations

i2
� j2

� k2
� ijk � −1.

The rotation around a unit Euler axis e ∈ �3 by the angle θ is represented by the
unit quaternion q ∈ �∗:

q � cos
θ

2
+ e sin

θ

2
. (2.24)

The inverse rotation corresponds to the conjugate quaternion

q̄ � cos
θ

2
− e sin

θ

2
.

The operation of quaternion conjugation can be interpreted either as direction in-
version −e or angle inversion −θ, yielding the same q̄. Inverting both the direction
and the angle gives the antipodal quaternion

−q � − cos
θ

2
− e sin

θ

2
,

which represents the rotation around −e by the angle −θ. In essence, this is equiv-
alent to the rotation represented by q.

Anyunit quaternionq � w+xi+yj+zk ∈ �∗ satis es the relation x2
+y2

+z2
+w2

� 1.
It follows that there is a bĳection between the unit quaternions�∗ and the 3-sphere

�
3
�

{
(x , y , z , w) : x2

+ y2
+ z2

+ w2
� 1

}
⊂ �4. (2.25)

The 3-sphere is a useful topological model of rotations in �3. We must however
not forget that unit quaternions are a 2:1-covering of SO(3) since antipodal quater-
nions q and −q represent the same rotation. Therefore, the manifold SO(3) is not
homeomorphic to the 3-sphere itself, but rather to the quotient group

�
3/{I ,−I} ≈ SO(3),

where I � (1, 0, 0, 0) is the north pole and −I is the south pole; both poles cor-
respond to the identity rotation. This means that conceptually, we can visualize a
rotation – a point in SO(3) – as a pair of antipodal points on the 3-sphere (Fig. 2.6).

The conversion of a unit quaternion q � (x , y , z , w) ∈ �3 to the corresponding
rotation matrix A(q) ∈ SO(3) is described by the following relation [Sho85]:

A(q) �
©«
2w2

+ 2x2 − 1 2x y + 2wz 2xz − 2w y
2x y − 2wz 2w2

+ 2y2 − 1 2yz + 2wx
2xz + 2w y 2yz − 2wx 2w2

+ 2z2 − 1

ª®®¬
. (2.26)

Note that all individual terms are quadratic in q. It follows that A(−q) � A(q) and
A(q̄) � A(q)⊺.



38 2 Foundations

�3 �3 �3 �3 �3

Figure 2.6: Apair of antipodal points on the 3-sphere (top) corresponds to a unique
rotation (bottom). The above gure is a 2D illustration of this principle.

2.5.4 Spherical linear interpolation

In computer animation, animators de ne the rotation of an object in a series of
keyframes, and the intermediate rotation is computed automatically by the anima-
tion system. The quaternion representation provides a direct way for interpolation
between rotations using the spherical structure of the unit quaternions. Interpola-
tion between two unit quaternions q0, q1 ∈ �3 essentiallymeans drawing the (short-
est) spherical arc between q0 and q1 plotted as points on the 3-sphere. If ϕ is the
angle between the two quaternions given by q0 · q1 � cosϕ, such spherical arc is
given by the spherical linear interpolation (Slerp) from q0 to q1 with a parameter
t ∈ [0, 1] (cf. Eq. (1.2) on p. 11) :

Slerp(q0, q1; t) �
sin

[
(1 − t)ϕ

]
sinϕ

q0 +
sin

[
tϕ

]
sinϕ

q1. (2.27)

Given an orientation in thematrix form, the choice of the representative quaternion
is not unique – any one of the two antipodal quaternions can be picked. Generally,
the quaternion is picked in a way that minimizes the length of the resulting spher-
ical arc.

2.6 Cell complexes

In this section we de ne the notion of the 2-dimensional cell complex, a topological
structure needed to formalize two important concepts: the triangle mesh, and the
curve network. This section follows Leškovský [Leš02]. For the follow-up reading,
see Hatcher [Hat02] and Berberich et al. [Ber+10].
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Let X be a set and denote by Xk the Cartesian product of k copies of the set,

Xk
� X × · · · × X︸        ︷︷        ︸

k times

.

The elements of Xk are k-tuple variations (x1, . . . , xk). To de ne a cell complex, we
want some of these variations to be equivalent. For instance, if X � {0, 1, 2} repre-
sents the vertices, the six triplets (0, 1, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0), (0, 2, 1), (1, 0, 2)
de ne the same triangle △. This leads to the following de nition.

Definition 2.30. The set of all cyclically and reverse unordered k-tuples for a given
set X is denoted by X[k] and de ned as the factor set

X[k] � Xk/∼

under the equivalence relation

(x1, x2, . . . , xk−1, xk) ∼ (xk , x1, . . . , xk−1) ∼ (xk , xk−1, . . . , x2, x1).

An element a ∈ X[k] is called a cell and denoted by x � [x1, . . . , xk]. A subelement
y � [y1, . . . , ym] ∈ X[m] of x, written as y ⊂ x, satis es x � [y1, . . . , ym , z1, . . . , zk−m]
for some z � [z1, . . . , zk−m] ∈ X[k−m]. We say that y belongs to x and is incident to z.

Definition 2.31 (Cell complex, simplicial complex). An abstract 2-dimensional cell
complex or simply a cell complex is a topological structure C � (V , E , F )which consists
of 0-cells or verticesV , �, 1-cells or edges E ⊂ V[2] and 2-cells or faces F ⊂ ∪∞

k�3V[k].
For a vertex v ∈ V, denote by link (v) the set of all vertices having a common face with v:

link (v) �
{

vi ∈ V : vi , v and v , vi ∈ f ∈ F
}

The following conditions need to be satis ed:

(i) No isolated vertices: each vertex v ∈ V belongs to some edge e ∈ E.
(ii) No dangling edges: each edge e ∈ E belongs to exactly one face f ∈ F (boundary

edge) or to exactly two faces f1, f2 ∈ F (interior edge).

(iii) All edges in E: each subelement e � [v1, v2] ⊂ f ∈ F is an edge e ∈ E.
(iv) No articulation vertices: If the set link (v) is nite with k vertices vi , there exists

an ordering (v1, . . . , vk) such that [vi , vi+1] ∈ E is an edge for all 1 ≤ i ≤ k − 1.
Moreover, if [vk , v1] ∈ E, then v is an inner vertex; otherwise v is a boundary vertex.

A simplicial complex is a special case of a cell complex, in which all faces are triangular:
F ⊂ V[3].

For our purposes, we also add the requirement that the cell complex needs to be
connected (in the graph sense), meaning there is a path between each pair of ver-
tices.
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(a) curves γ (b) nodes Υ (c) segments Σ (d) cycles Ω (e) discreteN

Figure 2.7: A planar curve network (S � �2) with the topology of a cell complex.
The network, given by three circular curves (a), induces a cell complex
(b–d) with six nodes, twelve segments (red: boundary, blue: interior),
and seven cycles. A discrete curve network is obtained by sampling the
smooth curves (e).

Example 2.32 (Triangle mesh). A triangle mesh T � (V , E , F ) is a piecewise-linear
2-manifold with the topology of a simplicial complex. The geometry of the mesh is given by
the embedding of verticesV speci ed via a coordinate function

v :V → �3 : vi 7→ vi .

The embedding of an edge e � (vi , v j) is the line segment between vi and v j . The embedding
of a face f � (vi , v j , vk) is the triangle with vertices vi , v j , vk .

Example 2.33 (Curve network on a surface). A curve network Γ � (Υ,Σ,Ω) on a
regular surface S is a set of curves γ lying on S and inducing a cell complex structure on
it (Fig. 2.7). The topology of a curve network is composed of nodes Υ (0-cells), segments
Σ ⊂ Υ[2] (1-cells), and cycles Ω ⊂ ∪∞

k�3Υ
[k] (2-cells).

A curve network Γ inherits the geometry of the surface region bounded by Γ (cf.
Fig. 2.7d). In particular, each curve γ ⊂ S de nes an embedding of a sequence of
segments.

Example 2.34 (Discrete network). Adiscrete networkN associated to a curve network
Γ is a set of vertices vi sampled from Γ and connected by edges, having the same topology
as Γ. Each segment γs : [0, Ls] → �3 is sampled at parameter values 0 � t0 ≤ t1 ≤ · · · ≤
tk � Ls :

γ(t0) � v0, γ(t1) � v1, . . . γ(tk) � vk .

Generally, a discrete curve network violates the condition (iv) from De nition 2.31
and therefore does not induce a cell complex – see the example in Fig. 2.7e.
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2.7 Discrete Laplacian

The Laplace-Beltrami operator (or simply the Laplacian), which we introduced in
Section 2.2, plays an important role in variational modeling of curves and surfaces
to be described in the next section. In order to work with functions de ned on
triangle meshes (Section 2.6), the Laplace operator needs to be discretized.

Consider a triangle mesh T � (V , E , F ) (Fig. 2.8) with topology de ned by a sim-
plicial complex consisting of vertices, edges and triangular faces (Example 2.32):

vi ∈ V , ei j ∈ E ⊂ V[2], fi jk ∈ F ⊂ V[3].

The geometry of T is speci ed by the coordinate function v which associates each
vertex with a position in �3:

v :V → �3 : vi 7→ vi .

The edge vector corresponding to the oriented edge ei j is indicated in bold:

ei j � −e ji � v j − vi .

When referring to a triangle T, we mean the embedding of the face fi jk induced by
v. The interior angles in T are θi , θj , θk , and the area of T is given by (Fig. 2.8a)

AT �
1

2
sin θi

e ji

 eki

 �
1

2
sin θj

ei j

 ek j

 �
1

2
sin θk

eik

 e jk

 . (2.28)

The vertices of T are oriented counter-clockwise with respect to the orientation de-
ned by the outward pointing triangle normal.

v j

vi

ei j

θj

θi

e jk
θk

vk

eki
v j

mi j

vi

mki

vk
αi j

v j

vi βi j

Ai

Figure 2.8: Notation for triangle meshes (Section 2.7)

2.7.1 Discretization via finite elements

To discretize di erential operators such as ∇S ,∆S on a piecewise-linear triangle
meshT , we follow the nite elementmethod of [Mey+03]; see also [Des+99; Bot+10;
Cra+13; Jac13].
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Todiscretize the Laplacian operator over ameshT , the idea is to integrate a piecewise-
linear vector function

u : T → �3

over a local averaging domain around the vertex vi (Fig. 2.8 and Fig. 2.10):∬
Ai

∆Su dA. (2.29)

Divergence theorem. Recall that Stokes’ theorem from vector calculus states that inte-
grating a di erential form α over the boundary ∂S of an orientable manifold S is
equal to integrating its exterior derivative dα over the entire domain:∫

S
dα �

∫
∂S
α. (2.30)

In a special case when S is a 2-manifold surface, integrating the divergence of a
vector eld X over a 2-dimensional averaging domain A ⊂ S can be expressed as
integration over the closed boundary ∂A. This is expressed in the divergence theorem:∬

A
∇ · X dA �

∮
∂A

N · X ds , (2.31)

where N is the unit normal eld along ∂A, and
∮

denotes integration along a closed
curve. Using the divergence theorem, Eq. (2.29) can be simpli ed as∬

Ai

∆Su dA �

∬
Ai

∇S · ∇Su dA �

∮
∂Ai

∇Su ·N ds , (2.32)

where N represents the outward-pointing normal along the boundary ∂Ai .

Finite elements. To evaluate Eq. (2.32), we rst discretize the gradient ∇Su. To this
end, the piecewise linear hat functions φn over the vertices of T (Fig. 2.9) are de ned
via

φn (vm) �
{

1 n � m ,

0 n , m.

The piecewise linear function u can then be expressed in terms of the hat functions
φn as

u �

∑
n

unφn .

As each φn is piecewise-linear, its gradient∇Sφn is piecewise-constant and vanishing
on all triangles not containing the vertex vn . Inside the triangle T with vertices
vi , v j , vk , edges ei j , e jk , ek j and interior angles θi , θj , θk (Fig. 2.8), we have

∇Su � ∇S
∑

n

unφn �

∑
n

un∇Sφn � ui∇Sφi + u j∇Sφ j + uk∇Sφk +

∑
n,i , j,k

un ∇Sφn︸︷︷︸
�0

.
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φn

vn

∇Sφn

Figure 2.9: Hat function φn and the direction of the gradient vector eld ∇Sφn ,
which vanishes on triangles not incident to vn .

vi Vor(i) ∩ T

(a)

vi Vor(i) ∩ T

(b) (c)

vi
1

4
AT

(d)

vi

1

2
AT

(e)

Figure 2.10: (a) Voronoi areas of the vertices in a triangle are obtained by connect-
ing edgemidpoints to the center of the circumcircle and computing the
areas of the formed quadrilaterals. For a right triangle (b), one of the
midpoints is identical to circle’s center, and the two quads collapse to
triangles. To avoid problems with possible negative areas (c), a modi-
ed version is used in obtuse triangles: instead of connecting the mid-

points to circle’s center, the midpoint opposite to the obtuse angle is
connected to the other two midpoints (d-e). This yields a continuous
de nition of the mixed Voronoi area Ai . See also Algorithm 2.11.

Ai = 0
for each triangle T incident to the vertex vi do

if θi is non-obtuse then # use the Voronoi area, Fig. 2.10 (a-b)
Ai += Area(Voronoi(i) ∩ T)

else # alternative definition, Fig. 2.10 (d-e)
if θi is obtuse then

Ai += AT/2 # blue quadrilateral
else

Ai += AT/4 # red triangle
end if

end if
end for

Algorithm 2.11: Computation of the mixed Voronoi area Ai [Mey+03]
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The direction of the gradient ∇Sφi in the triangle T is parallel to T and perpendic-
ular to the opposite edge e jk (Fig. 2.9 right). The magnitude

∇Sφi

 is inversely
proportional to the height h jk of T with e jk as a base (Fig. 2.12):

∇Sφi

 �
1h jk

 �
1

sin θk

eik

 �

e jk


sin θk

e jk

 eik

 �

e jk


2AT

.

This means that the gradient can be written as ∇Sφi �
e⊥

jk

2AT
where e⊥ denotes the

vector obtained by rotating e by 90 degrees counterclockwise in the plane of T
(Fig. 2.12) and AT denotes the area of T.

e⊥
k j
� −e⊥

jk

e⊥
ki

e⊥
i j

ei j

eki

e jk

θk

e jk

h jk ∇Sφi

e⊥
jk

Figure 2.12: Vectors used for computing ∇Su in Eq. (2.35)

Discrete gradient. For a xed parameter inside T, the hat functions satisfy the parti-
tion of unity: φi + φ j + φk � 1. Di erentiating this equality yields ∇Sφi + ∇Sφ j +

∇Sφk � 0. Therefore, the constant expression for the gradient ∇Su on the triangle
T is

∇Su � ∇Sφ j(u j − ui) + ∇Sφk(uk − ui) �
1

2AT

(
(u j − ui) e⊥ki + (uk − ui) e⊥i j

)
. (2.33)

Discrete Laplacian. Now, consider the integration in Eq. (2.32) for each triangle in-
dividually. Denoting by mi j �

1
2(vi + v j) the midpoint of the edge ei j (Fig. 2.8), we

can write ∫
∂Ai∩T

∇Su ·N ds � ∇Su ·
(
mi j −mki

)⊥
�

1

2
∇Su · e⊥k j . (2.34)
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Substituting for ∇Su by Eq. (2.33) gives∫
∂Ai∩T

∇Su ·N ds � (u j − ui)
e⊥

ki
· e⊥

k j

4AT
+ (uk − ui)

e⊥
i j
· e⊥

k j

4AT
.

� (u j − ui)
eki · ek j

4AT
+ (uk − ui)

ei j · ek j

4AT
.

(2.35)

The area of T is given by Eq. (2.28). Since

cos θj �
ei j · ek jei j

 ek j

 , cos θk �

eik · e jkeik

 e jk

 ,
the integral from Eq. (2.35) is equal to∫

∂Ai∩T
∇Su ·N ds � (u j − ui)

eki · ek j

2 sin θk

eki

 ek j

 + (uk − ui)
ei j · ek j

2 sin θj

ei j

 ek j


�

1

2

(
(u j − ui)

cos θj

sin θj
+ (uk − ui)

cos θk

sin θk

)

�
1

2

(
(u j − ui) cot θj + (uk − ui) cot θk

)
.

Integrating over the whole domain Ai and rearranging the terms yields the cotan-
gent formula∫

∂Ai

∇Su ·N ds �

∬
Ai

∆Su dA �

∑
v j∈ link(vi)

1

2

(
cot αi j + cot βi j

) (
u j − ui

)
(2.36)

where αi j , βi j are the angles opposite to the edge ei j (Fig. 2.8). Averaging by the
Voronoi area Ai (Fig. 2.10) nally gives the discrete Laplacian at the vertex vi

∆Sui � (∆Su)i �
1

2Ai

∑
v j∈ link(vi)

(
cot αi j + cot βi j

) (
u j − ui

)
(2.37)

where the set link (vi) denotes the one-ring neighborhood of vi .

Discrete mean curvature. Using the discrete Laplacian (2.37) in connection with
Eq. (2.11) yields a discretization of the mean curvature vector H on a triangle mesh:

Hi � ∆Svi �
1

2Ai

∑
v j∈ link(vi)

(
cot αi j + cot βi j

) (
v j − vi

)
. (2.38)

Consequently, the absolute mean curvature at the vertex vi is (cf. Eq. (2.10), p. 26)

Hi �
1

2
∥Hi ∥ . (2.39)
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2.7.2 Alternative definitions

Though widely used, Eq. (2.37) is only one possible discretization of ∆S . The gen-
eral form is

∆Sui � wi

∑
v j∈ link(vi)

wi j(u j − ui),

where wi , wi j are the vertex and edge weights respectively, with
∑

j wi j � 1. The
cotangent Laplacian thus uses the weights

wi � 1/Ai , wi j �
1

2

(
cot αi j + cot βi j

)
.

Another discretization is the uniform (graph) Laplacian which does not account for
the geometry of the mesh [Fie73; Tau95]

wi � 1, wi j � 1/
�� link (vi)

�� .

2.7.3 Matrix form and higher-order Laplacians

For e cient manipulation, the discrete Laplacian ∆S is usually represented in ma-
trix form. Vertex masses are arranged into a diagonal matrix M called the mass
matrix: Mii � 1/wi . Edge weights are stored in a symmetric matrix C called the
cotangent matrix:

Ci j �



−∑

k∈ link(vi) wik , i � j,

wi j , j ∈ link (vi) ,
0, otherwise.

Discrete Laplacian is given by the matrix

L � M−1C. (2.40)

Higher-order Laplacians are de ned recursively

∆
0
S fi � fi ,

∆
k
S fi � wi

∑
v j∈ link(vi)

wi j(∆k−1
S f j − ∆k−1

S fi).

In matrix form, this corresponds to matrix multiplication ∆k
S � Lk .
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2.8 Variational modeling of shapes

Variational modeling is a popular approach to shape tting, reconstruction and de-
formation, due to its theoretical guarantees and straightforward interpretation. In
a variational framework, the shape S is computed as the minimizer of some en-
ergy E subject to boundary conditions. The energy functional E typically involves
quantities such as area and curvature.

Minimal surfaces locally minimize the surface area; this property is expressed via
the membrane energy

Emembrane �

∬
S

dA, (2.41)

where dA denotes the surface area element. Minimizing the total curvature, we get
the thin-plate energy [Duc77]

EthinPlate �

∬
S
κ2

1 + κ
2
2 dA. (2.42)

Finally, minimizing the variation of curvature yields theminimumvariation surface
[MS92]

EminVar �

∬
S

∂κ1

∂t1


2

+

∂κ2

∂t2


2

dA. (2.43)

These energies are nonlinear and their minimization is computationally expensive,
which makes them unsuitable for interactive applications. In practice, these ener-
gies are approximated by the linearized functionals: the Dirichlet energy E1, the
Laplacian energy E2, and the Laplacian gradient energy E3 [Jac13]:

E1 �

∬
Ω

∥∇x∥2 dA, (2.44a)

E2 �

∬
Ω

∥∆x∥2 dA, (2.44b)

E3 �

∬
Ω

∥∇∆x∥2 dA. (2.44c)

Proposition 2.35. Minimizers of the linearized energies (2.44) correspond to the solu-
tions of the Euler-Lagrange equations

∆
kx � 0, k � 1, 2, 3. (2.45)

Proof. Let us derive the Euler-Lagrange equation of the Dirichlet boundary value
problem

min
x

E1(x) s.t. x|∂Ω � x0. (2.46)
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To this end, we use the calculus of variations [Kob97; Bot+10]. The derivationworks
analogically for the other two energies.

Let us assume that x : Ω → �3 is the minimizer of E1. Then it holds that E1(x) ≤
E1(x + λf) for an arbitrary test function f which vanishes on the boundary of Ω:

f : Ω→ �3, f|∂Ω � 0. (2.47)

As a function of λ, the energy E1 therefore attains its minimum at λ � 0:

∂

∂λ
E1 (x + λf)

��
λ�0

� 0. (2.48)

Simplifying the left side yields

∂

∂λ

∬
Ω

∇ (x + λf)
2

F
dA � 2

∬
Ω

⟨∇f,∇x⟩F + λ ∥∇f∥F dA. (2.49)

The last term vanishes for λ � 0, so the substitution into Eq. (2.48) gives∬
Ω

⟨∇f,∇x⟩F dA � 0. (2.50)

Recall that the divergence product rule states that given a scalar function f : Ω→ �
and a vector function g : Ω→ �2, the following identity holds:

∇ · ( f g) � (∇ f ) · g + f (∇ · g). (2.51)

Denote by fi the elements of f and by xi the elements of x, i � 1, 2, 3. Applying the
product rule from Eq. (2.51) for f � fi , g � ∇xi yields

∇ · ( fi∇xi) � ∇ fi · ∇xi + fi(∇ · ∇xi︸ ︷︷ ︸
∆xi

).

Equivalently, ∬
Ω

∇ · ( fi∇xi)dA �

∬
Ω

∇ fi · ∇xi dA +

∬
Ω

fi∆xi dA. (2.52)

Using the divergence theorem from Eq. (2.31), the left side is equal to∬
Ω

∇ · ( fi∇xi)dA �

∮
∂Ω

N · ( fi∇xi)ds � 0,

where the last identity follows from the de nition of f in Eq. (2.47) since fi |∂Ω � 0.

0 �

∬
Ω

3∑
i�1

∇ fi · ∇xi dA +

∬
Ω

3∑
i�1

fi∆xi dA �

∬
Ω

⟨∇f,∇x⟩F dA +

∬
Ω

f · ∆x dA.

The rst integral is zero, see Eq. (2.50); the second integral vanishes if and only if
∆x � 0 since the choice of f is arbitrary.
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A triangle mesh discretization of Eq. (2.45) is obtained by using the discrete Lapla-
cian from Section 2.7. This yields the linear system

LkV � 0 (2.53)

where the matrix V � (v1, . . . , vn)⊺ contains vertex positions in rows. To get a non-
trivial solution of this system, suitable boundary conditions need to be imposed.
In the context of surface modeling, rst-order positional constraints are the most
common. Higher-order constraints are sometimes needed, including prescription
of normal or tangent vectors, often in combination with positional constraints.

Twoprincipal approaches are adopted in order to integrate the positional constraints
into the system (2.53). We introduce the two approaches on the example of ∆x � 0.
SupposeVc � {v1, . . . , vc} is the set of constrained vertices andVf � {vc+1, . . . , vc+ f �

vn} is the set of remaining free vertices.

Hard constraints are imposed by eliminating the rows and columns corresponding
to the xed vertices from Lk – the positions are therefore exactly interpolated. This
is equivalent to solving the n × n system[

L f

Ic 0

] [
Vc

V f

]
�

[
0

V∗c

]
(2.54)

where Ic is the c × c identity matrix, L f are the f rows of the Laplacian matrix cor-
responding to the free vertices Vf , and Vc ,V f are the computed positions of con-
strained and free vertices, respectively; ∗ denotes the xed positions. Splitting the
matrix L f �

[
L f c L f f

]
into two blocks corresponding to constrained vertices and

free vertices, the system (2.54) is equivalent to

L f f V f � −L f cV
∗
c .

On the other hand, soft constraints are not satis ed exactly – they are approximated
by including additional rows in the system:[

L
Ic 0

]
︸   ︷︷   ︸

A

[
Vc

V f

]
︸︷︷︸

X

�

[
0

V∗c

]
︸︷︷︸

B

. (2.55)

This over-determined (n + c) × n system is then solved in the least-squares sense,
i.e. X is found by minimizing

∥AX − B∥2 � ∥LX∥2 +
∑

vi∈Vc

vi − v∗i
2
. (2.56)

The explicit solution is given by the normal equations

A
⊺
AX � A

⊺
B. (2.57)





3
Curve networks from orientations

F .
Chapter 1 introduced the problemof acquisition and reconstruction of shapes using
sensors; Chapter 2 presented the mathematical foundations of this thesis, forming
the theoretical basis upon which we will build our algorithms. In this chapter, we
describe the rst contribution of this thesis: a method for reconstructing smooth
curve networks from orientation and distance data provided by sensors.

After scanning the surface of a physical object using one of our acquisition devices
(Section 1.4), we obtain a sample of surface orientations with associated distance
parameters. In our dynamic setup, these orientations are acquired along a network
of smooth curves on the surface (Example 2.33, p. 40). The topology of the network
is not limited by the devices that we use.

The goal of the algorithms presented in this chapter is to reconstruct a smooth curve
network from the acquired orientations while respecting the topology and consis-
tency of the network. Our approach is driven by a simple principle mostly over-
looked in previous works: at each intersection in a curve network, the positions
and normals of two intersecting curves have to coincide. Guided by this idea, we
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develop automatic network reconstruction procedures that enforce the constraints
at intersections by design.

Our method addresses the following three challenges, which we have identi ed
prior to its development.

Unknown positions. Sensors measure local orientations of the surface – no ab-
solute positions in the world space nor relative positions of adjacent sensors are
known.

Inconsistent data. Intersecting curves often provide con icting data, for instance
two di erent normals for the same point in the world space.

Sensor noise. Rawdata from inertial sensors are noisy andneed to be pre-processed
before they can be used to recover the positions.

In order to resolve these issues, our method works in two stages: ltering of orien-
tations (Section 3.5), and reconstruction of positions (Section 3.6).

Filtering. Acquired orientations, which are sampled non-uniformly, are rst pre-
processed to obtain a uniform sampling without outliers (Section 3.5.3). The com-
puted uniform samples are then smoothed using non-parametric regression in the
space of orientations (Section 3.5.4). We formulate the regression as an optimization
problem with a custom cost function, which respects the intersection constraints
placed on the orientations.

Reconstruction. The smooth curve network is retrieved by integrating the ltered
orientations. The integration is done by solving a global Poisson system. The sys-
tem is formulated in such a way that the resulting network is well-connected and
smooth.

The advantages of our approach aremultiple. First, the resultingmethod is fully au-
tomatic and does not require manual corrections in order to obtain well-connected
intersecting curves. In addition to satisfying the topological constraints, the recon-
structed network has continuous normals at curve intersections. This is an impor-
tant feature for a proper subsequent processing of the network.

Second, while the ltering is performed automatically, the user has some degree
of control over the result via a small set of parameters. In Section 3.7 we discuss
possible strategies for choosing the optimal parameters.

Third, the method is fast for a reasonably chosen sampling density. In practice, this
means that the user can adjust the ltering weights interactively, and immediately
gets the recomputed network as visual feedback. Results and performance statistics
are also discussed in Section 3.7.
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Note that prior to our two-stage reconstruction, we use the existing methods to
estimate the orientations from raw sensorsmeasurements. The theory behind these
methods is summarized in Section 3.4.

We begin this chapter by reviewing the related methods. While in Section 1.3 we
described the state-of-the-art methods dealing with sensors data, here we summa-
rize methods that are directly related to our algorithms.

The work presented in this chapter was originally published in [Sta+17a; Sta+17b] and presented at
[SMI17]. See the list of publications on p. 187.

3.1 Related work

Previous work related to this chapter is organized into three sections. Section 3.1.1
describes methods and devices used for reconstruction and sketching of 3D curves.
Section 3.1.2 summarizes algorithms for estimation and ltering of orientations.
Finally, Section 3.1.3 describes the use of Poisson’s equation in the context of shape
reconstruction.

3.1.1 Shape from curves

The problem of generating shapes from collections of curves has been well studied
in computer-aided geometric design (CAGD) and all standard techniques can be
found in Farin [Far02]. In the recent years, the interest in this problem was re-
ignited due to its applications in sketch-based modeling [IMT99; Nea+07; BBS08;
AJC11; Xu+14] and in virtual reality (VR) systems such as Google’s TiltBrush [Goo]
(Fig. 3.1 left).

Inspired by years of research in CAGD, the surface from curves paradigm is invalu-
able for shape design in modern sketching and VR systems. Recently, Arora et al.
[Aro+17] have studied issues with accurate design of shapes in the existing VR sys-
tems. Their study suggests that users struggle even with simple tasks (drawing a
closed circle) when sketching in three dimensions. A system like ours can help in
solving such accuracy and consistency issues.

Although equally important, the problemof reconstruction of existingphysical shapes
from a collection of curves received less attention. 3D scanners usually provide
large amounts of data and tend to ignore intrinsic structure of the scanned shape.
Alternatively, objects can be de ned by their characteristic curves as often done in
perception and sketch-based modeling. Cao et al. [CNW16] detected characteristic
curves in noisy point clouds, then use these curves for surface reconstruction.
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Figure 3.1: Recent curve acquisition devices that use inertial sensors. Left to right,
Tilt Brush [Goo], SmartPen [Mil+16] and 01 by Instrumments [Ins].

The use of inertial measurement units (IMUs) for shape acquisition might provide
a good alternative in situations for which the optical methods do not yield proper
results, positioning sensors along object’s characteristic curves. Milosevic et al.
[Mil+16] introduced SmartPen, a low-cost system for capturing 3D curves, which
combines an IMU with a stereo camera (Fig. 3.1 middle). By combining a stereo
camera with a sensor unit, their system is a mixture of traditional 3D scanners and
our shape from sensors setup. However, SmartPen’s sensors only serve for deter-
mining device’s orientation needed for estimating relative position of the tip of the
pen. Much like traditional point-cloud scanners, the system relies on visual input
to get 3D position of the device in world space; this limits the size of the scanned
object.

A recent example of a curve acquisition device is the commercially available 01 by
Instrumments [Ins], a dimensioning tool with an IMU and a laser (Fig. 3.1 right).
Usage of this device for 3D curve reconstruction has yet to be demonstrated exper-
imentally.

3.1.2 Orientation estimation and filtering

Orientation or attitude control has been studied extensively in aeronautics, where
accurate algorithms are indispensable for correct estimation of vehicle’s orientation
with respect to celestial objects [MM00]. Noise in data is usually reduced using a
Kalman lter – speci c approaches depend on the representation used for orienta-
tions [CMC07] (Section 2.5). Markley et al. [Mar+07] described a classical algorithm
for computing means in the group SO(3). An average rotation is de ned as the
minimizer of a weighted penalty function, and the corresponding unit quaternion
is computed e ciently via eigendecomposition of a 4 × 4 matrix (Section 3.4).

Apart from statistical approaches such as Kalman lters, geometric methods can be
used to denoise orientations. Manifold methods are often used for data regular-
ization in image processing [Ros+14]. Shoemake [Sho85] introduced quaternion
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splines using spherical Bézier curves; Nielson [Nie04] later extended this algo-
rithm and introduced ν−quaternion splines. Although spline methods work well
for interpolation of rotations in a sequence of keyframes, the Bézier representation
is not suitable for ltering noisy orientations. Energy-minimizing splines for data
in Euclidean spaces have been well-studied. Reinsch [Rei67] introduced smoothing
splines that minimize stretching and bending while approximating given data in a
Euclidean space. Hofer and Pottmann [HP04] described a method for computing
such splines for data on a Riemannian manifoldM. Data are rst optimized in the
ambient (Euclidean) space, then projected onto M; these two steps are repeated
until convergence. An equivalent result can be found by optimizing data directly
on the manifold [BA11]. In this sense, classical splines are obtained forM � �d .
We use the latter approach for smoothing splines on the manifold SO(3) to lter
raw orientation data from sensors (Section 3.5).

3.1.3 Poisson reconstruction

Poisson’s equation often arises in the context of reconstruction of shapes:

∆ϕ � ∇ · f,

where ϕ is a scalar eld and f is a vector eld on amanifold. Kazhdan et al. [KBH06]
resolved a Poisson problem ∆ϕ � ∇ ·N to nd the indicator function ϕ, which im-
plicitly de nes the surface, from a sample of the surface’s oriented normal eld N.
This approach is a state-of-the-art method for surface reconstruction from unorga-
nized points clouds. Our reconstruction algorithm is inspired by the work of Crane
et al. [CPS13] who used Poisson’s equation ∆x � ∇ · T to retrieve positions x of a
closed planar curve from its tangent eld T during isometric curvature ow. We
extend this approach to closed curve networks on surfaces, and use it to reconstruct
positions of the scanned curves (Section 3.6).

3.2 Problem statement

Given a smooth connected 2-manifold surfaceS ⊂ �3, we consider a curve network
Γ, which is a collection of G1 smooth curves embedded on S. The network Γ is
therefore a topological subspace of S. Curves in Γ divide the surface into a nite
number of cells forming a two-dimensional cell complex C � (V , E , F ) on S (cf.
Example 2.33 and Fig. 2.7 on p. 40), consisting of nodesV (0-cells), segments E (1-
cells) and cycles F (2-cells). Moreover, we suppose the cell complex is connected
and the cycles are contractible (Fig. 3.2). Each curve γ ∈ Γ can be thought of as a
path in C. We say that two curves intersect at a node v ∈ V if their corresponding
paths contain v.
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Figure 3.2: Curve networks: in this example, only the top left curve network is
a valid input to our algorithm. The other three networks have non-
contractible cycles (top right), violate the de nition of a cell complex (bot-
tom left) or they are disconnected (bottom right).

Denote by x : [0, L] → �3 the natural parametrization of γ ∈ Γwhere L is the length
of γ. For a xed point x on the curve, the orthonormal Darboux frameD � {t,N,B}
is de ned as (Section 2.3)

t � x′, N ⊥ TxS , B � t ×N.

Here, TxS denotes the two-dimensional tangent space of S at the point x ∈ S and
N is chosen as the outward surface normal. We represent the Darboux frame D
as an orientation matrix A � [t N B] ∈ SO(3), which is a member of the special
orthogonal group (cf. Eq. (2.19) in Section 2.5)

SO(3) �
{
A ∈ �3×3 : A

⊺
A � identity and det(A) � 1

}
.

When talking about an “orientation” or a “frame”, we refer to the same concept
– the Darboux frame of a curve point with respect to the underlying surface. The
projections on the tangent and the normal component of the orientation matrix A
are denoted by

A|t : A � [t N B] 7→ t, A|N : A � [t N B] 7→ N.
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A(x)

A|N A|t
Figure 3.3: For a closed network, the orientation function x 7→ A(x) is not contin-

uous (right) since the tangent vector is di erent for each curve passing
through an intersection. Note that the projection on the normal compo-
nent A|N : Γ→ �2 (Gauss map of S restricted to curves) is closed as the
surface normal varies continuously (left).

The function A : Γ → SO(3), which associates each curve point to its Darboux
frame, is not continuous. Indeed, at intersections the tangent vector t di ers for
each adjacent curve (Fig. 3.3). Note however that the projection on the normal com-
ponent A|N is continuous and is identical to the Gauss map of S restricted to the
curves in Γ.

Our goal is to retrieve the unknown positions x provided a sample of orientations
Ai � A

(
x (di)

)
for each curve γ at known distances di ∈ [0, L]. We suppose the

topology of the underlying cell complex C is known.

The following section provides an overview of our method for solving this prob-
lem.

3.3 Method overview

In this section, we present the overviewof ourmethod for resolving the problemde-
ned in Section 3.2. Given a set of noisy orientations acquired along a set of curves

on a surface, our method ensures the reconstruction of a smooth curve network
with normals. Fig. 3.4 summarizes the main steps.

First, we use the existing algorithms to estimate orientations from raw sensor mea-
surements. As described in Section 1.2, each sensor measures a three-dimensional
vector. To estimate the total orientation, themeasured vectors are matchedwith the
reference vectors, and the orientation, represented by a quaternion, is computed as
a solution of an eigenproblem. More details on orientation estimation are given in
Section 3.4.

Next, the orientations and distances acquired from the physical surface are pre-
ltered (Section 3.5.3) using e cient averaging schemes in the quaternion space



58 3 Curve networks from orientations

(Section 3.5.2). The pre- ltered data are smoothed using regression on the mani-
fold of orientation matrices (Section 3.5.4) to obtain smoothly varying frames with
consistent normals.

Whenworkingwith orientations, we use two di erent representations (Section 2.5).
Quaternions are used for estimation and for pre- ltering, leveraging e cient quater-
nion algorithms for estimation and averaging of orientations. For the subsequent
regression, we represent the orientations by rotationmatrices from SO(3). This choice
facilitates the inclusion of normal consistency constraints, which are di cult to han-
dle using the quaternion representation (Appendix B).

Finally, in Section 3.6, we formulate the reconstruction of positions from the ltered
orientations as a Poisson problem. Poisson’s equation is discretized using nite
di erences, while respecting the topology of the network. This results in a sparse
global linear system for the whole network, which is e ciently resolved in order to
retrieve the positions.

tk
t̃ j

acquisition

physical
surface

orientation
estimation raw data

orientations
distances

outlier
removal

Gaussian
convolution

manifold
regression

Poisson
reconstruction

curve
network

positions
normals

pre-filtering
unit quaternions �3 matrices SO(3)

Section 3.4 Sections 3.5.1 to 3.5.3 Section 3.5.4 Section 3.6

Gauss map: a) raw b) no outliers c) uniform d) filtered

Figure 3.4: A schematic overview of the curve network reconstruction method pre-
sented in this chapter. Orientations after each step of the method are vi-
sualized via the Gauss map (normal component of the orientation plot-
ted on the unit 2-sphere). Image on the right shows the reconstructed
network.
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3.4 Estimation of orientations

Our acquisition devices introduced in Section 1.4 are equipped with IMUs, which
contain two sensors (Morphorider) or three sensors (smartphone). Each sensor mea-
sures a single vector in 3D. However, the problem de ned in the previous section
requires a sample of orientations Ai ∈ SO(3) as the input.

In this section, we describe the pre-processing step, in which the individual sensor
measurements are combined in order to determine the overall orientation of the
object (Fig. 3.4). We use the existing methods to this end, which are formulated as
solutions to the Wahba’s problem [Wah65]:

Problem 3.1 (Wahba’s problem). Given a set {mi}ni�1 of measured vectors with unit
length and a set {ei}ni�1 of the corresponding unit reference vectors, nd the orientation
matrix A that minimizes the cost function J(A):

min
A∈SO(3)

J(A) with J(A) � 1

2

n∑
i�1

αi ∥mi −Aei ∥2 , (3.1)

where αi are weights associated to each measurement.

Loosely speaking, minimizingWahba’s energymeans nding the rotation that pro-
vides the closest pairwise match between the set of measured vectors and the set
of reference vectors. Note that in the case of Morphorider, two reference vectors are
available (n � 2): e1 � eacc and e2 � emag (see Section 1.2).

The following proposition clari es the theoretical and practical aspects for solving
Wahba’s problem. Proofs in this section might be omitted on a rst reading.

Proposition 3.2. The cost function J(A) from Eq. (3.1) is equal to

J(A) � α − trace
(
AB
⊺) (3.2)

where

α �

n∑
i�1

αi , B �

n∑
i�1

αi mi e
⊺

i
.

Corollary 3.3. Minimizing the cost J(A) is equivalent to the maximization problem

max
A∈SO(3)

trace
(
AB
⊺)
. (3.3)

Proof (Proof of Proposition 3.2). Simplifying the term inside the sum,

∥mi −Aei ∥2 � ⟨mi −Aei ,mi −Aei⟩ � ∥mi ∥2︸︷︷︸
�1

+ ∥Aei ∥2︸  ︷︷  ︸
�1

−2 ⟨mi ,Aei⟩ � 2(1−⟨mi ,Aei⟩).
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Substituting into J(A),

J(A) � 1

2

n∑
i�1

αi ∥mi −Aei ∥2 �

n∑
i�1

αi(1 − ⟨mi ,Aei⟩) �
n∑

i�1

αi

︸︷︷︸
α

−
n∑

i�1

αi ⟨mi ,Aei⟩ .

Note that the standard dot product satis es the relation⟨
x, y

⟩
� x⊺y � trace

(
yx⊺

)
.

Therefore,
⟨mi ,Aei⟩ � trace

(
Aeim

⊺

i

)
.

Denoting Bi � mie
⊺

i
, the substitution of the above relation into the second sum in

J(A) yields

n∑
i�1

αi ⟨mi ,Aei⟩ �
n∑

i�1

αi trace
(
Aeim

⊺

i

)
�

n∑
i�1

αi trace
(
AB
⊺

i

)
� trace

©«
A

n∑
i�1

αiB
⊺

i

ª®¬
,

which completes the proof since B �

∑n
i�1 αiBi .

3.4.1 Davenport's q method

We now describe the q method, which is due to Davenport [Dav68]. This algorithm
provides a closed-form solution to the maximization in Eq. (3.3) using the quater-
nion representation. Denote by q � (v, w) � (x , y , z , w) a unit quaternion and recall
that

q
2

� ∥v∥2 +w2
� x2

+ y2
+ z2

+w2
� 1; rewriting the Eq. (2.26) then gives the

following relation between the quaternion q and the orientation matrix A(q):

A(q) � (2w2 − 1) ©«
1 0 0
0 1 0
0 0 1

ª®¬
+ 2

©«
x2 x y xz
x y y2 yz
xz yz z2

ª®®¬
− 2w

©«
0 −z y
z 0 −x
−y x 0

ª®¬︸            ︷︷            ︸
[v×]

� (w2 − ∥v∥2) I3 + 2vv⊺ − 2w[v×],

(3.4)

where [v×] is the cross-product matrix operator.

Proposition 3.4. Parametrizing the orientation matrix A � A(q) by the unit quaternion
q � (v, w) � (x , y , z , w) as in Eq. (3.4), the cost in the maximization problem (3.3) is equal
to

trace
(
A(q)B⊺

)
� q⊺Kq (3.5)
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where the traceless (i.e. with zero trace) symmetric matrix K is given by

K �

(
B + B

⊺ − trace (B) I3 b
b⊺ trace (B)

)
. (3.6)

The vector b is de ned via the relation [b×] � B
⊺ − B.

Proof. Using the relation from Eq. (3.4) we can write

A(q)B⊺ � (w2 − ∥v∥2)B⊺ + 2vv⊺B
⊺ − 2w[v×]B⊺ .

Applying the trace operator on the above equation,

trace
(
A(q)B⊺

)
� (w2 − ∥v∥2) trace

(
B
⊺)

+ 2 trace
(
v (Bv)⊺

)
− 2w trace

(
[v×]B⊺

)
.

(3.7)

The second term can be simpli ed using the following relation between the trace
and the dot product:

trace
(
xy⊺

)
� x · y � x⊺y � y⊺x.

It follows that
2 trace

(
v (Bv)⊺

)
� 2v · (Bv) � v⊺Bv + v⊺B

⊺
v. (3.8)

To simplify the last term in Eq. (3.7), let us denote the elements of B by b1, . . . , b9,
so that

B �
©«

b1 b2 b3

b4 b5 b6

b7 b8 b9

ª®¬
, B

⊺
�

©«
b1 b4 b7

b2 b5 b8

b3 b6 b9

ª®¬
.

Then

trace
(
[v×]B⊺

)
� trace

©«
©«

0 −z y
z 0 −x
−y x 0

ª®¬
©«

b1 b4 b7

b2 b5 b8

b3 b6 b9

ª®¬
ª®®¬

� trace
©«

b3 y − b2z · ·
· b4z − b6x ·
· · b8x − b7 y

ª®¬
� x(b8 − b6) + y(b3 − b7) + z(b4 − b2) � −v · b

where the vectorb � −(b8−b6, b3−b7, b4−b2) is de ned via the relation [b×] � B
⊺−B.

Consequently,
−2w trace

(
[v×]B⊺

)
� wv⊺b + wb⊺v. (3.9)

Substituting Eq. (3.8) and Eq. (3.9) into trace (3.7) gives

trace
(
A(q)B⊺

)
� (w2 − ∥v∥2) trace

(
B
⊺)

+ 2 trace
(
v (Bv)⊺

)
− 2w trace

(
[v×]B⊺

)
� (w2 − v⊺v) trace

(
B
⊺)

+

(
v⊺Bv + v⊺B

⊺
v
)
+ (wv⊺b + wb⊺v) .

� v⊺
(
B + B

⊺ − trace (B) I3

)
v + wv⊺b + wb⊺v + w2 trace

(
B
⊺)
.



62 3 Curve networks from orientations

The last expression shows the trace is quadratic in q � (v, w) � (x , y , z , w) and can
be written as a quadratic form

trace
(
AB
⊺)

�

(
v⊺ w

)
K

(
v
w

)

where the symmetric matrix K is precisely the matrix given in Eq. (3.6).

At this point, a short recapitulation is in place. In the beginning of this section,
we have de ned closest rotation between measured and reference vectors via a
weighted least-squares energy J(A). The orientation matrix was parametrized by
a quaternion as A(q) and the minimization was reformulated as the maximization
problem:

q � arg min
q∈�3

n∑
i�1

αi

mi −A(q) ei

2

F
� arg max

q∈�3

trace
(
A(q)B⊺

)
� arg max

q∈�3

q⊺Kq.

The last step leads us to a constrained maximization whose solution is given by the
following proposition.

Proposition 3.5. Let K ∈ �n×n be a symmetric real-valued matrix. Consider the con-
strained quadratic problem

max
x∈�n

x⊺K x s.t. ∥x∥ � 1, (3.10a)

which is equivalent to the unconstrained maximization on a sphere,

max
x∈�n−1

x⊺K x (3.10b)

Then the solution to both above problems is given by the (unit) dominant eigenvector of
the matrix K, which is the eigenvector corresponding to the largest eigenvalue.
Proof. The matrix K is symmetric and real-valued. By spectral theorem, K has the
spectral decomposition of the form

K � QΛQ
⊺
�

(
v1 . . . vn

) ©«
λ1

. . .
λn

ª®®¬
©«
v
⊺

1
...

v
⊺

n

ª®®¬
� λ1v1v

⊺

1 + · · · + λnvnv
⊺

n , (3.11)

where λmax � λ1 ≥ · · · ≥ λn � λmin are the real eigenvalues of K ordered de-
creasingly and vi are the corresponding eigenvectors. Then we can solve the orig-
inal maximization problem using the change of parameters y � Qx. Note that
∥y∥ � ∥Qx∥ � 1 if and only if ∥x∥ � 1. Consequently, solving the problem (3.10b)
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is equivalent to maximizing the quadratic form y⊺Λy subject to the equality con-
straint ∥y∥ � 1. Using the fact that λ1 � λmax is the largest eigenvalue, the following
inequality provides an upper bound for this maximum:

y⊺Λy � λ1 y2
1 + · · · + λn y2

n ≤ λmax(y2
1 + · · · + y2

n) � λmax∥y∥2 � λmax. (3.12)

It is not di cult to see that the maximum is attained i y � (1, 0, . . . , 0). This means
that x⊺Kx is maximized i x is equal to v1, the dominant eigenvector of K, corre-
sponding to the largest eigenvalue λ1.

An e cient algorithm for computing the matrix K is given by the following propo-
sition, which we state without proof [CMC07].

Proposition 3.6. The matrix K is given as K � −∑n
i�1 Ki , where

Ki � αiΩ (mi) Θ (ei) � αi

(
− [mi×] mi

−m
⊺

i
0

) (
[ei×] ei

−e
⊺

i
0

)
. (3.13)

3.4.2 Application to data from IMUs

For an example of the application of the qmethod, we describe how the orientations
are acquired using Morphorider (Section 1.4). Morphoridermeasures two vectors: the
accelerometer vector m1 � macc and the magnetometer vector m2 � mmag. For the
measurements carried out in Grenoble, France, the normalized reference vectors
are

eacc �
(
0 0 1

)
, emag �

(
1
2 0 −

√
3

2

)
.

For each datapoint, the measured vectors and the reference vectors are plugged
into Eq. (3.13) in order to compute the matrix K. The orientation, represented by a
quaternion q, is estimated by computing the dominant eigenvector of K. In Mat-
lab, this is done by calling the function eig (Code snippet 3.5). Alternatively, only
the dominant eigenvector can be computed without computing the whole eigen-
decomposition (as done by eig) using a specialized algorithm such as the power
iteration.

3.5 Filtering of orientations

In this section, we describe our approach for ltering raworientation data estimated
from sensor measurements (Section 3.4); see also the overview in Fig. 3.4. Sensor
noise and limited scanning precision are the main problems that prevent using raw
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% reference vectors are stored in R
% measured and calibrated data are stored in M
% mcross is the matrix cross operator
Omega = @(x) [ -mcross(x) x; -x' 0 ]; % define Ω()
Theta = @(x) [ mcross(x) x; -x' 0 ]; % define Θ()
K.Acc = Omega( M.Acc ) * Theta( R.Acc );
K.Mag = Omega( M.Mag ) * Theta( R.Mag );
% compute eigenvectors
[V,~] = eig( -K.Acc -K.Mag );
% retrieve the quaternion (dominant eigenvector)
q = V(:,end)';

Code snippet 3.5: Matlab code for computing the orientation (quaternion q) from
a pair of measured vectors

orientations in the reconstruction of positions. By consequence, the acquired net-
work of orientations is often inconsistent: at intersections, the normals are di erent
for each passing curve (Fig. 3.13).

Our goal is to eliminate the noise and the inconsistency arising from acquisition.
To this end, we use a two-step ltering process (Fig. 3.4). First, raw orientations are
pre- ltered in the quaternion space using distance-weighted Gaussian convolution
with xed edge length. This way, we obtain uniform sampling of orientations with
respect to arc length (Fig. 3.4b-c). Second, the uniform samples are smoothed and
made consistent using regression on the manifold SO(3) (Fig. 3.4d).

This approach is motivated by the fact that existing algorithms for quaternion av-
eraging are fast and e cient, but unable to resolve the additional constraints on
normal consistency. On the other hand, expressing these constraints directly in
SO(3) is straightforward. Naturally, we could skip the pre- ltering step completely
and do the regression on SO(3) directly with raw data. However, due to the amount
of data used, the resulting optimization would be much slower. By combining the
two steps, our method is able to compute smooth and consistent orientations at
interactive rates.

The input for this section is a raw sample of orientations Ai � A (di) ∈ SO(3) for
each curve γ at known distances di ∈ [0, L]where L is the length of γ. Orientations
are represented by quaternions Ai � A(qi) estimated from sensor measurements
using the q method (Section 3.4).

We start this section by reviewing a common approach to smoothing: the moving
average lter.
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3.5.1 Moving average filter

In signal processing, many existing methods deal
with smoothing of noisy discrete signals [Smi02]. A
common technique for designing a low-pass lter is
the moving average, which we introduce on an exam-
ple in the following paragraph.

Consider a noisy set of datapoints xk ∈ �2 sampled
from a planar curve γ � x(t). In order to lter out the
noise in the data, each point xk (blue points in the in-
set) is replaced by a weighted average x̄k of its neigh-
bors (black curve in the inset). The weighted averages are computed via discrete
convolution as

x̄k � average
−N≤i≤N

xk+i �

∑N
i�−N wk ,i xk+i∑N

i�−N wk ,i

. (3.14)

Here, N is the size of the moving window and wk ,i are the weights, such as the
uniform weights wk ,i � 1, or the inverse-distance Gaussian weights

wk ,i � exp

(
−(k − i)2

2σ2

)
.

A similar technique can be used to smooth a set of noisy orientations Ai ∈ SO(3).
Since the manifold of rotations SO(3) is not a Euclidean space, the averaging pro-
cedure from Eq. (3.14) cannot be used. Instead, weighted averages of orientations
need to be computed in a way that respects the curved geometry of SO(3).
The spherical linear interpolation or Slerp (see Eq. (2.27) on p. 38) is not suitable for
computing weighted averages of orientations for several reasons [Mar+07]. First of
all, the result of Slerp depends on the choice of the representative quaternion. And
second, Slerp is only de ned for two input orientations; averaging three or more
orientations would require a generalization of this approach, possibly leading to
the so-called Karcher mean, which is computationally expensive [Kar77; JVV12].

Luckily, there is a simpler way to de ne a weighted average of orientations, using
a cost function similar to the one in Wahba’s problem in Eq. (3.1). Such averaging
problem can be solved using a variation of the q method (Section 3.4.1). We explain
the principle in the following section.

3.5.2 Algorithm for computing the average orientation

This section summarizes an e cient algorithm for computingweighted averages of
orientations, as described by Markley et al. [Mar+07].
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An intuitive way to de ne the average orientation is to use a cost similar to the one
in Wahba’s Problem 3.1 on p. 59:

Problem 3.7 (The average orientation). Given a set of n orientation matrices A
i
∈

SO(3), 1 ≤ i ≤ n , with weights αi ∈ �, the average orientation is de ned as the minimizer
of the energy

min
A∈SO(3)

n∑
i�1

αi

A −A
i

2

F
. (3.15)

Using the unit quaternion parametrization A � A(q), A
i
� A(qi), this is equivalent to

min
q∈�3

n∑
i�1

αi

A(q) −A(qi)
2

F
. (3.16)

The followingpropositiondescribed an equivalent formof the optimizationEq. (3.16).
This is analogical to Proposition 3.2 and Corollary 3.3.

Proposition 3.8. The problem (3.15) is equivalent to

max
q∈�3

trace
(
AB
⊺) where B �

n∑
i�1

αiAi
. (3.17)

Proof. Using the de nition of the Frobenius norm from Eq. (2.2), each penalty term
in the energy (3.15) is written as

A −A
i

2

F
� trace

(
[A −A

i
]⊺[A −A

i
]
)
� trace

©«
A
⊺
A︸︷︷︸

I3

+ A
⊺

i
A

i︸︷︷︸
I3

−A
⊺
A

i
−AA

⊺

i

ª®®®®¬
� 6 − 2 trace

(
AA
⊺

i

)
.

Clearly,
A −A

i

2

F
is minimized when trace

(
AA
⊺

i

)
is maximized. Moreover,

n∑
i�1

αi trace
(
AA
⊺

i

)
� trace

©«
n∑

i�1

αiAA
⊺

i

ª®¬
� trace

©«
A

n∑
i�1

αiA
⊺

i

ª®¬
� trace

(
AB
⊺)
.

Notice that the optimization (3.17) is analogical to Eq. (3.2) with di erent de nition
of B. Applying Proposition 3.4 therefore gives the following result.
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Corollary 3.9. The cost in (3.17) is equal to

trace
(
AB
⊺)

� q⊺Kq, (3.18)

where the matrix K is given in Proposition 3.4.

So far, the computations in this section mostly copied those in Section 3.4, but this
is where the two approaches start to di er. The following proposition exploits the
properties of the matrix B speci c to this section. It forms the basis for e cient
computation of the average quaternion.

Proposition 3.10. The matrix K from the Eq. (3.18) can be expressed as

K � 4M − αI4, (3.19)

where α �

∑n
i�1 αi is the sum of all weights and the symmetric matrix M is the structure

tensor de ned as

M �

n∑
i�1

αi qiq
⊺

i
. (3.20)

Proof. Recall that B �

∑n
i�1 αiA(qi) and

A(qi) �
©«
2w2

i
+ 2x2

i
− 1 2xi yi + 2wizi 2xi zi − 2wi yi

2xi yi − 2wi zi 2w2
i
+ 2y2

i
− 1 2yizi + 2wixi

2xi zi + 2wi yi 2yi zi − 2wixi 2w2
i
+ 2z2

i
− 1

ª®®¬
.

Since trace
(
A(qi)

)
� 6w2

i
+ 2x2

i
+ 2y2

i
+ 2z2

i
− 3 � 4w2

i
− 1, we have

trace (B) �
n∑

i�1

αi(4w2
i − 1).

The upper left 3 × 3 block of matrix K is therefore

B + B
⊺
+ trace (B) I3 �

n∑
i�1

αi

(
A(qi) + A

⊺(qi) − (4w2
i − 1)I3

)

�

n∑
i�1

αi

©«
4x2

i
− 1 4xi yi 4xi zi

4xi yi 4y2
i
− 1 4yi zi

4xi zi 4yizi 4z2
i
− 1

ª®®¬
�

n∑
i�1

αi(4viv
⊺

i
− I3).

All that is left to do is to compute the vector b such that [b×] � B
⊺ − B. To do that,

let us look at the following di erence:

B
⊺ − B �

n∑
i�1

αi

(
A
⊺(qi) −A(qi)

)
� 4

n∑
i�1

αi
©«

0 −wizi wi yi

wi zi 0 −wi xi

−wi yi wi xi 0

ª®¬
,
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which means that b �

∑n
i�1 αi 4wivi . Altogether, we have

K �

n∑
i�1

αi

(
4viv

⊺

i
− I34wivi

4wiv
⊺

i
4w2

i
− 1

)
�

n∑
i�1

αi

(
4qiq

⊺

i
− I4

)
,

which completes the proof.

Corollary 3.11. The solution to the problem (3.16) is given by the (unit) dominant eigen-
vector of M.
Proof. Let us denote the solution to the problem (3.16) by q. By Proposition 3.5, q is
the dominant eigenvector of K, corresponding to the largest eigenvalue λmax. Since
K has the eigendecomposition K � QΛQ

⊺ (see proof of Proposition 3.5), we have

4M − αI4 � QΛQ
⊺
,

which implies the set of eigenvectors of M is the same as that of K. Concretely, the
eigendecomposition of M is

M � QΛ̄Q
⊺
,

where the eigenvalues ofM are related to the eigenvalues ofK by the linear equation

Λ̄ �
1

4
(Λ − αI4) .

The quaternion q is therefore the dominant eigenvector of M.

Note that the de nition of thematrix M is independent from the choice of the repre-
sentative quaternion, whichwas one of the issues of using Slerp. This is because the
sum in Eq. (3.20) does not change if the sign of qi is ipped: qiq

⊺

i
� (−qi)(−q

⊺

i
).

As a conclusion, the recipe for computing the average orientation is the following:
rst, express the orientations as quaternions qi ; second, compute the matrix M us-

ing Eq. (3.20); and third, compute the dominant eigenvector q of M – this is the
average orientation. We will use the following notation for this procedure:

q � average
i�1,...,n

(
wi qi

)
, (3.21)

where wi ≥ 0 are the weights. This process takes only a few milliseconds even if
it is repeated several hundred or thousand times. We exploit this e ciency in the
next section in order to compute a uniform sampling of the input data. (For exact
timings, see Table 3.9, p. 79, column convolution.)
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3.5.3 Pre-filtering by Gaussian convolution

In this section we describe our method for computing the uniform sampling of ori-
entations (Fig. 3.4c) from raw orientations (Fig. 3.4a), using the averaging algorithm
from Section 3.5.2. Throughout this section, we use the quaternion representation
of orientations.

Workingwith orientations that are sampled uniformlywith respect to geodesic dis-
tance facilitates both the ltering (Section 3.5.4) and the reconstruction of positions
(Section 3.6) – the uniform sampling is convenient for discretization of di erential
operators and integrals.

Outlier removal (Fig. 3.4b).Before computing the uniform sampling, we rst remove
outliers and process duplicate measures. Outliers are removed by looking at the
angle of each quaternion qi with its immediate neighbors:

cos ∢(qi , qi−1) � qi · qi−1, cos ∢(qi , qi+1) � qi · qi+1.

qi

qi−2

qi−1
qi+1

qi+2

�3

α � 0.9

If both dot products are smaller than the speci ed
threshold α, the angles between qi and its neighbors
are too big and qi is removed – see the illustration
in inset. For the examples in this thesis, we use the
threshold α � 0.9; this is consistent with the assump-
tion that the adjacent datapoints are close in the space
of orientations. In other words, the acquisition fre-
quency is high enough. For sparsely sampled net-
works, a lower threshold or an adaptive scheme might be more suitable. Next
we treat the duplicate measures. These are di erent orientations corresponding
to the same parameter value di . Note that such duplicates are usually associated
with network nodes. At nodes, the acquisition is temporarily stopped while the
user indicates the index of the node to the system; as a result, the same point is ac-
quired multiple times. The duplicate measures are averaged using the quaternion
averaging scheme from Eq. (3.21) with wi ≡ 1.

Uniform parametrization.To resample uniformly a given sample of orientations, we
x the edge length h xed and compute uniform parameters tk for each curve γ by

tk �
kL

N
, k � 0, . . . ,N, tk − tk−1 � h , (3.22)

where L is the length of γ and N � round(L/h xed).
We remark that while the parameter h xed is global and has the same value for all
curves, h might slightly di er from curve to curve. In practice, this di erence is
negligible, and we consider the resulting parametrization tk to be uniform. In the
remainder of the thesis, we omit the subscript in h xed and simply write h.



70 3 Curve networks from orientations

0

1

tk tk+1

h

tk−1

wk ,i

di

Figure 3.6: Schema of the pre- ltering with σ � 0.2. Raw orientations (represented
by white dots) are convoluted with a Gaussian kernel to obtain uniform
sampling (blue dots).

Gaussian convolution (Fig. 3.4c). For each tk , we compute the corresponding orienta-
tion q̄k using convolution with distance weighting (Fig. 3.6):

q̄k � average
qi∈γ

(
wk ,i qi

)
.

Here, average( ) refers to the quaternion averaging scheme from Eq. (3.21). The
Gaussian weights are computed as

wk ,i � exp

[
−1

2

(
tk − di

σh

)2
]
,

where di is the input distance parameter associated to the measured orientation
Ai . The parameter σ controls the radius of convolution; in general we use values
between 0.2 and 0.5.

To some extent, the pre- ltering smooths out acquisition artifacts in the scanned
data. The pre- ltered orientations q̄k are sampled uniformly and contain less noise
than the raw data; compare Fig. 3.4 (a) and (c). By varying the parameter σ, it might
be possible to su ciently lter the data while preserving the acquired geometry.
However, this approach has a major drawback: since the Gaussian convolution is
applied to each curve individually, there is no guarantee that the ltered orienta-
tions will be consistent at intersections (see Section 4.2).

This type of coherence is however essential. The nal reconstruction step of our net-
work reconstruction method (Section 3.6) assumes consistent input. Furthermore,
the consistency of normals is crucial to ensure correct subsequent processing of the
network, for instance for surface tting (Chapter 4).

The following section describes how we solve this problem.
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3.5.4 Smoothing via regression on SO(3)

In the previous section, the noisy input orientations Ai � A(qi) represented by
quaternions qi have been resampled and pre- ltered. The result is a uniform sam-
ple of orientations Āk � A(q̄k).
Our goal in this section is to smooth the resampled orientations Āk while satisfying
consistency constraints at intersections (Fig. 3.4d). To this end, the orientations are
represented as rotation matrices Āk ∈ SO(3) instead of quaternions q̄k , which was
the case in the previous section.

This change of representation (from quaternions to rotation matrices) is motivated
by our need to enforce consistent surface normals at intersections. In order to have a
ltering framework with uni ed representation, our initial idea was to use quater-

nion splines [PR97; Sho85; Nie04]. However, expressing the consistency constraints
in the quaternion space gives nonlinear equations. On the other hand, these con-
straints are linear in SO(3). Inspired by spline functions, which provide smooth
curves that reasonably t the input data by minimizing some energy functional,
we propose in the following to formulate ltering of frames (orientations) as a cus-
tomized energy minimization problem on SO(3).
Let us start by resuming the principles behind smoothing splines in the Euclidean
space. Recall that a spline in tension x(t) in the d-dimensional Euclidean space �d

is the minimizer of the energy

λ

∫ tN

t0

x′
2

dt + µ

∫ tN

t0

x′′
2

dt

under the interpolation constraints x(tk) � pk ∈ �d . The weights λ and µ control
stretching and bending of the spline, respectively. Incorporating positional con-
straints directly in the energy

N∑
k�0

x(tk) − pk

2
+ λ

∫ tN

t0

x′
2

dt + µ

∫ tN

t0

x′′
2

dt (3.23)

yields a smoothing spline, useful for non-parametric regression and data ltering
in Euclidean spaces (Fig. 3.7).

Smoothing splines have been generalized for data on Riemannian manifolds by
many authors [BA11; HP04; BC94]. We will now use such a manifold formulation
to smooth data in the group SO(3) (Section 2.5, p. 34).

Analogously to Euclidean spaces, a smoothing spline X(t) for orientation data Āk ∈
SO(3) is de ned by minimizing the cost function

N∑
k�0

dist2
(
X(tk), Āk

)
+ λ

∫ tN

t0

⟨
ÛX, ÛX

⟩
dt + µ

∫ tN

t0

⟨
D2X

dt2
,
D2X

dt2

⟩
dt , (3.24)
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λ � 0.001
µ � 0.001

λ � 0.1
µ � 0.001

λ � 0.001
µ � 0.1

λ � 0.1
µ � 0.1

Figure 3.7: Euclidean smoothing spline with varying stretching λ and bending µ

where dist (·, ·) is the geodesic distance on SO(3), ⟨·, ·⟩ is the Riemannianmetric, ÛX is
the velocity, and D2X/dt2 is the acceleration along X (cf. Section 2.4). We will write
the above cost function as

E(X) � E0(X) + λE1(X) + µE2(X).

To discretize this problem, the continuous curve

X(t) : [0, L] → SO(3)

is approximated by the tensor (a discrete curve)

γ �

[
X(t0), . . . ,X(tN)

]
� [X0, . . . ,XN] ∈ SO(3)N+1 (3.25)

where tk is the uniform parametrization de ned in Eq. (3.22).

We use the method for spline tting on manifolds of Boumal and Absil [BA11].
The di erential and integral operators in Eq. (3.24) are approximated via geometric
nite di erences. Geometrically, the di erence b − a of two points a, b ∈ �n in the

Euclidean space is the vector starting at a and pointing towards b whose length is
the distance between a and b. On manifolds, speci cally the manifold SO(3), the
notion of di erence is expressed using the logarithmic map (cf. Table 2.5 on p. 35).
The distance between two rotation matrices A, B ∈ SO(3) is

dist (A, B) �
log

(
A
⊺
B
)

F
.

For discretization step h, rst and second geometric nite di erences are

ÛXk ≈ 1/h
(
log

(
Xk
⊺

Xk+1

))

ÜXk ≈ 1/h2

(
log

(
Xk
⊺

Xk+1

)
+ log

(
Xk
⊺

Xk−1

))

Integrals are also discretized using the step size h, for instance,
∫ tN

t0

⟨
ÛX, ÛX

⟩
dt ≈

N−1∑
k�0

(tk+1 − tk)︸      ︷︷      ︸
�h

1

h
log

(
Xk
⊺

Xk+1

)
2

F

.
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Consequently, for orientation data Āk ∈ SO(3), the discretization of the cost func-
tion from Eq. (3.24) has the form

E(γ) �
N∑

k�0

log
(
Xk
⊺

Āk

)
2

F

+
λ

h

N−1∑
k�0

log
(
Xk
⊺

Xk+1

)
2

F

+

µ

h3

N−1∑
k�1

log
(
Xk
⊺

Xk+1

)
+ log

(
Xk
⊺

Xk−1

)
2

F

.

(3.26)

Boumal [Bou13] noticed that the discrete energy is well-approximated using the
following simpli ed terms:

E0(γ) �
N∑

k�0

Xk − Āk

2

F
,

E1(γ) �
1

h

N−1∑
k�0

∥Xk − Xk+1∥2F ,

E2(γ) �
1

h3

N−1∑
k�1

 skew
(
Xk
⊺ (Xk+1 + Xk−1)

)
2

F

,

(3.27)

where γ is the tensor of unknown orientations (discrete curve), h � tk − tk−1 is the
uniform discretization step, and skew is the matrix operator from Eq. (2.20):

skew (M) � 1

2

(
M −M

⊺)
. (3.28)

For closed curves, all sums run from 0 to N due to periodicity.

Let us recall how the simpli ed energy in Eq. (3.27) is obtained. The terms E0, E1

result from the approximation of the geodesic distance on SO(3) by the chordal
distance in the ambient space �3×3 that we described in Eq. (2.22):

dist2 (A, B) �
log

(
A
⊺
B
)2

F
≈ ∥A − B∥2F .

To obtain the simpli ed term E2, consider the logarithmic map

B 7→ LogA (B) � A log
(
A
⊺
B
)
.

This maps B ∈ SO(3) to the tangent vector from TASO(3) pointing towards B with
length equal to the geodesic distance between A and B – cf. the De nition 2.29 of
the Riemannian logaritmic map on p. 34. A similar vector is obtained by projecting
the vector (B−A) from the ambient space of�3×3 to the tangent space TASO(3). This
projection is characterized by the operator A skew

(
A
⊺
B
)
, cf. Fig. 2.5. The error of
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this approximation is as follows. For an orientation matrix A, let Ω ∈ �3×3 be skew-
symmetric with ∥Ω∥F � 1 and B � A exp (tΩ). Since A

⊺
B � exp (tΩ), we have

log
(
A
⊺
B
)
� tΩ,

skew
(
A
⊺
B
)
� skew

(
I3 + tΩ +

1
2 t2
Ω

2
+ O(t3)

)
� tΩ + O(t3).

Both skew (I3) and skew
(
Ω2

)
vanish – the skew operator applied to symmetric

matrices yields a zero matrix. Replacing the log operator with the skew operator is
therefore a quadratic approximation:

log (A) ≈ skew (A) .

In our setup, the ltered data Āk is associated to a network Γ and the energy terms
in Eq. (3.27) are summed over all curves γ ∈ Γ. Simultaneously with regression on
SO(3), we solve the consistency constraints as follows. Let X,X̃ j be the local frames
of two intersecting curves at their common node v ∈ V. Then the two frames
are called consistent, if the rst frame Xk � [tk N Bk] is obtained by rotating the
second frame X̃ j �

[
t̃ j N B̃ j

]
around the common surface normal N at the node v.

Denote by Φ the set of all such pairs of frames
(
X,X̃ j

)
. To enforce the consistency

of surface normals, we add a term penalizing the di erence in projection on the
normal component at all nodes v

EN (Γ) �
∑
(X,X̃ j)∈Φ

Xk |N − X̃ j |N
2
. (3.29)

Note theremight bemultiple pairs per node, in case ofmultiple intersecting curves.

Finally, we compute the set of smooth orientations [X0, . . . ,XN] ∈ SO(3)N+1 bymin-
imizing the energy

E (Γ) � ξEN (Γ) +
∑
γ ∈ Γ

E0

(
γ
)
+ λE1

(
γ
)
+ µE2

(
γ
)

(3.30)

where ξ, λ, µ ≥ 0 are theweights controlling consistency of surface normals, stretch-
ing, and bending, respectively. The energy is minimized using the Riemannian
trust-region (RTR), a generalization of the classical trust-region in �n to di eren-
tiable manifolds; see the paper of Absil et al. [ABG07] for the description of the al-
gorithm and a detailed convergence analysis. In Section 3.7, we discuss the perfor-
mance and time needed for minimizing the energy (3.30) on a standard machine.

The resulting orientations are smooth along the curve network, and the normals
are consistent at intersections. For an example, see the Gauss map visualization in
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Fig. 3.4, i.e. the normal component of the orientations Xk |N plotted on the unit 2-
sphere. Notice that the network of pre- ltered normals in Fig. 3.4c) is not closed –
this is precisely because the normals di er at intersections for di erent curves. The
normals in Fig. 3.4d) have been smoothed andmade continuous by minimizing the
energy from Eq. (3.30).

This concludes the ltering part of our method. The next sections describes the
nal part, in which the ltered orientations are integrated in order to retrieve the

positions. We refer to it as the Poisson network reconstruction.

3.6 Poisson network reconstruction

In the previous section, we described our method for ltering of raw orientation
datameasured by sensors, which yields uniform, smooth and consistent orientation
sampling [X0, . . . ,XN] ∈ SO(3)N+1. Here, Xk � X(tk); the uniform parametrization
tk is de ned in Eq. (3.22).

We now address the problem of transforming the orientations Xk ∈ SO(3) into ac-
tual positions xk ∈ �3 (Fig. 3.4 right). The positions have to be recovered in a way
that respects the topology of the underlying network (Section 3.2). Recall that there
are two types of topological constraints: either the intersections of multiple curves
(e.g. the T-junctions in Fig. 3.8), or the closure of a single curve (e.g. the blue circles
in Fig. 3.8).

To recover the positions, previous approaches treat each curve individually and
employ various heuristics to glue the curves together to obtain the correct topology
[Spr07; HCG16]. These methods generally su er from convergence problems in-
herent to integration methods for ODEs. Moreover, the gluing process is limited to
speci c topologies (such as a grid) and often requires manual corrections to obtain
proper intersections.

Our approach is di erent: we will show that using Poisson’s equation, it is possible
to reconstruct all curves simultaneously while guaranteeing proper intersections.
In this section, we extend the discretization of the Poisson equation for a single
closed curve described by [CPS13] to curve networks with the topology of a cell
complex as de ned in Section 2.6 and Section 3.2.

If x is the natural parametrization of the curve γ (one-dimensional Riemannian
manifold), the unit tangent eld t along γ is equal to the gradient of positions

∇x � t

The vector eld t is generally not integrable [KBH06; CPS13] and the solution needs
to be found in the least-squares sense. To that end, the divergence operator ∇· is
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applied to both sides and x is found by solving Poisson’s equation

∆ x � ∇ · t (3.31)

Even though the curve network Γ as a whole is not a Riemannian manifold, it can
be viewed as a collection of one-dimensional Riemannian manifolds constrained at
intersections (see the problem statement in Section 3.2). This allows us to apply
the above Poisson’s equation in order to retrieve the network positions from local
orientations. With that in mind, we discretize the gradient ∇ and the Laplacian
∆ individually for each curve and retrieve the positions by solving a single global
linear system. The topological constraints are enforced by representing each node
as a unique point in the system (Fig. 3.8).

Figure 3.8: Matrix of the discrete Poisson system (3.31) for a cone network with two
closed curves (blue) and three open curves (black). Dots indicate non-
zero coe cients. First six columns correspond to network nodes.

Each curve is represented as a discrete collection of unknown points xk � x(tk) ∈
�3, i � 0, . . . ,N, with known Darboux frames Xk , which are the outcome of the
ltering from Section 3.5. We will denote by tk � Xk |t the (unit) tangent extracted

from Xk . With uniform parametrization h � tk − tk−1, the di erential operators are
discretized via nite di erences by

∆ xk � 1/h2 (xk−1 − 2xk + xk+1) , ∇ · tk � 1/h (tk − tk−1) . (3.32)

The above discretization is valid for closed curves (Fig. 3.8 blue circles) and inte-
rior vertices of open curves (Fig. 3.8 black lines). At endpoints of open curves, we
directly impose the following boundary conditions

1/h (x1 − x0) � t0,

1/h (xN − xN−1) � tN .
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The resulting linear system (3.31) is sparse with at most three non-zero coe cients
per row (Fig. 3.8). Thanks to the regression step described in Section 3.5.4, the tan-
gent vectors of all curves meeting at a network node are co-planar at that node.
The above boundary conditions therefore ensure the reconstruction of a G1 curve
network. Note that the discretization does not take into account the fact that h �

tk − tk−1 is the geodesic distance along the reconstructed curve, which di ers from
the (Euclidean) norm τk � ∥xk−1 − xk ∥. In general, this is not an issue, as the least-
squares minimization of the Poisson energy distributes the error evenly.

Ti

Ti−1

τi

h

We remark that the Euclidean distance τk might be estimated
from the geodesic distance h. This could be done for instance
by approximating τk by the chordal length of the circular arc de-
ned by the length h and angle between tk−1 and tk (see inset).

This estimation comes at a price – the modi ed parametrization
is no longer uniform. Our experiments have shown that the dis-
cretization error |τk − h | is generally too small to signi cantly in-
uence the reconstruction; see the analysis in Section 3.7.3.

3.7 Evaluation

In this sectionwe present the results that we have obtained using the reconstruction
method introduced in Sections 3.5 to 3.6. The method itself is evaluated in three
parts: analysis of performance (Section 3.7.1), analysis of ltering (Section 3.7.2),
and analysis of convergence and reconstruction error (Section 3.7.3). In Section 3.7.4,
we compare the results from three di erent acquisition schemes, one forMorphorider
and two for smartphone (Section 1.4).

In the following examples, we use two types of data.

Synthetic data. We use six synthetic datasets for convergence analysis of the Poisson
network reconstruction. This type of data is well-suited for analyzing the conver-
gence since the synthetic data are not corrupted by sensor noise. Therefore, they do
not need to be ltered, which provides a better understanding of how the Poisson
reconstruction works.

Two synthetic curve networks were sampled from parametric surfaces (sphere and
torus, Fig. 3.15). The other four synthetic curve networks were created in Blender
(bowl, bumpy cube, gamepad, lilium) by tracing a network of polylines on a triangle
mesh. The traced network (vertices and normals) was then exported using a python
script. All synthetic data are stored in a text le with custom structure, containing
the geometry (positions and normals) and the topology (edges) of the discrete net-
work.
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Acquired data. Data acquired from physical surfaces serve for evaluating the over-
all performance of the framework on real-world examples. Moreover, they enable
quantitative comparison of the two acquisition methods. For some of the physical
surfaces we dispose of ground truth models, which allows us to measure the error
of reconstruction on real-world data (see Section 3.7.3).

In this section, we present results obtained on data acquired from two surfaces
with known ground truths (cone and lilium) and one surface without a ground truth
(chair). More resultswill be presented inChapter 5, alongwith details on fabrication
and acquisition of the physical surfaces.

3.7.1 Performance

Computationally, the most expensive part of the described algorithm is the min-
imization of the regression energy from Eq. (3.30). This minimization is carried
out using the Riemannian trust region algorithm (RTR) implemented in modern
libraries for optimization on manifolds. We have experimented with the Manopt
toolbox [Bou+14] written in Matlab; and the ROPTLIB library [Hua+16] written in
C++.

Both libraries provide similar interfaces for speci cation of a concrete optimization
problem. Essentially, the user needs to de ne the domain – in our case, the product
manifold SO(3)N – and specify the cost function alongwith its gradient andHessian
(the latter is optional in Manopt). See the Code snippet 3.10 for an example. Note
that it is enough for the user to specify Euclidean gradient and Hessian since the
libraries are able to compute the Riemannian gradient and Hessian via projections
on the manifold (cf. Lema 2.22).

The setup of optimization problem is straightforward in Manopt (see Code snip-
pet 3.10) making Manopt more user-friendly and well-suited for prototyping than
ROPTLIB. At the same time, ROPTLIB is faster when used within a C++ program.
Note that it is possible to compile ROPTLIB as a mex le and use it as a Matlab li-
brary – the two libraries then provide comparable performance within Matlab in
terms of computational time.

Table 3.9 shows timings for di erent parts of the algorithm implemented in C++,
including pre- ltering and Poisson network reconstruction and using ROPTLIB for
regression. Optimization is by far the most time-consuming part of the algorithm,
although it usually converges in less than one second for reasonable sampling dis-
tances h. Speed of convergence depends on the choice of the weights λ and µ – the
higher these weights are, the more time is needed for the optimization to converge.
See the examples of chair and lilium in the table.
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# of samples time (ms)

data raw uniform convolution regression Poisson

lilium
Fig. 3.14 left

3243

96 3 51 1
196 6 113 3
382 6 234 7
742 9 439 30
1416 15 788 170

lilium
Fig. 3.14 middle

531

99 3 28 2
186 6 55 3
362 8 83 10
713 11 192 31
1420 16 428 172

lilium
Fig. 3.12

3243 428 7

125

10319
517
522

cone
Fig. 3.18

949

205 5 176 3
398 3 328 8
783 8 618 28
1553 14 1169 136
3094 22 2779 904

chair
Fig. 5.13

584 247 3
592

61315
1461

mushroom
Fig. 5.11

831 508 10 202 8

Table 3.9: Performance of the algorithm implemented in C++ using ROPTLIB on
a standard quad-core CPU computer. The statistics include number of
raw samples, number of uniform samples, Gaussian convolution time
(Section 3.5.3), SO(3) regression time (Section 3.5.4), Poisson network re-
construction time (Section 3.6). All reported timings are in milliseconds.
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% variables:
% initial ... (size=3x3xn) orientation matrices along the network
% options ... optimization settings (i.e. # iterations)
% T ... topology matrix, indices of neighboring vertices
% ...
% get number of datapoints = rotation matrices
n = size(initial,3);
% construct the product manifold SO(3)^n = SO(3) x ... x SO(3)
manifold = rotationsfactory(3,n);
% problem definition - set the manifold
problem.M = manifold;
% set the cost function
problem.cost = @cost;
% set the (Euclidean) gradient of the cost function
problem.egrad = @grad;
% perform optimization via RTR
result = trustregions(problem,initial,options);
% definition of the cost function
function f = cost(X)

% normal penalty:
Xi |N − X̃ j |N

2

fn = 0;
for pair = nodepairs,

fn = fn + norm2(X(3,:,pair.first)-X(3,:,pair.second));
end
% interpolation: ∥Xk −Ak ∥2F
diff = X - initial;
f0 = arrayfun(@(k) norm2(diff(:,:,k)),1:n);
% velocity: ∥Xk − Xk+1∥2F
i1 = find(T(:,3) > -1);
f1 = arrayfun(@(k) dt(k) .* ...

norm2(X(:,:,T(k,2)) - X(:,:,T(k,3))), i1);

% acceleration:

 skew
(
X
⊺

k
(Xk+1 + Xk−1)

)
2

F
i2 = find(T(:,1) > -1 & T(:,3) > -1);
f2 = arrayfun(@(k) ddt(k) .* ...

norm2(skew(X(:,:,T(k,2))'*(X(:,:,T(k,1))+X(:,:,T(k,3))))),i2);
% overall cost
f = wn*sum(fn) + w0*sum(f0) + w1*sum(f1) + w2*sum(f2);

end
% definition of the (Euclidean) gradient
function f = grad(X)
% . . .
% . . .
% . . .
end

Code snippet 3.10: Regression on SO(3) implemented in Matlab using Manopt
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Figure 3.11: Curve network on lilium reconstructed using (left) raw orientations,
(middle) pre- ltered orientations, (right) ltered orientations.

3.7.2 Filtering

The main goal of the ltering algorithm described in Section 3.5 is to obtain a clean
and consistent network of orientations from raw sensor measures. The regression
weights λ, µ in the ltering energy Eq. (3.30) in uence the shape of the recon-
structed network indirectly by controlling stretching and bending of splines on the
manifold SO(3). In all examples, we use the weight ξ � 10000 to enforce the con-
sistency of normals.

Fig. 3.11 shows reconstructions of lilium from the same orientation dataset at vari-
ous ltering stages. The left network was reconstructed by direct integration of raw
orientations using the forward Euler method. This naive approach completely fails
to close the curves, and the resulting network has therefore incorrect topology. The
other two networks were obtained using our Poisson network reconstruction from
Section 3.6. Unlike the example on the left, this approach yields a network with
proper topology. The middle network was reconstructed from pre- ltered orienta-
tions (Section 3.5.3) without the ltering on SO(3). Clearly, the pre- ltering is not
su cient to smooth the data, and the resulting curves contain unwanted wiggles.
Finally, the right network was computed from ltered orientations (λ � 1, µ � 1),
providing a smooth and consistent network ready for surfacing.

The in uence of theweights λ and µ on the Poisson-reconstructed positions is com-
pared in Fig. 3.12. Interestingly, even though λ and µ control stretching and bend-
ing of orientations Xi , they also seem to control stretching and bending of recon-
structed positions xi . Theweights need to be chosen carefully, otherwise the network
might end up over- ltered; see Fig. 3.12 where λ � 100.

Fig. 3.13 shows reconstruction of the chair network ltered with various sets of
weights. It also illustrates the phenomenon of inconsistent orientations: pre- ltered
normals do not agree at intersections, and naive averaging of each pair of con ict-
ing normals results in a shape with poor delity to the scanned object (Fig. 3.13
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no filter

=1
=1

=100
=1

=1
=100

=100
=100

Figure 3.12: Reconstruction of lilium with various ltering weights. Left to right in
each row: reconstructed network with porcupine plot (surface normal
scaled by curvature); Gauss map; curvature plot.

left). Our regression ltering technique resolves this problem while preserving the
underlying geometry (Fig. 3.13 right).

Finding the right ltering weights λ and µ is always a trade-o between delity to
the input data and smoothness of the reconstructed network. In our experiments,
there was no universal set of weights that would provide optimal results for all
tested surfaces. This is partly due to the fact that the validation of the reconstructed
network is often only visual, and picking the optimal result is a matter of subjective
choice. In overall, we have found that the strategy for getting the best results is to
prioritize bending over stretching by setting µ ≫ λ.

For the networks with known ground truth, it is possible to de ne the optimal re-
sult by measuring the error of reconstruction; we describe this in more detail in
Section 3.7.3). In this sense, the weights that provide the smallest mean reconstruc-
tion error for the examples in Figures 3.18 to 3.22 are most often λ � 1, µ � 100.

As a conclusion, the combination λ � 1, µ � 100 seems like an ideal starting point
for ne-tuning the weights in order to get the desired result. One of the advantages
of our method is that the weights can be re-adjusted interactively, and the network
is re-computed instantaneously.
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no filter =10, =1e3 =1, =1e4 =100, =1e4

Figure 3.13: Scanned chair reconstructed with di erent sets of weights. After the
pre- ltering, normals at nodes are not compatible ((left)). The normal
penalty term in the ltering energy ensures the consistency of the re-
constructed network ((right)). Photo of the physical chair is in Fig. 5.13
on p. 150.

3.7.3 Convergence & error measurements

In this section, we evaluate the proposed reconstruction method quantitatively. To
this end, we compute the error of reconstruction for various synthetic and acquired
datasets. We look at how the error evolves for decreasing discretization step h,
which is xed in the pre- ltering step; see Eq. (3.22).

Eachdataset is testedusing vedi erent values, h ∈ {6.4%, 3.2%, 1.6%, 0.8%, 0.4%}.
These values are relative to the diameter dS of the underlying surface S. For in-
stance, h � 1.6% means h � 0.016 dS . The diameter dS is computed as the length of
the diagonal of the axis-aligned bounding box (AABB) ofS. Note that the diameters
of the physical surfaces (lilium and cone) are given in Table 5.2, p. 140.

Measuring the error. The error metric associated with each point x in the recon-
structed network is de ned as the distance between x and its closest point x̃ on the
ground truth. For synthetic data, the closest point x̃ is found on the ground truth
network Γ.

For acquired data, the ground truth network is unknown; instead, the closest point
is found on the underlying surface S. In this case, before evaluating the error the
acquired network needs to be registered to the surface since the two objects do not
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live in the same coordinate systems. We use the iterative closest point (ICP) for the
registration [BM92].

All tested datasets are shown with maximum, root mean square (rms), mean and
minimum of the error. The statistics are computed over all vertices in the recon-
structed network. Similarly to the speci cation of h, all of the lengths are relative
to the diameter dS of the corresponding ground truth surface S.

Convergence. The measured error is used to study convergence of the method with
respect to decreasing discretization step h.

We use synthetic data to study the convergence of Poisson network reconstruction
with respect to the discretization step h. Synthetic data are well-suited for this task
since they are not corrupted by noise and do not require smoothing. Note that the
pre- ltering step is still needed in order to obtain a uniform sample of orientations.
We measure the convergence by computing the error of reconstruction – we show
that in most tested cases, the mean error approaches zero as h decreases.

We also look at how the error evolves for acquired data with known ground truth.
In this case we do not expect the mean error of reconstruction to approach zero.
Nevertheless, we expect the error to converge to a value, which is relatively close to
zero.

Synthetic data. The results for synthetic networks are shown in Figures 3.15 to 3.17,
p. 89–91. In almost all cases, the mean error approaches zero as h decreases. From
this fact, we can conclude that Eq. (3.32) is a suitable discretization of the continuous
Poisson equation (3.31).

We remark that for some networks, the maximal error slightly increases for h �

0.4% with respect to h � 0.8%. This is because at this scale the input data are up-
sampled in the pre- ltering step – the uniform sample containsmore datapoints than
the raw sample. This di erence is however small, and the mean error decreases or
remains about the same.

Acquired data. Wemove on to the analysis of the results obtainedwith acquired data.
The main di erence with respect to synthetic data is that the acquired data are also
ltered by regression on SO(3) (Section 3.5.4). For each dataset, we compare four
ltering schemes – the four combinations with weights λ � 1, 100 and µ � 1, 100.

The results for acquired data are shown in Figs. 3.18 to 3.22, p. 92–100. Overal,
we conclude the error of reconstruction gets smaller with decreasing h. Not sur-
prisingly, the only dataset that violates the convergence uses estimated lengths
(Fig. 3.19). The use of exact, measured lengths is crucial to get an accurate recon-
struction using our method.

We now discuss the results with individual datasets.
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Cone (Fig. 3.18). This dataset was acquired with the Morphorider. In terms of error,
the di erences between the four schemes are subtle, and the mean error is always
around 0.4%. The best choice of weights seems to be λ � µ � 100.

Next, we study two curve networks on lilium: a network with 5 curves, and a net-
work with 7 curves.

Lilium, 5 curves (Figs. 3.19 to 3.21). For this curve network, the data were acquired
with both Morphorider and a smartphone. Both datasets follow the same set of curves
traced on the surface using adhesive tape (see Fig. 3.14 top right).

The orientations from Morphorider are parametrized by arc-length, while the orien-
tations from smartphone are parametrized by acquisition time. Let γ be a curve in
the network with length L and total acquisition time T. Then the corresponding
parametrizations of orientations are

[0, L] → SO(3) : di 7→ Ai . . . Morphorider,

[0, T] → SO(3) : ti 7→ Ai . . . smartphone,

where Ai are the scanned orientations, di represents an arc-length distance, and ti

represents a time instant during acquisition.

For smartphone, we compare the results obtainedusing two types of segment lengths.
Let γ be a curve in the network with segments γi . Acquired orientations along the
segment γi are time-parametrized: [Ti , Ti+1] → SO(3). The two setups that we test
are the following:

1. Estimated segment lengths. In this setup, time parametrization ti is used as the
arc-length parametrization di without modi cations, ti � di . This means that
the length of a segment is estimated from its acquisition time.

2. Measured segment lengths. In this setup, we are given the exact length Li of
each segment γi . Time parameter ti is scaled to estimate the arc-length para-
metrization di :

ti 7→ di � Li
ti − tstart
tend − tstart

.

In order to compare the error, a network with estimated segment lengths is scaled
to match the total length of the network with measured lengths.

The three setups are shown in Figs. 3.20 to 3.21. For the two networks using mea-
sured lengths, the best results are obtained using a small weight for stretching
(λ � 1). On the other hand, the network with estimated lengths is improved if the
stretching weight is higher (λ � 100). In terms of mean error, the best reconstruc-
tion is obtained using smartphone data with measured lengths. Overall, the mean
error is relatively small, around 1.1% – 1.5% for reasonably chosen weights.

Note that the three setups are further compared in Section 3.7.4, see also Fig. 3.14.
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Figure 3.14: Comparison of three acquisition setups on lilium. For ltering, we have
used theweights λ � 1, µ � 100. All lengths are relative to the diameter
(length of AABB diagonal) of the ground truth surface.
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Lilium, 7 curves (Fig. 3.22). To acquire this dataset, we traced the same curves as
for lilium with 5 curves, and we added two more closed curves in the interior of
the surface. In this case we only used the Morphorider. Error of reconstruction is
comparable to Fig. 3.21, with slight improvement for higher stretchingweights (λ �

100).

3.7.4 Morphorider vs. smartphone

Fig. 3.14 shows a comparison of three acquisition setups tested on liliumwith known
ground truth. Top images show surfaced networks rendered with re ection lines;
bottom images show the error of Poisson reconstruction for each network.

For the left network, the orientations were acquired using the Morphorider (Fig. 1.14
left) and parametrized by the arc-length – this is possible since we measure the
exact distance from the beginning of the curve for each datapoint. For the networks
in the middle and on the right, the orientations were acquired with a smartphone
(Fig. 1.14 right) and parametrized by acquisition timestamps. In this case, we have
no knowledge of exact distance traveled – instead, we assume that the speed of
acquisition is constant.

The right network uses segment lengths automatically estimated from total acqui-
sition time for each curve. For the middle network, we have manually measured
and speci ed the length Ls of each segment s, which is then used to transform the
time parameter t ∈ [tstart, tend] into the natural parameter d ∈ [0, Ls]. In this case, it
is enough to assume that the speed of acquisition is constant-per-segment but does
not need to be constant throughout the whole process of acquisition. In practice,
the constant-speed-per-segment constraint is much easier to handle, and the man-
ual distance measurement signi cantly improves the reconstruction – in this case,
the mean error dropped by more than 1%.

Themean error is about 1%usingmeasureddistances (both devices) and around 2%
using time-estimated distances (smartphone). It is not surprising that the smartphone
error decreases faster than the Morphorider error using the measured distances. One
can further observe that even though the smartphone error is bigger than the Mor-
phorider error at coarser resolutions, it becomes smaller at ner scales. We explain
this behavior by the fact that the distance data are not the same for the two devices.
For the Morphorider data, we have exact correspondences between distance and ori-
entation measurements; for the smartphone data, only the total length of each seg-
ment is known and the correspondences are estimated from acquisition time. It
seems like at ner scales, the error of this estimation is better-distributed, which
results in a reconstruction with higher precision.
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3.8 Conclusion

This chapter described a novel method for acquisition and reconstruction of curve
networks on surfaces. The development of our method was guided by a simple
observation, formulated mathematically via a set of normal consistency constraints
and topological constraints. These constraints are the key ingredients in both parts
of the method: ltering of orientations, and Poisson reconstruction of positions.

Results computed using our method are smooth and well-connected curve net-
works ready for further processing. Reconstruction is controlled by adjusting a
small set of parameters.

Next chapter will present an algorithm for surfacing the networks obtained in this
chapter.
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Figure 3.15: Network error, sphere & torus, synthetic
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Figure 3.16: Network error, bowl & bumpycube, synthetic
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Figure 3.17: Network error, gamepad & lilium, synthetic
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Figure 3.19: Network error, lilium (5 curves), smartphone, estimated lengths
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Figure 3.20: Network error, lilium (5 curves), smartphone, measured lengths
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Figure 3.21: Network error, lilium (5 curves), Morphorider
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Figure 3.22: Network error, lilium (7 curves), Morphorider
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4
Surfacing networks with normals

S .
Chapter 3 introduced ourmethod for reconstruction of a curve network from orien-
tations acquired along curves on a surface. This chapter describes the second con-
tribution of this thesis: given a smooth network computed using our reconstruction
method, we describe an algorithm for computing the underlying surface.

Application of algorithms from Chapter 3 to raw orientations results in a well-
connected discrete curve network. Moreover, for each point in the network we also
know the surface normal at that point: this is the normal component of the ltered
orientations.

The goal of this chapter is to nd a surface, which interpolates the discrete curve
network and the surface normals. Section 4.2 gives a formal de nition of what we
mean by interpolation of positions and normals. This is an ill-posed problem: our
attempt is to infer a (2-manifold) surface from a collection of (1-manifold) curves
(Fig. 4.1). In order to solve it, we are forced to make additional assumptions about
the surface (Section 4.3).
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Figure 4.1: Surfacing of curve networks is an ill-posed problem, as shown in this 2D
illustration. Both shapes interpolate the same input data (blue points
and normals), but behave very di erently in between.

Our method for computing the surface from a curve network with normals di ers
from previous sensor-related surfacing algorithms (Section 1.3.2). Indeed, in con-
trast to previous algorithms based on splines andCoons patches, we choose towork
with triangle meshes, which can handle surfaces of arbitrary topological type. An-
other advantage is that our method exploits the knowledge of normals to compute
the surface. Many previous methods only use positions, as it is more di cult to
incorporate the normal constraints into a spline-based reconstruction.

In Section 4.6 we compare ourmethod to related algorithms for surfacing networks,
which are used in the context of variational surface modeling and sketch-based
modeling. We show that our method provides surfaces whose quality is compa-
rable to or better than the state-of-the-art algorithm of Pan et al. [Pan+15] while
being an order of magnitude faster. Moreover, our method avoids manual speci -
cation of magnitude of normals, which is a limitation of most existing algorithms
for surfacing curve networks with normals.

Our method for surfacing curve networks with normals has two main parts, which
are summarized below.

Computation of topology. The surface is represented as a triangle mesh. To com-
pute the topology of the mesh, we e ciently detect the cycles in the network (Sec-
tion 4.4.1), which are then triangulated in plane (Section 4.4.2). The topology of the
mesh is obtained by joining the triangulations of the individual cycles.

Computation of geometry. By solving two biharmonic systems with boundary con-
straints, we propagate the surface normals to the interior of patches, and obtain
an initial guess for the vertex positions (Section 4.5.1). This allows us to compute
discrete mean curvature for the whole mesh (Section 4.5.2). We then solve a con-
strained quadratic optimization, which minimizes an energy functional taking into
account the previously estimated mean curvature (Section 4.5.3).

The structure of this chapter is similar to the previous chapter. We begin by re-
viewing the related work in Section 4.1. We then formally state the problem in
Section 4.2 and give an overview of our method in Section 4.3. Technical parts of
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the algorithm are described in Sections 4.4 to 4.5. Section 4.6 discusses the eval-
uation of the method and compares it to two state-of-the-art algorithms. Finally,
Section 4.7 concludes the chapter.

The work presented in this chapter was originally published in [Sta+16a; Sta+16b] and presented at
[GTMG16; EG16; jFIG17]. See the list of publications on p. 187.

4.1 Related work

The work related to this chapter is organized into three sections. Section 4.1.1 de-
scribes variationalmethods for surfacemodeling. Section 4.1.2 gives an overview of
methods for surfacing of curve networks, often in the context of sketch-based mod-
eling. Section 4.1.3 summarizes algorithms for computing multi-sided parametric
patches.

4.1.1 Variational modeling with normals

We focus on variationalmethods that providemeans formodeling and deformation
of surfaces by specifying both positional and normal constraints along a network
of curves. For an introduction to variational modeling of shapes, see Section 2.8.

Moreton and Séquin [MS92; MS91] presented a framework for surfacing of net-
works of curves with G2 continuity across patches. Their method enables interpo-
lation of a set of geometric constraints: positions, normals and curvatures. They in-
troduce the important concepts of minimumvariation curves (MVC) andminimum
variation surfaces (MVS), obtained byminimizing integrals of squared magnitudes
of curvatures: ∫

dκ2

ds
ds ,

∬ ∂κ1

∂t1


2

+

∂κ2

∂t2


2

dA.

for curves and surfaces, respectively; cf. Eq. (2.43), p. 47. While this approach pro-
duces high-quality shapes and has desired theoretical properties, the resulting op-
timization is nonlinear and computationally expensive. The surface representation
used in the implementation of Moreton and Séquin [MS92] are quintic triangular
and quadrilateral Bézier patches. This places a limitation on the topology of the
input curve network, unless a multi-sided generalization of Bézier patches is used
(Section 4.1.3). Another limitation is that the constraints (positions, tangents, cur-
vatures) can only be prescribed at patch corners, not along the patch boundary.

Linearized versions of nonlinear geometric functionals are more suitable for in-
teractive applications, providing an appropriate trade-o between precision and
computation speed. Minimizing such linearized functionals often comes down
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to solving a simple linear system involving the discrete Laplace-Beltrami operator
[PP93; Tau95; Kob97; Des+99; Mey+03; CPS13]. For more details, see Sections 2.7
and 2.8.

Schneider and Kobbelt [SK01] presented an approach to triangle mesh fairing sub-
ject to G1 boundary conditions (vertex positions and unit normals). The surface S
is computed using the mean curvature fairness criterion

∆SH � 0,

where ∆S is the Laplace-Beltrami operator of S and H is the mean curvature of S.
This approach is the surface analogue of a similar equation for curves κ′′ � 0, which
yields clothoid splines [Far+87; BLP10].

Botsch and Kobbelt [BK04] introduced an interactive framework for shape defor-
mation by solving for the k th-order Laplacian while imposing boundary conditions
up to Ck−1 (Fig. 4.2)

∆
k
S x (u , v) � 0 (u , v) ∈ Ω\∂Ω, (4.1a)

∆
j

S x (u , v) � b j(u , v) (u , v) ∈ ∂Ω , j < k. (4.1b)

Notice that Botsch and Kobbelt [BK04] did not implement the boundary constraints
directly; instead, they xed positions of (k − 1) rings of vertices to impose the Ck−1

continuity, a common practice in discrete variational modeling [Bot+10]. However,
this setting prevents dealing with arbitrary constrained curve networks without
specifying the positions of (k − 1) rings of vertices.

Jacobson et al. [Jac+10] (see also Alec Jacobson’s thesis [Jac13]) described a general-
ization of the method of Botsch and Kobbelt [BK04]. For a continuous deformation
u : Ω → �3 of a planar sheet over the domain Ω, they minimized Laplacian and
Laplacian gradient energies (Fig. 4.3)

E2 �

∬
Ω

∥∆u∥2 dA, (4.2a)

E3 �

∬
Ω

∥∇∆u∥2 dA. (4.2b)

Instead of direct minimization of E2 and E3, the authors introduce a new variable
v � ∆u. This variable is then used to decompose the Euler-Lagrange equations
∆ku � 0, k � 2, 3, into the following lower-order constrained optimization:

min

∬
Ω

∥v∥2 dA s.t. ∆u � v, (4.3a)

min

∬
Ω

∥∇v∥2 dA s.t. ∆u � v. (4.3b)
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Figure 4.2: The framework of Botsch and Kobbelt [BK04] enables prescribing dif-
ferent levels of continuity. The three pipes were obtained by solving
∆kv � 0, k � 1, 2, 3, with Ck−1 continuity on the boundary. Image
from [BK04].

Figure 4.3: Mixed nite element method of Jacobson et al. [Jac+10] for surface de-
formation. Image from [Jac+10].



108 4 Surfacing networks with normals

Three types of boundary conditions are considered: region, curve, and point. The
discretization of the lower-order decomposition is carried out via mixed nite ele-
ments [CR74]. Similarly to the approach of Botsch andKobbelt [BK04], higher-order
constraints – tangents and second derivatives – are prescribed by xing correspond-
ing rings of vertices. Intersecting curve boundary conditions require special treat-
ment, as they tend to produce over-determined systems; Jacobson et al. [Jac+10]
solve this problem by averaging the con icting values at vertices that cause prob-
lems.

In contrast to the above approaches, ourmethod does not require xing (k−1) rings
of vertices in order to enforce Ck continuity. Instead, we directly enforce the normal
constraints available on the input. Another advantage of our method is that it does
not need manual speci cation of magnitude of normals often required by previous
methods.

4.1.2 Surfacing curve networks

Surfacing of a network of curves, also called lofting or skinning, is a classical prob-
lem in computer-aided geometric design (CAGD) [Far02]. Recently, it was revived
thanks to the development in the eld of sketch-based modeling. Interactive 3D
sketching tools [Nea+07; Ros+07; KS07; BBS08; Sch+09] ormethods for inferring 3D
curves from 2D sketches [DDG05; Cor+11; Xu+14; Fon+17] provide raw curve net-
works, which serve as the input for surfacing algorithms. The common assumption
in these works is that the underlying curve network was created with some design
intent, and that the input information is minimal.

Most methods dealing with surfacing of 3D curves focus more on the detection of
cycles in the input network, and less on the global quality of the nal shape [SWZ04;
AJA11; Bes+12; Abb+13; Zhu+13; SS14]. An exception is the state-of-the-artmethod
of Pan et al. [Pan+15], which produces globally smooth output shapes of high qual-
ity.

Schaefer et al. [SWZ04] introduce a subdivision algorithm for interpolating a curve
networkwith smooth limit surface. Their method requires the patches (i.e. cycles in
the network) to be speci ed manually. Each cycle is rst quadrangulated to obtain
a base mesh T0 before applying amodi ed Catmull-Clark subdivision. The vertices
of the base mesh are positioned in such a way that the limit surface interpolates the
input curve network.

Bessmeltsev et al. [Bes+12] introduce a method for quadrangulation of artist-de-
signed curve networks using computationally expensive segmentation and pairing
of the input cycles, and apply a variety of heuristics to nd the connectivity graph
of the quadrangulation. They use discrete Coons patches to obtain the resulting
quad mesh.
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Figure 4.4: Comparison of methods for surfacing sketched curve networks. Left
to right, subdivision lofting [SWZ04], design-driven quadrangulation
[Bes+12], linearized Laplacian smoothing [AJA11], minimal ruled sur-
face [Abb+13]. Image from [Abb+13].

Zhuang et al. [Zhu+13] present an e cient algorithm for detecting cycles in com-
plex networks using a structure called the routing system – a collection of corners
(two consecutive curves on one cycle) and bridges (two consecutive corners in one
cycle). They search for the routing system, which minimizes two cost metrics: the
intra-bridge cost, measured using the parallel-transport normals computed using
the rotationminimizing frame [Wan+08]; and the inter-bridge cost, which forces the
patches to be partitioned uniformly around a curve. To visualize the patches, each
cycle is triangulated with help of the parallel-transport normals that minimize the
intra-bridge cost. The triangulation is computed using the dynamic programming
algorithm of Zou et al. [ZJC13] to match the normals as best as possible.

Sadri and Singh [SS14] present an approach to network surfacing using the ow
complex [GJ08], a computational geometry structure similar to the Delaunay trian-
gulation, but providing better insight to the topology of the underlying surface.

The ow-aligned surfacing algorithm of Pan et al. [Pan+15] attempts to mimic the
humanperception by computing a surface consistentwith design intent of the input
network. The input curves are split into two groups [Xu+14; Bes+12]. The rst
group are the ow lines (lines of curvature), which capture the curvature directions
of the underlying shape (cf. end of Section 2.3). Surface is at least G1 continuous
across the ow lines. The second group are the trim curves, which de ne surface
boundaries or sharp curves. Trim curves are G0 across patches. Pan et al. [Pan+15]
use the result of Zhuang et al. [Zhu+13] as the initial mesh, which is then iteratively
re ned by aligning the curvature tensor with the induced ow eld. This method
does not assume normal input known a priori, but estimates surface normals using
the rotation-minimizing frame (RMF) [Wan+08; BFS10]. The rotation-minimizing
frame is used to estimate surface normals and determine which curves are the ow
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lines; the estimated normals are used as boundary conditions. The algorithm is not
interactive – for a typical mesh with 12k vertices, it takes 7-8 seconds to converge
(10-12 iterations with ≈ 0.7s per iteration).

Despite the di erences in inputs for the method of Pan et al. [Pan+15] and for our
method, ow-aligned surfacing is closest to our work in this branch of research. We
compare our results with [Pan+15] in Section 4.6.4.

4.1.3 Multi-sided patches

Multi-sided patches generalize triangular interpolants (n � 3) and quadrangular
interpolants (n � 4) to boundaries with higher number of curves (n > 4). They are
usually computed with trans nite interpolation methods, possibly with prescribed
tangent ribbons to achieve G1-continuity across boundary curves. Examples of
methods for computing multi-sided patches include generalized Coons patches
[Far02], Gregory patches [GZ94], generalized Bézier patches [VSK16], and subdi-
vision approaches [SWZ04].

Image from [VSK16]

Essentially, there are two main groups of methods.
The rst group of methods assumes a pre-segmentation
of each input cycle into n curve segments with low-
distortion mapping to a convex planar n-sided polygon.
Prescribed tangent ribbons must be de ned consistently
and twists estimated accordingly. Methods in the sec-
ond group quadrangulate the input cycles with topo-
logical guarantees on the extraordinary vertices and ap-
proximate the coarse mesh using well-known subdivi-
sion schemes.

Instead of using multi-sided patches for curve network interpolation, we use the
triangle mesh representation in our surfacing method. The advantage of triangle
meshes is that they can handle surfaces of arbitrary topological type. Furthermore,
triangle mesh representation is better-suited for prescribing surface normals along
the input curve network.
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Ω ⊂ �2 s Γ ⊂ S ⊂ �3
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Figure 4.5: Our setup for surfacing of a curve network (Section 4.2)

4.2 Problem statement

This section formalizes the problem of surfacing of a curve network with normals
that we consider in this chapter. General setting of the problem is similar to the
previous chapter (see Section 3.2 on p. 55).

Let S be an unknown surface. We assume that S is smooth and connected, with or
without boundary, locally parametrized by

s : Ω ⊂ �2→ S ⊂ �3 : (u , v) 7→ s(u , v). (4.4)

We consider a curve network Γ ⊂ S on the surface, which induces a cell complex
structure Γ � (Υ,Σ,Ω) onS. The cell complex consists of nodesΥ, segmentsΣ, and
cycles Ω (Fig. 2.7, p. 40). A curve γ ∈ Γ with length L is G1 smooth and without
self-intersections. Moreover, it corresponds to a sequence of segments in Σ. For
instance, the blue curve in Fig. 4.5 contains four segments, delimited by four nodes
(curve intersections).

A parametrization of a curve γ ∈ Γ is a composition of two maps (Fig. 4.5). First,
the interval [0, L] is mapped to a planar curve in the domain Ω:

ω : [0, L] −→ Ω ⊂ �2

t 7−→ ω(t) �
(
u(t), v(t)

) (4.5)

The secondmap is the surface parametrization s. Taking the composition of Eq. (4.4)
and Eq. (4.5), a space curve γ ∈ Γ is parametrized by

x : [0, L] −→ S ⊂ �3

t 7−→ x(t) � s(ω(t)) (4.6)

Note that we use the above parametrizations only to state the problem formally. In
practice, neither s nor ω are known.

The Darboux frame D � {t,N,B} along the curve γ ∈ Γ ⊂ S at x(t) � s(u , v) is
given by (cf. De nition 2.11)

t � x′ �
dx

dt
, N �

su × sv

∥su × sv ∥
, B � t ×N.
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Given a discrete network N of vertices xi and surface normals Ni sampled uni-
formly from Γ (Fig. 4.5 right), our goal is to nd a surface S, which interpolates xi

and Ni , and is visually smooth. More precisely, we seek to satisfy the following
conditions:

xi ∈ S , Ni ⊥ TxiS. (4.7)

The topology of the discrete curve networkN is known and given as a set of edges
ei j ∈ EN , where ei j is an edge connecting the vertices xi and x j . See Section 2.6 for
more details.

As we already stated in the introduction of this chapter, this problem does not have
a unique solution (Fig. 4.1). In order to solve it, we need to make additional as-
sumptions on the surface S.
In the next section, we discuss the additional assumptions and summarize our ap-
proach for solving the surfacing problem.

curve
network

uniform
resampling

cycles
detection

topology

initial
meshing

normal
propagation

curvature
estimation

geometry

optimization surfaced
network

Appendix C Section 4.4.1 Section 4.4.2 Section 4.5.1 Section 4.5.2 Section 4.5.3

Figure 4.6: A schematic overview of our method for surfacing of curve networks.
More details about the optional uniform resampling step are given in
Appendix C.

4.3 Method overview

This section summarizes the main ideas of our method for computing a surface S
that satis es the conditions (4.7).

The overview of themethod is given in Fig. 4.6. The input data is a discrete network
N with vertices xi and normals Ni sampled from the unknown surface S along a
curve network Γ. The topology of N is also given as the input and speci ed as a
set of edges ei j ∈ EN . We suppose the network is sampled uniformly; if this is not
the case, the data are interpolated by a network of cubic splines and resampled. In
Appendix C, we describe an algorithm for computing a G1 interpolant of the input
data xi , Ni . Note that the networks reconstructed using or method from Chapter 3
are already sampled uniformly and do not need to be resampled (cf. Eq. (3.22)).



4.3 Method overview 113

(a) network Γ (b) discrete networkN (c) triangle mesh T

Figure 4.7: We use a discrete representation to solve the problem of surfacing of
a curve network, here illustrated on a planar network (S � �2). The
triangle mesh (c) interpolates the discrete network (b) sampled from a
set of smooth curves (a). See also Fig. 2.7.

The unknown surface S is represented as a triangle mesh T � (V , E , F ). The
geometry of T is speci ed by the embedding of its vertices:

v : V → �3 : vk ∈ V 7→ vk � v(vk).

Our goal is to compute the mesh T (topology and geometry) so that the following
conditions are satis ed

(i) Topological subset (Fig. 4.7). Edges of the discrete network form a subset of
edges of the triangle mesh: EN ⊂ E.

(ii) Interpolation of positions. Vertices of the discrete network are a subset of
vertices of the triangle mesh: xi � vk for some vk ∈ V.

(iii) Interpolation of normals. Vertex normals along the discrete curve network
match the input normals: if xi � vk , then N(vk) � Ni .

The last condition requires a suitable de nition of per-vertex normals N(vk) for
the mesh T . We use the usual angle-weighted averaging of adjacent face normals
[JLW05; Bot+10].

Our method for nding a mesh T , satisfying the above conditions, has two parts:
the computation of topology, and the computation of geometry (cf. Fig. 4.6).

Computation of topology (Section 4.4). To get the topology, we rst nd the bound-
aries of surface patches in the discrete network, by detecting the network cycles.
Detection of cycles for a general curve network is a hard and ambiguous problem
– usually, only the positions are given as the input. In our case, this ambiguity can
be e ciently resolved thanks to our knowledge of input surface normals along N .
Our cycles detection algorithm is described in Section 4.4.1.
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Each cycle is meshed individually by tessellating the closed boundary of the cycle.
This tessellation is done by computing a constrained Delaunay triangulation (CDT)
in the plane. Since the boundary of a cycle is generally a space curve, it has to be
mapped to a plane before computing the CDT. We use the projection to a plane for
this map.

In order for this approach to be valid, we require this planar projection to be injec-
tive. This places additional constraints on the input network. More details are given
in Section 4.4.2, where we also compare the projection to other planar maps.

Triangulations of individual cycles are joined together to get the set of faces F of
the mesh.

Computation of geometry (Section 4.5). After computing the topology of the mesh,
we are interested in nding the embedding vk of the vertices, which satis es the
conditions (ii) and (iii). To this end, we use the connection between the Laplace-
Beltrami operator and the mean curvature normal of the mesh:

∆S vk � Hk . (4.8)
See Eq. (2.11) on p. 26. In order to exploit the input normals, the mean curvature
normal is not computed using the cotangent formula as in Eq. (2.38). Instead, we
use the following alternative de nition:

Hk � HkN∗k . (4.9)
In this de nition, Hk is the unknown per-vertex mean curvature, and N∗

k
is the

per-vertex normal obtained by propagating the input normals Ni to all vertices of
the mesh. Section 4.5.1 describes how the propagated normals are computed along
with initial positions v∗

k
of the vertices ofT . Section 4.5.2 describes the computation

of Hk by combining the initial vertices v∗
k
and the propagated normals N∗

k
into a

compact curvature measure.

Finally in Section 4.5.3, we compute the vertex positions vk . This is done by mini-
mizing an energy formulated using Eq. (4.8) and Eq. (4.9). The input vertex posi-
tions xi are used as boundary constraints in this optimization.

4.4 Computing the topology

The objective of this chapter is to compute a mesh that interpolates the input po-
sitions and normals. In this section, we describe the rst part of our surfacing
method: computation of topology of the triangle mesh T � (V , E , F ).
We begin by detecting cycles in the input curve network (Section 4.4.1). Each cy-
cle is then tessellated individually using the constrained Delaunay triangulation or
CDT (Section 4.4.2). The topology of T is obtained by combining the individual
triangulations into a single mesh.
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Figure 4.8: Illustration of the cycles detection algorithm (Code snippet 4.9)

function DetectCycle( start, σstart)
0← start # initialize the first node
1← null # initialize the second node
σ ← σstart # initialize the segment
ω[0]← σ # initialize the cycle with the first segment
while 1 , start do

1← AdjacentNode( 0,σ) # get the other endnode of σ
segments← GetSegments( 1) # get oriented segments starting at 1

frame← LocalFrame( 1) # construct the local frame at 1

S← Sort(segments, frame) # sort the adjacent segments by polar angle
σ← S[1] # retrieve the next segment in the cycle
ω[end+1]← σ # add the segment to the end of the current cycle

0← 1 # iterate
end while
return ω

end function

Algorithm 4.9: Cycles detection algorithm from Section 4.4.1. See also Fig. 4.8.

4.4.1 Detection of network cycles

The detection of cycles in a general curve network is a complex and ambiguous
problem, oftenwithout a unique solution. In order to overcome this problem,meth-
ods for surfacing sketched networks adopt a variety of heuristics to mimic the hu-
man perception [Zhu+13].

In our speci c setting, there is no ambiguity, and the problem has a unique and
well-de ned solution (Fig. 4.10). This is a consequence of two facts. First, the curve
network has a structure of a cell complex. And second, the surface normals are
available as the input: they locally determine surface orientation, which enables us
to sort segments around their common node. This sorting is the crucial part of our
cycles detection algorithm.

Since the discrete network inherits the topology of the smooth curve network, the
solution can be found using the available input data: the positions xi , the normals
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Figure 4.10: Detected cycles in beetle

Ni , and the edges ei j ∈ EN . Our detection of cycles is inspired by face extraction in
edge-based manifold data structures (e.g. halfedge). The algorithm is summarized
in Code snippet 4.9 and illustrated in Fig. 4.8.

For each node ν in the network, we sort the adjacent segments around ν. This is
done by projecting the segments to the tangent plane at ν. If x is the position of
ν and N is the normal at ν, the projection of a point p to the tangent plane at x is
denoted by p′ and computed as

p′ � p −
⟨
p − x,N

⟩
N. (4.10)

In practice, we compute the projection x′
i
of the point xi that is closest to x on each

adjacent segment. All projected points x′
i
are then cyclically sorted in the tangent

plane using polar coordinates. This gives an ordering of the segments around ν.

As soon as we have the orderings for each node, we extract the cycles as follows (cf.
Code snippet 4.9). Starting from any (Node,Segment) pair, we trace the unique cycle
by choosing the next node as the other endpoint of the current segment. The next
segment is then picked from the ordered set. To handle surfaces with boundary, we
require the user to tag all boundary segments.

In the next section we describe how the detected cycles are used to obtain the topol-
ogy of the mesh.

4.4.2 Tessellation of cycles

Cycles detected using the algorithm from Section 4.4.1 serve us to de ne the bound-
ary curves of surface patches. In this section we compute the tessellations of indi-
vidual patches – when joined together, these tessellations give us the topology (the
faces F ) of the entire mesh T .
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A cycle ω is de ned by a sequence of n segments, which form a closed discrete
curve C � {xi}i∈I . The discrete curve C is a boundary of an n-sided patch on the
mesh T . The barycenter of C is computed as

xC �
1

|I |
∑
i∈I

xi .

The average normal along C is computed as

NC �

∑
i∈I Ni∑
i∈I Ni

 .
If the sum

∑
i∈I Ni vanishes, the average normal is instead de ned as the normal of

the plane closest to the curve C in the least-squares sense.

To compute the tessellation, we map the discrete curve C to the plane �2 using an
embedding

π : C ⊂ �3→ �2 : xi 7→ π(xi),
where π is required to be injective by de nition. We de ne π as the projection to a
plane given by xC and NC . The projection is computed analogically to Eq. (4.10).

While such a projection is not injective in general, we restrict ourselves to input data,
for which the projection is always injective (Section 4.3). This restriction is a trade-
o between generality and precision. We have found in our experiments that the
planar projection leads to a smaller conformal distortion between the planar trian-
gulation and the mesh triangulation, in comparison with other planar embeddings
of π that we have tested. Small conformal distortion is crucial for correct compu-
tation of weights for the discrete Laplacian, which is used to infer the geometry of
the mesh in Section 4.5.

Besides the planar projection, we have also experimentedwith other embeddings π:
isometricmap to a circle, and piecewise-isometricmap to a polygon. Fig. 4.11 shows
the comparison of all three approaches. The planar projection yields valid results
even for the bunny network on lilium (bottom right) while the other two approaches
fail to capture the high variation of curvature in the network. For the network on
sphere (top left), all three methods produce a valid triangulation. However, the
surface computedwith planar projection has the highest quality among the three.

Next, we compute the tessellation of the planar curve π(C). Since the curve C is
closed and the map π is injective, the planar embedding π(C) is a Jordan curve,
meaning it has a well-de ned interior and exterior. To get a tessellation Tω of C, we
triangulate the interior region using constrained Delaunay triangulation (CDT) with
Steiner points [CDS12, ch. 2]. CDT is similar to Delaunay triangulation, except every
edge in C is present as a single edge in Tω. Steiner points are additional vertices
not present in C, but included in the computation of Tω. They are introduced in
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Figure 4.11: Various approaches for computing the initial tessellation. For each of
the four curve networks, the planar tessellation of every cycle is com-
puted via (top to bottom) projection to a plane, mapping to a circle, map-
ping to a closed polygon with preserved lengths. Left to right for each
of the four datasets, we show the planar tessellation of one cycle, the
same cycle on the nal surface, and the isophotes of the nal surface.
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order to satisfy the constraints onminimum angle αmin andmaximum triangle area
Amax within the tessellation. To get a high-quality triangulation with triangles of
approximately the same size (Fig. 4.7), we use αmin � 20° and Amax �

1
2 h2, where h

is the average edge length in C. The triangulation is computed using Shewchuk’s
Triangle [She96].

An issue that is not often discussed in the literature is themetric of this parametriza-
tion, and its impact on the resulting surface. To get the best results with Laplacian-
based methods, the metric of the planar tessellation should be distorted as-least-
as-possible with respect to the surface metric. In practice, it is hard to have a full
isometry between the two – all themore for reconstruction problemswhere the sur-
face is unknown a priori. Some authors address this problem by iterative re nement
of the surface [SK01; Pan+15].

Finally, we remark that computing the tessellation directly in three dimensions in-
stead of in-plane could provide interesting results. An example is the dynamic
programming method of Zou et al. [ZJC13] which is also used by Zhuang et al.
[Zhu+13] and Pan et al. [Pan+15]. Naturally, this comes at a price of higher com-
putational complexity. In future, we plan to test this kind of tessellation in order to
overcome some of the limitations of the planar projection.

4.5 Computing the geometry

The previous section described the computation of topology for the mesh T . Net-
work cycles are rst detected, then individually triangulated in plane, and nally
combined to get the sets of vertices, edges, and faces of the mesh T .

In this section, we describe how we compute the geometry of T so that the embed-
ding of the mesh in three dimensions satis es the interpolation constraints (ii-iii)
from Section 4.3. The result is a visually smooth surface.

We formulate the computation of geometry as an optimization problem. In order
to match the input positions and input normals, we minimize the following mean
curvature energy functional (cf. Eq. (2.11) and Eq. (4.8))

Emean(S) �
∬
S
∥∆Sx −H∥2 dA (4.11)

where ∆S is the Laplace-Beltrami operator, x is the coordinate function, and H is
the mean curvature normal.

Since we represent the surface S as a triangle mesh, this energy is discretized over
the vertices of the mesh T . The discretization is described in Section 4.5.3. Sec-
tion 4.5.2 describes our estimation of themean curvature normalH, which is needed
to evaluate the energy (4.11).
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Our curvature estimation needs an initial guess for the geometry of themesh (vertex
positions and normals). The following section describes how the initial geometry
is obtained.

4.5.1 Initial mesh and propagation of normals

We now proceed to the computation of the base geometry of the mesh T . These are
the initial positions v∗

k
and the propagated normals N∗

k
.

Two types of vertices are distinguished for the mesh T , which was computed in
Section 4.4.2. The constrained vertices, denoted by Vc � {v1, . . . , vc}, correspond
to the original vertices, lying along the curve network. These are the vertices that
are at boundaries of cycles. The remaining vertices are called free and denoted by
Vf �

{
vc+1, . . . , vc+ f

}
. The set of all mesh vertices is the unionV �Vc ∪Vf , with

the total number of vertices being |V| � c + f � n. See also Section 2.8.

To compute the base geometry, we solve two biharmonic systemswith hard bound-
ary constraints along the discrete network. If we suppose that the indices of prop-
agated mesh vertices v∗

i
match the indices of the input curve vertices xi , then we

want to solve

∆
2
Sv∗k � 0 s.t. v∗i � xi if vi ∈ Vc , (4.12a)
∆

2
SN∗k � 0 s.t. N∗i � Ni if vi ∈ Vc . (4.12b)

The weights for the discrete Laplacian ∆S are obtained from the planar triangula-
tion (Section 4.4.2) and assembled into the Laplacian matrix L. See Eq. (2.40) on
p. 46. The above two biharmonic systems with hard constraints are then written in
matrix form as [

L2
f

Ic 0

] [
Xc

X
f

]
�

[
0

Xc

]
, (4.13)

where X f is the f ×3 matrix with free positions/normals; Xc is the c×3 matrix with
constrained positions/normals; L f is the f × n Laplacian matrix of the free vertices.
Both systems are resolved by eliminating the known constrained vertices Xc and
solving for the unknown free vertices X f .

After the solution has been computed, the propagated normals N∗
k
are normalized.

On rare occasions, the norm of N∗
k
might vanish.1 In this case, we compute the

normal N∗
k
by averaging the non-zero propagated normals in the neighborhood of

v∗
k
. The neighborhood is chosen as the smallest n-neighborhood of v∗

k
for which the

average is not zero.
1Pierre Alliez brought this issue to my attention.
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LkV*=0 LkN*=0 LkV*=0 LkN*=0final surface final surface

k=1

k=2

k=3

Figure 4.12: Comparison of three base geometries on two di erent bumpy cube net-
works. We use k=2 in our framework.

The choice of the base geometry is important for further steps of the framework,
notably the estimation of the mean curvature that we describe in the next section.
Fig. 4.12 shows that solving the biharmonic systems in Eqs. (4.12a) and (4.12b) to get
v∗ andN∗ is a trade-o : in general, we obtain better resultswith the biharmonic base
geometry thanwith the harmonic base geometry LX � 0; on the other hand, there is
little di erence between the nal surfaces using biharmonic and triharmonic base
geometries L3X � 0. This is caused by the fact that only the vertices along the input
curves are xed when solving these systems.

In the next section, we use the computed initial geometry to estimate scalar mean
curvature for the whole mesh.

4.5.2 Mean curvature estimation

In this section, we describe our approach for the estimation of the discrete mean
curvature for the mesh T (see the penultimate step in Fig. 4.6). This estimation is
the most important part of the computation of geometry. It provides the missing
piece of information needed for minimization of the energy (4.11).
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Our idea for estimating themean curvature is to combine the initial positions v∗
k
and

propagated normals N∗
k
(Section 4.5.1) into a compact curvature measure. In order

to include the propagated normals into the estimation, we do not use the cotangent
formula from Eq. (2.38) on p. 45, which is evaluated using positions only.

To get an alternative discretization of the mean curvature, we take a step back and
look at the integral de nition of the mean curvature normal H.

To this end, let us consider a regular surface S and a point x ∈ S on this surface.
Next, let A be a neighborhood around x, such that A is a topological disk (Fig. 4.13
left). The boundary of the neighborhood is a closed curve γ � ∂A. Then it holds
that ∬

A
H dA �

∬
A
−2HN dA �

∮
γ

t ×N ds �

∮
γ

B ds . (4.14)

Here, {t,N,B} is the Darboux frame of γwith respect toS, with unit tangent t, unit
normal N, and unit conormal B. See De nition 2.11 on p. 27. Note that Eq. (4.14)
can be proved using divergence theorem from Eqs. (2.30) and (2.31) [Sul08].

A T1

T2

Te Tv

v

∂A� γ t

B

e
v

vv∗
i+1

v∗
i

N∗
i+1

N∗
N∗

i

Hv

Figure 4.13: Integral de nition of the mean curvature normal

We now describe how the Eq. (4.14) is discretized on a triangle mesh. For an
interior edge e � (vi , v j) ∈ E in the triangle mesh T , we denote by Te � T1 ∪ T2

the union of the two triangles adjacent to e (Fig. 4.13middle left). Fixing a region Ae

around e, such that e ⊂ Ae ⊂ Te , the edge mean curvature is de ned as

He �

∬
Ae

H dA �

∮
∂Ae

t ×N ds � e ×N1 − e ×N2 � e⊥1 − e⊥2 (4.15)

where e � v j − vi is the edge vector and Nk are the unit outward normal of the
triangle Tk . The symbol ⊥k denotes the rotation by 90 degrees counterclockwise in
the plane of the triangle Tk .

For a mesh vertex v, the mean curvature Hv can be evaluated by summing the
contributions of all adjacent edges. Denote by Tv the set of all triangles adjacent
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to the vertex v (Fig. 4.13 middle right):

Tv �

∪
v∈e

Te �

∪
v∈T

T.

Then we have
2Hv �

∑
v∈e

He �

∬
Tv

H dA �

∮
∂Tv

t ×N ds . (4.16)

Using Eq. (4.15), Hv this is discretized as

Hv �
1
2

n−1∑
i�0

(vi+1 − vi) ×NT. (4.17)

Here we suppose that the adjacent vertices {vi}n−1
i�0 are sorted radially around v

and their indices are taken modulo n. The NT is the unit normal of the triangle
T � (v , vi , vi+1).
This integral is usually evaluated using the triangle normals de ned by the mesh
vertices v, which leads to the cotangent formula (Eq. (2.38), p. 45). We evaluate this
integral using the propagated normals N∗ rather than the triangle normals (Fig. 4.13
right). For a vertex v, we compute the mean curvature vector by summing the con-
tributions for all oriented opposite edges:

Hv �
1

2Av

n−1∑
i�0

(
v∗i+1 − v∗i

)
×

N∗ + N∗
i
+ N∗

i+1N∗ + N∗
i
+ N∗

i+1

 . (4.18)

Here, N∗ denotes the propagated normal at v, n is the valence of v, Av is the Voronoi
area of v (Fig. 2.10), v∗

i
are the positions of cyclically sorted neighbors of v (indices

taken modulo n) and N∗
i
are the corresponding propagated normals. Analogously

to the cotan mean curvature, we scale the Hv by the inverse of the Voronoi area to
get a scale-independent mesh formulation.

Formula (4.18) for computing the mean curvature is a key part to our method. Its
originality lies in blending together the positional information (the initial vertices
v∗) with the additional normal information (the propagated normals N∗) not di-
rectly inferred from the positions. In contrast, the usual discrete mean curvature
formulations – such as the cotan formula from the Eq. (4.17) – rely solely on vertex
positions.

We illustrate this originality in Fig. 4.14, where we show three discrete mean cur-
vature measures: one based on the cotan formula (2.36), and two based on our for-
mula (4.18) evaluated with the same geometry with di erent normal elds. It can
further be observed in Fig. 4.14 that our mean curvature measure behaves at least
as well as the standard measures even with a low quality mesh. Since we apply the
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a) cotan formula b) (4.18) original c) (4.18) smoothed

+

0

-

Figure 4.14: Mean curvature of the irregular horse mesh computed using the cotan
formula and the 3-averaging formula (4.18) with original normals and
with smoothed normals.

formula (4.18) to good quality triangulations resulting from a planar Delaunay tes-
sellation (Section 4.4.2), we do not investigate here the incorporation of propagated
normals into more robust discrete mean curvature measures [Gri+06].

The next section describes how the estimated curvature is used to compute the nal
smooth geometry of the mesh.

4.5.3 Optimization

To summarize, our method so far consisted of the meshing step (Section 4.4), fol-
lowed by the computation of an initial geometry (Section 4.5.1) and estimation of
mean curvature (Section 4.5.2). The purpose of all of these steps is to obtain the nec-
essary pieces of information in order tominimize the energy de ned in Eq. (4.11).

Finally, we arrive to the point where the optimization can be discretized and re-
solved. On the triangle mesh T , we discretize the energy (4.11) as

Emean(V) �
∑
v∈V

∆Sv −H∗v
2
. (4.19)

The mean curvature normal H∗v is de ned using the propagated normal N∗ and the
scalar mean curvature estimated via the three-normal averaging formula (4.18):

H∗v � − ∥Hv ∥ N∗.

In Section 4.5.1, the mesh vertices V were split into the constrained vertices Vc �

{v1, . . . , vc} and the free vertices Vf � {vc+1, . . . , vc+ f }. To interpolate the input
curves, the discretized energy from Eq. (4.19) is minimized subject to hard posi-
tional constraints along the curves:

min Emean (V) s.t. vi � v∗i for all v ∈ Vc . (4.20)
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Denoting by H the matrix of the mean curvature normals H∗v , the energy Emean is
written in matrix form as

Emean(V) � ∥LV −H∥2 (4.21)

and minimized by solving the normal equations

L
⊺
L V � L

⊺
H. (4.22)

The positional constrains are enforced by eliminating the constrained vertices from
the system. Splitting the matrix of the system L

⊺
L �

[
Mc M f

]
into blocks corre-

sponding to (known) constrained vertices Vc and (unknown) free vertices V f , the
system (4.22) is equivalent to[

Mc M f

] [
Vc

V f

]
� L
⊺
H ⇒ M f V f � L

⊺
H −McVc , (4.23)

cf. Eq. (2.54) on p. 49. The solution of (4.23) gives the nal smooth geometry v of
the mesh T (see the overview in Fig. 4.6, p. 112).

4.5.4 Hard constraints vs. soft constraints

If the input positions are noisy, a useful modi cation of the problem (4.20) is to
incorporate the positions as soft constraints. To this end, the constrained verticesVc

are further partitioned into hard constraintsVh � {v1, . . . , vh} and soft constraints
Vs � {vh+1, . . . , vh+s�c} with h + s + f � n being the total number of vertices. The
soft positions are added as an energy term:

Esoft(V) � Emean(V) + wEinterp(V) with Einterp(V) �
∑

vs∈Vs

vs − v∗s
2
. (4.24)

The matrix form of the modi ed functional Esoft is

Esoft(V) � ∥LV −H∥2 + w
Vs − V∗s

2
, (4.25)

and the corresponding normal equations are

A
⊺
WAV � A

⊺
W B, (4.26)

where

V �


Vh

Vs

V f


, A �

[
L

0s×h Is 0s×f

]
, B �

[
H
V∗s

]
, W � diag(1, . . . , 1︸  ︷︷  ︸

n times

, w , . . . , w︸    ︷︷    ︸
s times

).

The system (4.26) is solved by moving the hard constraints to the right-hand side
using the procedure outlined at the end of the previous section. Fig. 4.15 illus-
trates the robustness of this approach; in this test, we have arti cially perturbed the
positions and normal directions along the input network. Our method with soft
constraints produces stable output, while still preserving the shape delity.
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Figure 4.15: If the input data are noisy, soft constraints (right) produce better results
than hard constraints (left) while still maintaining high overall shape
delity. In this example, 5% of noise to both positions and normals.

Figure 4.16: Smooth surfaces reconstructed using our method

Figure 4.17: In terms of geometry, weplace no constraints on the input. Ourmethod
can handle even these challenging networks with winding curves, all
while preserving the global smoothness across patches.
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4.6 Evaluation

In this section, we evaluate the method proposed in Sections 4.3 to 4.5. See also
Fig. 4.6 on p. 112, which provides an overview of our surfacing method.

We mostly use synthetic data for evaluation. Fig. 4.19 also shows surfacing results
for lilium networks from Fig. 3.14 in Chapter 3. Most surfacing results for real-world
acquired data are presented in Chapter 5.

In order to obtain the synthetic networks (with surface normals) for testing, we
have used the technique described in the beginning of Section 3.7. A curve network
was traced on a known surface in Blender and the data (vertices and normals) were
exported with help of a python script.

Figure 4.18: In uence of input normals. The red circles are given as input together
with three types of normal constraints (blue). Propagation of the in-
put normals over the surface guides the computation of three di erent
shapes.

4.6.1 Normal control

In Fig. 4.18 we demonstrate the shape control provided by the input normals. The
xed vertex positions are sampled along two parallel circles from the same cylinder

while prescribing three di erent sets of normal vectors along the circles.

With the original normals (Fig. 4.18 left), the cylindrical surface is nicely recon-
structed. Using the two other sets of rotated normals (Fig. 4.18middle, right) results
in the barrel and bottleneck surfaces, as expected intuitively.

Our method works well even for challenging input data, such as the networks with
large normal curvature variations and high valence curve intersections in Fig. 4.16,
or networks with large curvature variation in the tangent plane in Fig. 4.17.
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Figure 4.19: Surfacing error for lilium networks from Fig. 3.14. For ltering of ori-
entations, we have used the weights λ � 1, µ � 100. All lengths are
relative to the diameter (length of AABB diagonal) of the ground truth
surface.
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4.6.2 Convergence & error measurements

We demonstrate in this section that for decreasing sampling distance, the surfaces
computed using our method converge to a limit surface. Given an input network
Γ and an initial sampling distance d, we have resampled Γ using the method from
Appendix C by setting the sampling distance to d/2i for i � 1, . . . , 5.

We then applied our surfacing method to the resampled networks Γi . This process
results in a sequence ofmeshesTi . Since there is no analytic form of limi→∞ Ti , we il-
lustrate the convergence in Fig. 4.20 by plotting the Hausdor distance between the
consecutive meshes Ti ,Ti+1. The three curves correspond to sphere (Fig. 4.22), the
beetle and bumpy cube (Fig. 4.16) networks. The Hausdor distance was computed
using Meshlab [CRS98].
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Figure 4.20: Themeshes computed using our method converge towards a limit sur-
face upon re nement of the sampling distance. For each sampling
level, we plot Hausdor distance to the previous level relative to the
sampling distance d.

Fig. 4.19 shows results of our surfacing algorithm applied to the networks on lilium
reconstructed for acquired data in Fig. 3.14. It compares the three acquisition setups
described in Sections 3.7.3 and 3.7.4.

Re ection lines in the top row show that the surfaces are globally smooth. We also
visualize the error of reconstruction with respect to a ground truth. The smallest
mean error is obtained using smartphone orientations with measured distances, and
all mean errors are less than 1%.

Chapter 5 includes a detailed analysis of surface reconstruction error with respect
to ground truth.
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[Pan+15] biharmonic + normals (4.27) our method

Figure 4.21: On sketched networks, the results of our algorithm are similar to the
method of Pan et al. [Pan+15], which assumes that the input curves
capture the ow eld of the underlying surface. The isophotes on our
surface vary more smoothly, suggesting higher order of continuity. All
three meshes have the same normals along the curve network.

+3 +1

+1 -1
.25 1

0 0
5 5

0 0

Figure 4.22: Various qualitymeasures on the unit sphere and toruswith radii 4 and 2.
Top to bottom: isophotes, mean curvature, distance fromground truth,
di erence between propagated and computed normals (in degrees).
Left to right: biharmonic ∆2

� 0; triharmonic ∆3
� 0; biharmonic with

prescribed normals – solution of (4.27); our algorithm.
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4.6.3 Comparison with Laplacian methods

The method of Botsch and Kobbelt [BK04], which we introduced in Section 4.1.1,
uses kth-order Laplacianwith boundary conditions up to Ck−1 to compute a smooth
surface:

∆
k
S v (u , v) � 0 (u , v) ∈ Ω\∂Ω, (4.27a)

∆
j

S v (u , v) � b j(u , v) (u , v) ∈ ∂Ω , j < k. (4.27b)

Notice, however, that Botsch and Kobbelt [BK04] did not implement boundary con-
straints directly; instead, they xed the positions of (k-1) rings of vertices to pre-
scribe Ck−1 boundary constraints.

This setting prevents dealing with arbitrary constrained curve networks without
knowing the positions of (k-1) rings of vertices. It is therefore impossible to com-
pare our method to theirs; we can however compare our method to the analogous
formulation given by the system (4.27).

To this end, we have implemented (4.27) for k � 2. To avoid xing the positions of 1-
ring vertices along the constrained curves, we directly cast b j as equality constraints
of the linear system, and solve it in the least-squares sense.

In Fig. 4.22 we compare three error measures on the well-known geometries of
sphere and torus. The three error measures are mean curvature, distance to ground
truth and di erence between propagated and computed normals. In addition to
measuring the error for our surfaces and the surfaces obtained by solving (4.27),
we also look at the standard biharmonic and triharmonic surfaces

∆
kv � 0, k � 2, 3,

with positional constraints and without any normal constraints.

Even though the networks on sphere and torus are only toy examples, we believe
this comparison provides useful insight into how our method performs in com-
parison with the standard linear variational methods, with or without the normal
constraints. The linear methods exhibit the well-known undesired defects due to
the linearization of the energy functionals, and the shapes have high curvatures
along the curve network and low curvature everywhere else.

Our solution has much smaller curvature variation. Many authors spend consider-
able e ort in improving the shape of linear methods using e.g. reparametrizations
or an iterative approach [SK01; BK04; Jac+10]. We can observe that our shapes
succeed in mimicking the desired non-linear shape behaviors simply by combin-
ing two linear processing steps: normal propagation and constrained tting, see
the curvature plots in Fig. 4.22. We argue that the normal propagation step, which
pre-computes a continuously varying normal eld, is the basis for this desirable
property.
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[Pan+15] our method

Figure 4.23: Comparison of our method with Pan et al. [Pan+15] on various curve
networks. While both methods are capable of treating these highly
curved inputs, our method reconstructs the underlying shapes more
faithfully and is better at capturing the symmetry in the input net-
works. This visualization uses the normal mapping from Fig. 4.24.
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4.6.4 Comparison with the flow-aligned surfacing

The method of Pan et al. [Pan+15] is considered the state of the art in surfacing of
sketched curves. We nd it interesting to include a comparison with this method,
although the two algorithms do not share the same input since Pan et al. [Pan+15]
do not assume the normal input. The comparison with their method on gamepad
is shown in Fig. 4.21. The normals along the constrained curves, required by our
method, were sampled from the nal surface of Pan et al. [Pan+15]. From left to
right, we show the surface of [Pan+15], the biharmonic surface with prescribed nor-
mals computed via the system (4.27), our surface.

Our method combines the algorithmic simplicity with high delity to the recon-
structed shape, and at the same time maintains the fairness of the nal surface.
Interesting details are revealed by looking at the isophotes. On the surface of Pan
et al. [Pan+15], the isophotes are of globally poor quality, with undesirable wig-
gles visible at closer inspection, see the close-up to the concave region. While the
middle surface computed by solving (4.27) seems globally smoother than the left
surface of [Pan+15], the linearization artifacts are evident (close-up, handle). The
colored renderings of the three surfaces look similar at the rst glance; notice how-
ever the improved quality of specular highlights on our gamepad compared to the
left surface of [Pan+15].

In many cases, the results of the two algorithms are hard to tell apart if colored
uniformly. To better understand and compare the qualitative properties, we shade
the surfaces by mapping the normals to a red-and-blue texture with circular pat-
terns, see Fig. 4.24 [Slo+01]. The shaded circles in the middle of the gure repre-
sent a hemisphere of unit normals oriented towards the camera (the mapping is
view-dependent). Such normal-mapped texture is useful to examine continuity,
regularity and symmetry of shapes.

Figure 4.24: The normal mapping used to assess surface quality. In this case, the
texture reveals that our torus (right) ismore symmetric and regular than
the one of [Pan+15] (left).
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Pan et al. [Pan+15] assume the initial curve network is an output of a sketching sys-
tem, then use this assumption to guide their optimization. Their algorithm yields
reasonable surfaces even when applied to more general curve networks not coming
from sketching tools, see for instance the bunny network in Fig. 4.23. While the re-
sulting surfaces are smooth, the normal mapping from the Fig. 4.24 enables a more
detailed analysis of the quality.

Focusing on bumpy cube, the algorithm of Pan et al. [Pan+15] clearly does not main-
tain the symmetry of the input network in the computed surface. Our algorithm
keeps the symmetry: the nal textured surfaces are fairly regular while the circles
in the texture are nicely preserved. The same behavior can be observed with torus
network on Fig. 4.24.

The evidence is less striking for the non-symmetric lilium networks; nevertheless,
our surfaces are of globally better quality. Notice the white curve between red and
blue regions on each surface. Visually, its behavior suggests our surfaces might be
G2 continuous, while the surfaces of Pan et al. [Pan+15] seem to be only G1 contin-
uous.

In the case of lilium and bumpy cube, it is interesting to observe how the computed
shapes depend on the input curves. For two very di erent networks initially lying
on the same surface (lilium), the results of our method are fairly close to each other;
the results of Pan et al. [Pan+15] are more input-dependent.

4.7 Conclusion

This chapter introduced a Laplacian-based surface reconstruction method from
curve and normal input. After propagating the input normals smoothly over the
surface and computing the correspondingmean curvature vectors, the normal con-
straints are integrated into the energy functional. E ciency and robustness are
achieved by using a linearized objective functional, such that the global optimiza-
tion amounts to solving a sparse linear system of equations.

Limitations. A weakness of our method lies in the fact that the cotangent weights
for the Laplacian matrix L are inferred from the planar triangulation, computed
for each patch individually as explained in Section 4.4.2. Such parametrization is
not isometric to the actual surface patch; as a consequence, the weights are not
optimal. Nevertheless our examples show that it does not impact the smoothness
of our results across surface patches. The framework cannot automatically handle
curve networks which are open or consist of more than one component. However,
the optimization in Eq. (4.20) is not limited by the topology of the network, only by
the availability of the initial mesh.
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Future work. Our implementation runs at interactive time rates: the reconstruction
takes about 0.1s for a mesh with 10k vertices and 1k constraints. However, when
a new curve is added to an existing curve network, the whole surface needs to be
recomputed from scratch. Our method could possibly be extended into an algo-
rithm for iterative surfacing by adjusting the already computed surface when a new
curve is added. Such extension could be valuable in the context of dynamic shape-
from-sensors setup (Section 1.4). As stated in Section 4.4.2, the tessellation could
be improved by using a more advanced 3D patching algorithm. Another possible
modi cation might be to allow open curve networks on the input, which is poten-
tially useful for iterative acquisition.

Acknowledgements. For testing, we have used synthetic curve networks with nor-
mals. These networks were traced on meshes provided by Cindy Grimm2 (bowl),
Pan et al. [Pan+15] (gamepad) and [libigl]3 (bumpy cube, lilium). The gamepad network
is originally due to Xu et al. [Xu+14].

HaoPan kindly provided themeshes used for comparison in Figs. 4.21, 4.23 and 4.24
(gamepad, torus, lilium, bumpy cube).

2http://web.engr.oregonstate.edu/~grimmc/meshes.php
3https://github.com/libigl/libigl/tree/master/tutorial/shared

http://web.engr.oregonstate.edu/~grimmc/meshes.php
https://github.com/libigl/libigl/tree/master/tutorial/shared




5
Applications :
Reconstruction & Sketching

A y .
Chapter 3 described a new algorithm for reconstruction of smooth and consistent
curve networks from orientation data provided by inertial and magnetic sensors.
Chapter 4 described a new algorithm for surfacing of curve networks with known
surface normals.

In this chapter, we combine and apply the two algorithms to real-world data in
order to produce digital reconstructions of physical surfaces. We demonstrate re-
sults using data acquired with the two dynamic devices introduced in Section 1.4:
Morphorider and a smartphone.

Motivated by the previous reconstruction methods developed for static sensor de-
vices, our initial goal was to develop methods for reconstruction of shapes using
data from dynamic sensor devices. In doing so, we have discovered that the same
methods have a potential to be used in the context of 3D sketching.

We therefore distinguish two scanning modes in the context of our dynamic frame-
work. Reconstruction (Fig. 5.1a) is the process of scanning an existing physical shape;
see Section 1.1 for more details. Both Morphorider and smartphone are used to this
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(a) Lilium acquired with the Morphorider

(b) Sphere and mushroom sketched with a smartphone

Figure 5.1: Examples of results obtained using our framework: (a) reconstruction,
(b) sketching. Naive integration of raw, acquired data yields network
with incorrect topology (left). Our reconstruction algorithms result in
smooth curves with correct topology (middle) ready for surfacing (right).
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end. Sketching (Fig. 5.1b) means creation of a new (3D) shape from scratch, using a
smartphone.

This chapter has three main sections. Section 5.1 describes the fabrication of the
lilium test surface. This surface was fabricated from a known digital model in order
to be used as a ground truth. This allows us to evaluate the presented framework
quantitatively by measuring the error of reconstruction.

Section 5.2 provides more details about the acquisition devices and describes our
acquisition process. We also discuss our implementation of the di erent methods
for acquisition, reconstruction and surfacing.

Finally, Section 5.3 presents results of the complete reconstruction pipeline, starting
with raw orientations and resulting in a smooth surface. Computed surfaces with
known ground truth are evaluated by measuring the error of reconstruction.

5.1 Experiments with fabricated surfaces

The target application of the algorithms presented in this thesis is reconstruction
of real-world physical shapes. Fig. 5.1a shows an example of reconstruction of a
physical object using our methods.

One way of testing the quality of the reconstructed models is visual inspection.
Many surface interrogation techniques are available to assess the smoothness of
a surface, such as curvature and porcupine plots (Fig. 3.12), isophotes (Fig. 4.21),
re ection lines (Fig. 4.19), or normal mapping (Fig. 4.24).

To perform a more rigorous quantitative testing of the presented algorithms, our
goal was to compare the reconstructed network and/or surface to a known ground
truth. In practice, such models are seldom available, and there are essentially two
options to obtain them. One way to obtain a ground truth model is to scan the
physical object using a di erent technique with high precision. The other way is to
fabricate the object from a digital model – this is what we chose to do.

We already had one fabricated model with known ground truth at our disposition
– a polystyrene cone with base radius 0.5m and height 2m (Fig. 5.4 left). The same
cone was used for testing in the thesis of Mathieu Huard [Hua13]. While the cone is
certainly a suitable test object, we also wanted to test surfaces with more complex
geometry in terms of curvature variation; cone, being a developable surface, has
Gaussian curvature zero everywhere (K ≡ 0).

Today, 3D fabrication is accessible and low-cost; nevertheless, most consumer-avail-
able 3D printers have severe limitations when it comes to the size of the printed
model. Such small-sized objects cannot be used for data acquisition with either of
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our devices. In order to fabricate a surface of suitable size, we had to use a di erent
fabrication method (injection molding) proposed by a specialized company.

Since only a single surface could have been fabricated, we have chosen the test object
to be lilium (Fig. 5.4 right). The geometry of this shape is well-suited for testing our
framework: its surface is smooth and contains elliptic points (K > 0), hyperbolic
points (K < 0) and parabolic/planar points (K � 0).

The dimensions of the two fabricated models are given in Table 5.2.

width depth height diameter
w d h

√
w2

+ d2
+ h2

lilium 1.00 1.00 0.25 1.44
cone 1.00 1.00 2.00 2.45

Table 5.2: Dimensions of physical surfaces used as ground truth in our tests
(Fig. 5.4). Lengths are given in meters and refer to the dimensions of
the axis-aligned bounding box (AABB).

5.1.1 Fabrication of lilium

Lilium is available online as a triangle mesh1 – this representation is however unsuit-
able for fabrication, which requires a B-spline surface on the input. Our solution
was to infer the B-spline surface from the available triangle mesh: since there are
no automatic tools for this type of conversion, we had to manually drape the mesh
with a smooth surface.

mesh B-spline

Figure 5.3: Lilium triangle mesh converted to a smooth B-spline surface, both shown
with isophotes. On the right is the mesh wireframe and Gaussian cur-
vature of the B-spline surface (red – positive, green – zero, blue – negative).

1https://github.com/libigl/libigl/blob/master/tutorial/shared/lilium.obj

https://github.com/libigl/libigl/blob/master/tutorial/shared/lilium.obj
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Figure 5.4: Physical surfaces used as ground truth in our tests: cone (left) and lilium
(right).

We have created the B-spline surface in [Rhino] with help of algorithmic modeling
provided by [Grasshopper]. The boundary curve of the mesh was rst extruded.
We then applied Rhino’s drape operation to get a rough B-spline model, followed
by iterated Laplacian smoothing. Fig. 5.3 shows the input triangle mesh and the B-
spline surface we obtained, as well as its Gaussian curvature. The resulting smooth
surface preserves lilium’s characteristic shape and is a su cient approximation for
our needs.

5.2 Acquisition & implementation

In Section 1.4, we brie y introduced the devices that we use for acquisition in the
dynamic setup. This section provides more details about the devices and about
the acquisition process. We also describe our implementation of various tools for
acquisition, reconstruction (Chapter 3) and surfacing (Chapter 4).

5.2.1 Morphorider

Morphorider is an acquisition device that motivated the development of algorithms
presented in this thesis. It is our primary acquisition device. We alreadymentioned
Morphorider in the context of estimation of orientations (Section 3.4.2) and evaluation
of our methods (Sections 3.7 and 4.6). In this section, we provide more details on
how this device operates.

Inertial measurement unit (IMU). To measure the orientation of the device, we use
inertial and magnetic sensors able to provide their rotation with respect to a mea-
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% Morphorider's MAC address is 00:12:F3:1C:75:56
% listen at port 99, has to be executed as root
system('sudo rfcomm bind 99 00:12:F3:1C:75:56');
mrider.port = '/dev/rfcomm99';
mrider.serial = serial( mrider.port,...

'BaudRate', 115200, ...
'DataBits', 8, ...
'StopBits', 1, ...
'Parity', 'none', ...
'FlowControl', 'none', ...
'InputBufferSize', 22 );

fopen( mrider.serial );
% send 'Q' = char(81) : this triggers acquisition
fprintf( mrider.serial,'%c',81);
% read the measurement
[data,datasize] = fread( mrider.serial );
% process the measurement
% . . .

Code snippet 5.5: Opening a serial connection in Matlab under Linux

# file: lilium5-mrider.rawnet
# number of curves in the network
5
# curve 1

1 # 1=boundary, 0=interior
1 # 1=closed, 0=open
# number of nodes
9
# node indices
1 51 86 121 159 194 226 252 282 # local
0 1 2 3 4 5 6 7 0 # global
# number of datapoints
282
# data:
# distance tangent normal
# x y z x y z

+0.0000 +0.6442 +0.7626 -0.0570 +0.7277 -0.5884 +0.3524
+0.0091 +0.6412 +0.7644 -0.0662 +0.7326 -0.5843 +0.3490
+0.0178 +0.6537 +0.7540 -0.0637 +0.7236 -0.5983 +0.3440
...

+2.4427 +0.7504 +0.6607 -0.0166 +0.6149 -0.6887 +0.3839
# curve 2
...

Code snippet 5.6: Rawnet le for storing network orientations and distances
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sured eld (Section 1.2). We use a 3A3M con guration, which combines a 3-axis
accelerometer and a 3-axis magnetometer. An orthonormal frame that represents
the 3D orientation is determined by combining the information from both sensors.
The sensors are xed in the device so that one of the axes of the orthonormal frame
is aligned with the motion axis. The orientations are estimated from sensor mea-
surements by solving the Wahba’s problem using SVD (Section 3.4).

Sensor of displacement. Orientations provided by the IMU are by themselves not suf-
cient to reconstruct the spatial locations, we also need to know the displacement of

the device along scanned curves. To this end, we use an odometer: the encoder disk
sends a tick when 1/500 of a round is traveled. The displacement of the Morphorider
has to be controlled to avoid sliding.

Data collection. The device contains a micro-controller, which collects the data. The
micro-controller is managed by a software driver. Values from the IMU and the
odometer are read sequentially via a serial bus, and send to a host computer via
Bluetooth. Morphorider is equipped with a battery and the acquisition is wireless.

Acquisition process. We use a Matlab program to acquire data with the Morphorider
(Fig. 5.7 left). To record the data, the device is connected to a host computer via a
serial Bluetooth connection. In Matlab, such connection is established by executing
the command fopen on an object created with the command serial (Code snip-
pet 5.5). Acquisition is triggered by sending commands via fprintf and measured
data are read using fread. A raw measurement consists of 22 bytes:

bytes 1 – 4 5 – 6 7 – 10 11 – 16 17 – 22
represent control bytes index distance accelerometer magnetometer

Numbers are represented as 16-bit signed integers, rst bit represents the sign. For
the distance measurement, the two integers represent amounts of big and small
ticks: one big tick corresponds to a wheel turn, one small tick corresponds to 1/500
of a wheel turn. Accelerometer and magnetometer measurements consist of three
integers – each of these integers is mapped to the interval [-1,1]. The resulting
raw unit vectors in �3 have to be calibrated to obtain the directions eacc and emag
[Bon+09]. The calibrated vectors are then used for estimation of orientations (cf.
Section 3.4.2).

Prior to acquisition, a unique index between 0 and n-1 is assigned to each of the n
networknodes. Acquisition is controlled remotely using awireless numpad (Fig. 1.15
left). When starting a new curve, we rst indicate if the curve is at the boundary (the
- key) or in the interior (the + key). Every time the device passes through a node, we
record its index by pressing the corresponding key on the numpad. After the acqui-
sition has been stopped, orientations, distances and network topology are exported
into a rawnet le (Code snippet 5.6). This le is then directly available for automatic
shape reconstruction using our framework without any post-processing.
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Figure 5.7: Matlab programs for acquisition (Left) and reconstruction (Right). Data
are visualized in real time during acquisition, with positions computed
using explicit Euler integration xi+1 � xi + diti .

Figure 5.8: C++ implementation of our reconstruction framework

Figure 5.9: Android applications used for data acquisition with a smartphone.
(Left) Sensor fusion. (Right) ShapeIt.
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5.2.2 Reconstruction GUI

We implemented the reconstruction framework from Chapters 3 to 4 in Matlab
(Fig. 5.7 right) and in C++ (Fig. 5.8).

For easier control and interactive feedback, the user manages the reconstruction
from a GUI. Data are read from a rawnet le (Code snippet 5.6). User selects re-
construction parameters, such as the sampling density h, the convolution radius σ
(Fig. 3.6), and the ltering weights λ and µ (Fig. 3.12).

The main part of the GUI is the rendering of the reconstructed shape. In addi-
tion, the Matlab program also shows the Gauss map and the curvature plot of the
network. The C++ program enables visualization of the surface using the normal
mapping technique described in Section 4.6, see Fig. 5.8 right.

5.2.3 Smartphone

Morphorider is certainly a device with interesting possibilities for applications wait-
ing to be explored. For instance, imagine amouse-like robot equippedwith sensors
that is autonomous or controlled by a human on distance. Such device could be
used to acquire 3D information in hostile or unreachable environments.

While the possibilities are limitless, Morphorider is at the moment a one-of-a-kind
prototype. When developing the algorithms exposed in previous two chapters, we
were curious if the samemethods could be used for reconstructionwith smartphone-
acquired data. This extension is not straightforward since smartphone cannot mea-
sure distances – at least not with the precision that we need.

To test the viability of this idea, we developed aminimal Android application based
on the code of Alexander Pacha written for his master’s thesis on sensor fusion
[Pac13; MHV11]. This rst prototype consisted of a single screen showing a cube
rotating according to the orientation of the device. User controls the application by
tapping the screen to start/stop the acquisition; a later version of the application
also featured the possibility to indicate that the device is passing through a node
via a vertical slide, but there was no visual feedback on the shape which was being
scanned. The application can be seen in Fig. 5.9 left.

During acquisition, orientation data from the smartphone were recorded together
with the timestamps and saved in a le on phone’s local storage. Since the node
indices were not speci ed during acquisition, the le needed to be manually post-
processed by adding the indices where necessary. Afterwards, the data were ready
for reconstruction. Examples of results obtained using this application are shown
in Fig. 3.14 and Fig. 5.1b (mushroom).
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5.2.4 ShapeIt

Encouraged by the initial results obtained with the smartphone-acquired data, we
decided to further pursue the line of research related to shape acquisition with
nothing but a smartphone. This is a challenging problem since there is currently
no reliable method for estimating the displacement of a smartphone with precision
to millimeters, or even centimeters – precise distance measurements are important
for the network reconstruction algorithms from Chapter 3 to give the expected re-
sults.

The rst prototype of the smartphone application for data acquisition (Section 5.2.3)
was lightweight, but often tedious to use. Moreover, the output les required post-
processing – the topology of the network had to be speci ed manually before the
les could be read by our reconstruction programs.

Our initial focuswas therefore on the development of amore user-friendly interface
for acquiring network orientation data; this became the subject of a three-month
internship of Lucas Lesage [Les17], which I co-supervised. The result is an Android
application called ShapeIt (Fig. 5.9 right).

Three main goals were identi ed prior to the development of ShapeIt.

1. Real-time visualization. The application should provide a real-time feedback
for the user by showing the scanned curves reconstructed using a simple for-
ward integration without satisfying the topological constraints.

2. Topology speci cation. The application should provide a simple GUI for spec-
i cation of the topological constraints (node indices), as well as for marking
boundary/interior curves.

3. Data export. The application should provide a simple way for the user to ex-
port data in rawnet format compatible with our Matlab/C++ programs (Sec-
tion 5.2.2).

The nal application includes all three above features. We also included the Pois-
son network reconstruction implemented in C++ directly in the application (using
Android Native Development Kit). This allows the user to reconstruct the network
with correct topology directly in the smartphone. At the moment of writing this
thesis, neither ltering nor surfacing are implemented directly in the application,
and the Poisson reconstruction serves mainly for the purpose of visualization. In
future, we plan to perform all the steps – acquisition, ltering, reconstruction and
surfacing – directly on the smartphone.

Acquisition process. Data acquisition with ShapeIt is toggled by pushing a button.
Surface is scanned by moving the smartphone along a xed axis (see Fig. 5.10, the
illustration in the middle). Similarly to Morphorider, each curve is acquired individ-
ually, and the nodes are marked during acquisition by pushing a button. User later
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manually indicates the global indices of the marked nodes directly in the applica-
tion. Acquired data are then exported to a rawnet le (cf. Code snippet 5.6), which
can be processed by our reconstruction tools. See the example in Fig. 5.10.

Figure 5.10: Example of a surface acquired with ShapeIt. Image from [Les17].

5.2.5 Sketching of virtual 3D objects

A major advantage of Morphorider over a smartphone is that it provides precise dis-
tance measurements and data that are parametrized by arc-length. Smartphone, on
the other hand, has to rely on time parametrization and lengths either being input
manually or estimated from total acquisition time. We have compared the three
approaches in Section 3.7.4.

The apparent shortfalls of the smartphone setup can be turned to an advantage, en-
abling smartphone to do what Morphorider cannot do: sketching virtual shapes di-
rectly in 3D. Examples are shown in Fig. 5.11 and Fig. 5.12.

The application of our framework to 3D sketchingwas surprising and not intended.
We believe this problem deserves a proper investigation on its own. Our current
acquisition tools (such as ShapeIt) are prototypes, perhaps unintuitive for a rst-
time user. There is certainly great potential for future improvement, notably in
terms of development of an intuitive user interface, but also in terms of algorithms
customized for the particular task of 3D sketching.
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Figure 5.11: Mushroom network created from scratch entirely with a smartphone.
Curve lengths were estimated from acquisition time and the network
(Left)was reconstructed using algorithms fromChapter 3. Final surface
was computed using the method from Chapter 4 with soft positional
constraints (middle) and rendered in Blender (Right).

Figure 5.12: Inspired by the image on the right, we created a 3Dmodel of sailboat by
sketching the two networks on the left with a smartphone. The lengths
were estimated from time of acquisition.
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5.3 Reconstruction of physical surfaces

In the last part of this chapter, we go back to our original problem: acquisition and
reconstruction of real-world shapes. We rst present examples of acquisition and
reconstruction of everyday objects. We then discuss the error of reconstructionwith
respect to ground truth for data acquired from cone and lilium.

5.3.1 Acquisition of everyday objects

We demonstrate the results obtained by scanning four di erent everyday objects:
chair (Fig. 5.13), guitar (Fig. 5.14), baby bathtub (Fig. 5.15) and roof box (Fig. 5.16).

Fig. 5.13 demonstrates the importance of our ltering step. It shows four surfaces
interpolating the chair networks from Fig. 3.13. The result in the rst row was ob-
tained by surfacing a curve network reconstructed from pre- ltered orientations
without the ltering on SO(3). The other three shapes were obtained by surfac-
ing networks reconstructed from ltered orientations using three di erent sets of
weights.

The di erence in quality of the nal surfaces is evident: notice the specular high-
lights and silhouettes. The highlights on the un ltered chair (top) indicate that the
surface is not smooth and contains high-frequency noise. This noise is also visible
by looking at the black curve network on the right.

In contrast, the ltered surfaces do not contain such artifacts, and the resulting
shapes are globally smooth. Among the three ltered surfaces, the best results are
arguably obtainedwith theweights λ � 1, µ � 1e4, which provide the best trade-o
between smoothing and delity.

Guitar (Fig. 5.14) and baby bathtub (Fig. 5.15) are additional examples of everyday
objects acquired with the Morphorider. With our techniques, both shapes are recon-
structed smoothly using only a few input curves instead of a dense point cloud.

During acquisition we faced the question of what curves to acquire in order to min-
imize the reconstruction error – di erent curve networks on the same surface usu-
ally produce di erent results. This is the case for the various networks taken from
roof box in Fig. 5.16. While adding more curves generally improves the reconstruc-
tion, the overall shape clearly depends on how the curves are chosen. The optimal
choice of curves to be scanned merits to be investigated further, but goes beyond
the scope of this thesis.
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no filter

=10
=1e3

=1
=1e4

=100
=1e4

Figure 5.13: Surfaces interpolating the chair networks from Fig. 3.13. Photos on the
left show the original chair during acquisition.



5.3 Reconstruction of physical surfaces 151

Figure 5.14: Guitar acquired with Morphorider. Digital guitar was created by extrud-
ing the surfaced network.

Figure 5.15: Baby bathtub acquired with Morphorider. Scanning this translucent ob-
ject was not an issue.
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Figure 5.16: Roof box acquired using the Morphorider and reconstructed with di er-
ent sets of curves
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5.3.2 Measuring the error

In Figs. 3.18 to 3.22, we showed an analysis of reconstruction error for networks
acquired using both Morphorider and smartphone. This error was computed for net-
works acquired from the fabricated surfaces – cone and lilium – with known ground
truth models. See Section 3.7.3.

This section features analysis of reconstruction error for surfaces. Each of the re-
constructed networks from Figs. 3.18 to 3.22, was surfaced using our method from
Chapter 4. We then evaluated the error of reconstruction between the computed
mesh T and the ground truth surface S. Similarly to the network case, before com-
puting the error, the two surfaces need to be registered together using ICP [BM92].
Then, for each vertex v in T , the error is computed as the distance between v and
its closest point on S:

error(v) � min
x∈S
∥v − x∥ . (5.1)

Results are shown in Figs. 5.17 to 5.21. Recall that for each dataset, we compare the
surfaces obtained with four sets of ltering weights (λ � 1, 100 and µ � 1, 100) and
ve di erent sampling distances

h ∈ {6.4%, 3.2%, 1.6%, 0.8%, 0.4%} .
Plots on the right visualize the maximum, root mean square (rms), mean and min-
imum of the reconstruction error. As before, all lengths are relative to the diameter
dS of the corresponding ground truth surface S.
For each surface, we visualize the point-wise error of reconstruction w.r.t. ground
truth computed using Eq. (5.1). For lilium datasets, we also show the isophotes on
the computed surfaces.

Remarkably, the mean error at the nest resolution is always smaller than 1%.

Cone (Fig. 5.17). Cone dataset was acquired with the Morphorider. In terms of error,
the di erence between reconstructed surfaces is most evident at coarse levels. At
most levels, the smallest mean error is obtained with the weights λ � 1, µ � 100,
although the di erences at the nest level are practically invisible. In terms of sur-
face quality, the weights λ � 100, µ � 100 provide the smoothest results, which is
best seen by focusing at the boundary curves. The weights λ � 100, µ � 100 seem
to be the best choice in this case: at all levels, they combine visually smooth results
with low reconstruction error.

Next, we look at the results with the two lilium datasets.

Lilium, 5 curves (Figs. 5.18 to 5.20). Recall that for liliumwith 5 curves, we compare the
three acquisition setups: Morphorider (withmeasured lengths), smartphonewith esti-
mated lengths, and smartphonewith measured lengths. See Sections 3.7.3 and 3.7.4
for more details.
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Let us rst look at the error of reconstruction, which behaves similarly to the net-
work error. For datasets with measured lengths, better results are obtained by set-
ting small stretching weights (λ � 1). On the other hand, for the dataset with es-
timated lengths, better results are obtained by setting higher stretching weights
(λ � 100). This behavior is possibly due to the fact that the estimated lengths tend
to distort the shape; setting higher stretchingweights smooths out this distortion.

Similarly to networks, the best reconstruction is obtainedwith smartphone datawith
measured lengths. The smallest mean error is 0.62% for the weights λ � 1, µ � 100.
Morphorider and smartphonewith estimated lengths result in comparable error statis-
tics. Overall, Morphorider provides slightly better results than smartphone with esti-
mated lengths; moreover, comparing the colormaps of the two datasets,Morphorider
reconstruction distributes the error more evenly.

In terms of surface quality, the results with measured lengths (with both devices)
are superior to the resultswith estimated lengths. As expected intuitively, we obtain
the smoothest and most regular isophotes for weights λ � 100, µ � 100.

Lilium, 7 curves (Fig. 5.21). Finally, we discuss the reconstruction results using lilium
dataset with 7 curves acquired with the Morphorider (Fig. 5.20). The mean error is
slightly higher (around 1%) compared to the mean error of lilium with 5 curves ac-
quired with Morphorider (around 0.85%). On the other hand, the isophotes on lilium
with 7 curves seem to varymore smoothly that liliumwith 5 curves. This means that
adding new curves to the network does not necessarily improve the reconstruction
in terms of error, but might improve the smoothness of the resulting surface.

5.3.3 Conclusion

This section presented the results obtained with our framework tested on a variety
of real-world objects. Our experiments demonstrate that the framework produces
surfaces of high quality, in terms of both visual smoothness and reconstruction er-
ror.
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Figure 5.17: Surface error, cone, Morphorider
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158 Figures & Tables: Surface reconstruction error
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Figure 5.18: Surface error, lilium (5 curves), smartphone, estimated lengths
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160 Figures & Tables: Surface reconstruction error
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Figure 5.19: Surface error, lilium (5 curves), smartphone, measured lengths
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162 Figures & Tables: Surface reconstruction error
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Figure 5.20: Surface error, lilium (5 curves), Morphorider
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164 Figures & Tables: Surface reconstruction error
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Figure 5.21: Surface error, lilium (7 curves), Morphorider
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6
Conclusion

W 3D .
The presented shape-from-sensors framework constitutes a complete solution for re-
construction of curves and surfaces using sensor devices. Below are the most im-
portant elements that di erentiate our framework from related methods in sensor-
based reconstruction.

Discrete formulation. The algorithms are formulated in terms of discrete curves (poly-
lines) and discrete surfaces (triangle meshes). As a consequence, reconstruction is
performed at interactive time rates.

Optimization-driven approach. Shapes are de ned as solutions to optimization prob-
lems. These problems are formulated using results from discrete di erential geom-
etry.

User-speci ed topology. Curve network topology is required as user input and pre-
served during reconstruction by design. This approach avoids using ad-hoc stitch-
ing techniques to get the correct topology.
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Guided by normals. Surface normals serve as important constraints in the optimiza-
tion. During orientation ltering, we verify the normals are consistent at intersec-
tions; surfaces attempt to match the curvature estimated using propagated nor-
mals.

6.1 Summary of contributions

The general philosophy of this workwas to adopt amesh-related approach for solv-
ing the problem of shape reconstruction from sensor data. In contrast, most pre-
vious methods introduced in the context of sensors reconstruction use traditional
spline-basedmethods. Our inspiration wasmostly drawn from the emerging elds
of geometry processing and discrete di erential geometry. We have succeeded in
adapting recent techniques from these elds to our speci c setup – we introduced
new reconstruction algorithmswith rigorousmathematical background and exten-
sive experimental results.

The e ort was placed into developing algorithms that are as automatic as possible.
While the acquisition has to be controlled manually, the reconstruction requires
minimal user intervention. Essentially, the user only has to adjust a few parame-
ters such as sampling density or ltering weights, and all computations are done
automatically. Importantly, since our methods are interactive, the result is updated
and rendered instantaneously when the parameters are changed.

We now sum up the two parts of the framework.

Our reconstructionmethod for curve networks has two important ingredients. First,
our custom ltering directly on the manifold of orientations ensures the ltered
data are smooth and consistent while remaining true to the raw acquired orienta-
tions. Second, the positions are obtained by resolving a Poisson system discretized
by taking into account the topology of the network.

A key ingredient of our surfacing method is the equation matching vector mean
curvature with the Laplace-Beltrami operator of the surface. This equation allows
us to match the initial positions with mean curvature vectors estimated from input
surface normals.

We applied the presentedmethods to reconstruction of surfaces fromdata acquired
with two devices, Morphorider and smartphone. We have tested our approach on
fabricated objects with known digital ground truth. Even for intricate shapes with
high variations of curvature (lilium), the mean reconstruction error remains around
1%. Another possible application of our framework is 3D sketching using nothing
but a smartphone, which we demonstrated with examples (mushroom, sailboat).
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6.2 Future work

The present framework is the rst step in a new direction, leaving space for future
research. We summarize open questions together with ideas and perspectives for
improvements – some have already been stated in previous chapters and are re-
peated here.

Curves. The versatility of the dynamic setup potentially allows us to acquire many
di erent curve networks on the scanned surface (Fig. 5.16). It is unclear how the
curves should be chosen in order to minimize network/surface reconstruction er-
ror. For instance, as we noted at the end of Section 2.1, the Darboux frame is
rotation-minimizing along lines of curvature, i.e. curves with vanishing geodesic
torsion. Should the acquired network trace lines of curvature on the surface? How
many curves should we acquire? In which parts of the surface should the curves
lie? These are the questions that remain open and deserve further investigation.

Experimental results indicate that surface normals along reconstructed networks
are continuous but not di erentiable (with derivatives de ned with respect to the
underlying surface). This means that the network is G1, but not G2 everywhere.
Networks with smoothly varying normals might be obtained by a modi cation of
the normal penalty in the energy used for orientation regression. The idea would
be to take into account the normals not only at the vertex, but also at its neighbor-
hood, with a suitable inverse-distance weighting scheme (possibly similar to the
pre- ltering weighting scheme, see Fig. 3.6).

Surfaces. To obtain the initial tessellation, we parametrize each cycle by projection to
a plane. The main reason whywe use planar projection is that it introduces smaller
conformal distortion compared to methods which map the cycle to a circle or a
planar polygon (see the examples in Section 4.4.2). This approach has limitations
since it cannot be used if the projection is not injective. The solutionmight be to use
an existing method for triangulation of 3D curves [ZJC13]. Alternatively, the initial
tessellation might be computed with help of a restricted Delaunay triangulation
(DT). Restricted DT is a subcomplex of a three-dimensional DT which serves as a
triangulation of a smooth surface embedded in �3 [CDS12, Chap. 13]. Restricted
DT requires a su ciently dense sample of points that could be sampled from a
quadratic surface approximating the input curves and the input normals.

Devices. Anext generation prototype ofMorphorider currently in developmentmight
help in resolving some of the problemswe experienced during acquisition. The cur-
rent Morphorider is a proof of concept and su ers from construction drawbacks. Its
relatively big size inhibits the acquisition; we often found it hard tomanipulate, and
some regions with high curvature (in absolute value) could not have been scanned
(see Fig. 1.15). Another problem is that the distance-measuringwheel is not aligned
with the sensor unit – in practice this means that there is an o set in the orientation
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measurement. Moreover, the device relies on a magnetometer and cannot be used
around ferromagnetic objects.

The biggest limitation of the smartphone setup is the inability to measure distances
– these need to be estimated or obtained manually.

3D sketching with a smartphone remains a di cult task with current tools, such as
ShapeIt. Nevertheless, we believe this method has a great potential, conditioned by
further development of the algorithms. The ultimate goal would be a smartphone
application that would allow the user to sketch 3D shapes in real time, without
needing to specify the topology manually. First step in this direction might be an
algorithm for automatic inference of nodes in the network, for instance using the
continuity of network normals.



A
Riemannian connection
& covariant derivative

This appendix includes additional results from Riemannian geometry not included
in Section 2.4.

Definition A.1 (Connection, covariant derivative). For a Riemannian manifoldM,
denote by τ (M) the set of all smooth vector elds overM and by C∞ (M) the set of all
smooth scalar elds overM. A connection onM is a bilinear map

∇ : τ (M) × τ (M) → τ (M) : (X,Y) 7→ ∇XY

which satis es the following three conditions:

(i) C∞ (M)-linearity in the rst variable : ∇ f X+gYZ � f ∇XZ + g∇YZ

(ii) �-linearity in the second variable : ∇X(αY + βZ) � α∇XY + β∇XZ

(iii) Product rule : ∇X( f Y) � D f [X]Y + f ∇XY

where X,Y,Z ∈ τ (M) are vector elds onM, f , g ∈ C∞ (M) are scalar elds onM,
and α, β ∈ �. The notation D f [X] is a shorthand for a scalar eld on M de ned as
D f (x)

[
X(x)

]
for all x onM.

171
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The vector eld ∇XY is called the covariant derivative of Y with respect to X for the con-
nection ∇.

Theorem A.2 (Fundamental theorem of Riemannian geometry). On any Rieman-
nian manifoldM, there exists a unique symmetric torsion-free metric connection ∇ called
the Levi-Civita or the Riemannian connection.

Looking at the rather technical de nition of covariant derivative, we should keep
in mind its geometric interpretation: for each point x, (∇XY)x is a vector which de-
scribes how the vector eld Y changes in the direction Xx. It is therefore a general-
ization of the classical directional derivative from Euclidean spaces. For subman-
ifolds immersed in �n , the following lemma provides a recipe on computing the
covariant derivative as a projection of the (Euclidean) directional derivative. This
is analogical to the computation of the Riemannian gradient from Lema 2.22.

Lemma A.3 (Covariant derivative as projection). Let X,Y ∈ τ (M) be two vector
elds on the Riemannian submanifoldM of�n and ∇ is the Levi-Civita connection onM.

Then for all x ∈ M,
(∇XY)x � Px

(
DY(x)[Xx]

)
where DY(x)[Xx] denotes the classical directional derivative in the (Euclidean) space �n

and Px is the projection to the tangent space TxM.

Definition A.4 (Acceleration along a curve). Let γ : � → M be a C2 curve. The
acceleration along γ is given by

D2

dt2
γ(t) � D

dt
Ûγ(t) � ∇ Ûγ Ûγ.



B
Notes on quaternion ltering

This appendix features additional ideas related to ltering of orientations in the
space of quaternions. Even though the following computations turned out to be of
little practical interest in our speci c setup, we found it interesting to include the
results. Hopefully, they will provide some insight into how the quaternion repre-
sentation is related to the Darboux frame, and alsowhywe chose to lter data using
splines on SO(3).
In the following, we suppose the rotation matrix A � [t N B] represents the Dar-
boux frameD � {t,N,B} of a curve on a surface. The surface normal N is obtained
using projection on the second column of the matrix: N � A|N � Ae2. Recall that a
unit quaternion q � (x , y , z , w) ∈ �3 is related to the Darboux frame A ∈ SO(3) by

A(q) �
©«
2w2

+ 2x2 − 1 2x y + 2wz 2xz − 2w y
2x y − 2wz 2w2

+ 2y2 − 1 2yz + 2wx
2xz + 2w y 2yz − 2wx 2w2

+ 2z2 − 1

ª®®¬
.

The coordinates of N � A|N � (Nx ,Ny ,Nz)⊺ can be expressed as function of q using
quadratic forms de ned in q (interpreted as a vector in �4):

Nx � q⊺Kxq, Ny � q⊺Kyq, Nz � q⊺Kzq,
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with symmetric matrices

Kx �

©«

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

ª®®®¬
, Ky �

©«

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

ª®®®¬
, Kz �

©«

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

ª®®®¬
.

Filtering in parametric space. Unit quaternions, being a set of points on the 3-sphere,
are parametrizable using hyperspherical coordinates. Hyperspherical coordinates gen-
eralize polar (d � 1) and spherical (d � 2) coordinates to d-spheres of anydimension
d > 2. For a unit quaternion q ∈ �3, hyperspherical coordinates (ϕ, θ, ψ) are related
to the Cartesian coordinates (x , y , z , w) by

w � cosϕ

x � sinϕ cos θ

y � sinϕ sin θ cosψ

z � sinϕ sin θ sinψ




ϕ ∈ [0, π]
θ ∈ [0, π]
ψ ∈ [0, 2π]

.

Given a noisy sequence of quaternions, one way to approach the ltering would
be to parametrize the quaternions via hyperspherical coordinates and lter in the
parametric space [0, π]× [0, 2π]× [0, 2π]. In order for this approach to be valid, the
periodicity of the three angle functions needs to be taken into account.

This simple lteringmethod has several drawbacks, for instance the fact that hyper-
spherical coordinates distort themetric of the space and are not injective. Moreover,
an attempt to introduce normal constraints into this kind of ltering would result
in a system with non-polynomial equations, which could only be resolved using
numerical methods.

Average quaternion with constrained normal. In Section 3.5.2, the average rotation was
de ned by minimizing the quaternion energy

max
q∈�3

trace
(
AB
⊺)

� max
q∈�3

Einterp

where B �

∑n
i�1 αiAi . A similar approach might be used to compute the average

rotation while constraining the surface normal. Consider a modi ed energy, which
includes an additional energy term controlled by the weight w ∈ [0, 1]:

max
q∈�3
(1 − w)Einterp + wEnormal,

where Enormal �

⟨
N, N̂

⟩
if N̂ is the constrained unit surface normal. The energy

Enormal is expressed via the following quadratic form:

Enormal � q⊺
(
N̂xKx + N̂yKy + N̂zKz

)
q.
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Figure B.1: Fixing a surface normal N̂ (right), quaternions representing Darboux
frames [t N̂ B] correspond to a 3D curve (left, black) in the parametric
space (ϕ, θ, ψ).

Since Einterp � q⊺Kq with K de ned in Proposition 3.4, it follows that

(1 − w)Einterp + wEnormal � q⊺K̂q

where
K̂ � (1 − w)K + w

(
N̂xKx + N̂yKy + N̂zKz

)
.

This mean that the modi ed energy is maximized if q is equal to the (unit) eigen-
vector of K̂ corresponding to the largest eigenvalue.

This modi cation of the q method is almost identical to the algorithm presented in
Section 3.5.2 without introducing any overhead. While using this modi cation of
the averaging scheme could be used to constrain normals at nodes, it has several
problems. First, the constrained normal n̂ is not known a priori. A simple solu-
tion to this issue is to compute n̂ as the average of all normals at the given node.
Second, constrained averaging at isolated points creates sharp cusps in the orien-
tations, which is not desirable. Our attempt to solve this issue was to constrain the
normal within a xed distance from a node, with inverse distance weights w. This
approach turned out to be di cult to control.

In contrast, regression on SO(3) used for ltering orientations in Section 3.5 does
not require the normals to be speci ed explicitly, and provides an elegant solution
to the constrained ltering problem.





C
G1 interpolation of
discrete networks with normals

This appendix describes our previously unpublished method for interpolating a
discrete network with a set of cubic splines. The result is a network of splines,
which is tangent-plane continuous at nodes. This method is inspired by Nielson’s
minimum norm networks [Nie83].

Our surfacing method from Chapter 4 assumes a uniformly sampled dataset xi and
Ni on the input. The algorithmdescribed in this appendix can be used to interpolate
a non-uniformly sampled network with G1 cubic splines. Sampling the computed
cubic splines uniformly with respect to arc length provides suitable input for the
method from Chapter 4. This additional procedure makes our surfacing method
applicable to general curve networks with normals.

We de ne the G1 interpolant by minimizing the integral of curvature for the whole
network:

Ecurv(Γ) �
∑
γ∈Γ

∫ L

0

x′′
2

dt . (C.1)
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It is known that this approach produces cubic splines [De 78; Nie83]. Boundary
conditions – endpoint tangent vectors – need to be speci ed to x all degrees of
freedom.

It is precisely the computation of the endpoint tangent vectors that we address in
this appendix. Since our input network is sampled from a surface, we work with
the added constraint that endpoint tangent vectors of adjacent curves live in the
same tangent plane. We use this constraint to guide our optimization, producing
tangent-plane continuous curve networks (Fig. C.2).

We represent piecewise-cubic spline in the Hermite form. In the following section,
we summarize the main elements of cubic Hermite interpolation.

C.1 Hermite interpolation and curvature energy

Hermite curve. Denote by γ � h [x0, x1, t0, t1] a cubic Hermite curve parametrized
by h : [0, 1] → �3. At endpoints, Hermite curve interpolates the points x0, x1 and
its tangent matches the vectors t0, t1:

h(0) � x0, h(1) � x1, h′(0) � t0, h′(1) � t1.

Explicitly, the parametrization is given by

h (t) � x0 h00 (t) + t0 h10 (t) + x1 h01 (t) + t1 h11 (t) , t ∈ [0, 1],

where the cubic Hermite polynomials are given by

h00 (t) � 2t3−3t2
+1, h10 (t) � t3−2t2

+ t , h01 (t) � −2t3
+3t2, h11 (t) � t3− t2.

Denote by a and b the following vectors:

a � 6
(
2 (x0 − x1) + t0 + t1

)
, b � −2

(
3 (x0 − x1) + 2t0 + t1

)
. (C.2)

Then the scalar curvature of h is

h′′ (t) � ta + b, t ∈ [0, 1] .

The curvature energy of the curve h is de ned as

Ecurv (x0, x1, t0, t1) �
∫ 1

0

h′′
2

dt �

∫ 1

0
∥ta + b∥2 dt � 1

3 ∥a∥ + ⟨a, b⟩ + ∥b∥ . (C.3)

The change of the curvature energy with respect to a vector e is

∂Ecurv

∂e
i

�

⟨
a, 2

3
∂a
∂e

i
+

∂b
∂e

i

⟩
+

⟨
b, ∂a

∂e
i
+ 2 ∂b

∂e
i

⟩
. (C.4)
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Hermite spline. Given a sequence of points x0, . . . , xn+1 and endpoint tangent vectors
t0, tn+1, the unique C2 cubic spline γ that interpolates xi and ti has n + 1 Hermite
segments:

h [xi , xi+1, ti , ti+1] (t), t ∈ [0, 1], i � 0, . . . , n.

Fixing the end vectors t0 and tn , the inner tangents t1, . . . , tn are given by the n × n
tridiagonal system

©«

4 1
1 4 1

. . . . . . . . .
1 4 1

1 4

ª®®®®®®¬︸                    ︷︷                    ︸
A

©«

t1

t2
...

tn−1

tn

ª®®®®®®¬︸︷︷︸
T

� 3

©«

x2 − x0

x3 − x1
...

xn − xn−2

xn+1 − xn−1

ª®®®®®®¬︸          ︷︷          ︸
X

−

©«

t0

0
...
0

tn+1

ª®®®®®®¬︸︷︷︸
B

. (C.5)

Since the positions xi are xed, the derivative of this system with respect to some
vector e is

A ∂
∂e

T � − ∂
∂e

B. (C.6)

C.2 Network of Hermite splines

Each curve in the input curve network Γ (Section 4.2) is represented by a Hermite
spline interpolating the input positions xi . We will now compute the vectors ti

needed forHermite interpolation so that the tangents at intersections lie in the same
tangent plane.

We will use the following notation. Nodes in the curve network are denoted by υi

or υ; number of nodes is |V| � V. Fixing a node υi , we de ne the set of neighboring
nodes as

link (υi) �
{
υ j : υi , υ j are the two endnodes of some segment γ ∈ Σ

}
. (C.7)

The degree of υi is the number of neighboring nodes,

di � degree(υi) �
�� link (υi)

�� .
For each node υi , our algorithm needs an ordering of the neighboring vertices υ j

around υi . This ordering might for instance be provided by the user or determined
by sorting the segments incident to υi in the tangent plane de ned by the surface
normal N at υi . In any case, we assume this order is known – it is a permutation
with di elements:

for υ j ∈ link (υi) : µi j � µi(υ j) ∈ [1, . . . , di] and µi j1 � µi j2 i j1 � j2.
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If γ is a segment with endnodes υi and υ j , the input points and normals in this
segment will be denoted by

{
x

i j

0 , N
i j

0

}
,

{
x

i j

1 , N
i j

1

}
, . . .

{
x

i j
n , N

i j
n

}
,

{
x

i j

n+1, N
i j

n+1

}
,

where n � ni j � n(υi , υ j) is the number of inner points in the spline connecting υi

and υ j . The unknown tangents are

t
i j

0 , t
i j

1 , . . . t
i j
n , t

i j

n+1.

We often omit the upper indices i j when they are clear from the context.

The inner tangent vectors needed for Hermite interpolation are calculated by solv-
ing the System (C.5). To that end, the tangent vectors need to be xed at nodes.
Let eu

i
, ev

i
∈ �3 be a linear basis of the tangent plane at node υi . For each segment

γ � (υi , υ j) starting at node υi and ending at node υ j , we de ne the rst tangent
vector as

t
i j

0 � cos
(
2π

µi j

di

)
︸        ︷︷        ︸

αi j

eu
i + sin

(
2π

µi j

di

)
︸       ︷︷       ︸

βi j

ev
i . (C.8)

Recall that di is the degree of the node υi and µi j ∈ [1, . . . , di] is the order of the node
υ j with respect to υi . Note that the last tangent vector of γ � (υi , υ j) is obtained by
reversing the direction of the rst tangent vector at υ j :

t
i j

n+1 � −t
ji

0 � −(α jie
u
j + β jie

v
j ).

Having xed the endpoint tangent vectors t0, tn+1, we describe in the following sec-
tion the computation of the basis vectors eu

i
, ev

i
.

C.3 Optimization

The basis vectors eu
i
, ev

i
are the only missing piece of information in order to have a

well-de ned spline network, which is tangent plane continuous. For the moment,
let us set aside the input normal vectors N

i j

0 . The normal vectors will be included
in the computation in Section C.4.

To compute the basis eu
i
, ev

i
for each node, we minimize the curvature energy for

the whole spline network:
Ecurv �

∑
γ∈Γ

Eγ (C.9)
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where Eγ is the energy of the spline γ de ned as the sum of energies of the Hermite
segments:

Eγ �

n∑
k�0

Ek
γ . (C.10)

Recall that the energy of a Hermite segment from Eq. (C.3) is given by

Ek
γ �

∫ 1

0

h′′ [xk , xk+1, tk , tk+1]
2

dt � 1
3 ∥ak ∥ + ⟨ak , bk⟩ + ∥bk ∥ . (C.11)

The total spline network energy Ecurv is minimized by solving the linear system of
2V equations – two for each network node:

∂Ecurv

∂eu
i

� 0,
∂Ecurv

∂ev
i

� 0, i � 1, . . . ,V � |V| .

The partial derivative of the total energy w.r.t. ei � eu
i
or ev

i
is the sum of partial

derivatives of segments:

∂Ecurv

∂e
i

�

∂
(∑

γ∈Γ Eγ

)
∂e

i

�

∑
γ∈Γ

∂Eγ

∂e
i

�

∑
γ∈Γ

n∑
k�0

∂Ek
γ

∂e
i

.

The derivative of a single segment from Eq. (C.4) is

∂Ek
γ

∂e
i

�

⟨
ak ,

2

3
∂ak

∂e
i
+
∂bk

∂e
i

⟩
+

⟨
bk ,

∂ak

∂e
i
+ 2∂bk

∂e
i

⟩
� 2

∂tk+1

∂e
i

ak + 2
(
∂tk+1

∂e
i
− ∂tk

∂e
i

)
bk (C.12)

where the vectors ak and bk are de ned in Eq. (C.2) as

ak � 12 (xk − xk+1) + 6tk + 6tk+1, bk � −6 (xk − xk+1) − 4tk − 2tk+1.

Plugging these de nitions into Eq. (C.12) yields

1

4

∂Ek
γ

∂e
i

� 3 (xk − xk+1)
(
∂tk

∂e
i
+
∂tk+1

∂e
i

)
+ tk

(
2∂tk

∂e
i
+
∂tk+1

∂e
i

)
+ tk+1

(
∂tk

∂e
i
+ 2∂tk+1

∂e
i

)
. (C.13)

To compute the partial derivatives ∂tk/∂ei , denote ξk � ∂tk/∂eu
i
and χk � ∂tk/∂ev

i
.

From Eq. (C.8), we have

ξ0 � αi j , χ0 � βi j , ξn+1 � 0, χn+1 � 0. (C.14)

Now, plugging ei � eu
i
into Eq. (C.6) yields

4 ξ1 + ξ2 � − αi j ,

ξ1 + 4 ξ2 + ξ3 � 0,

. . . . . . . . .
...

ξn−2 + 4ξn−1 + ξn � 0,

ξn−1 + 4ξn � 0.
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An analogical system is obtained by replacing ξk with χk and αi j with βi j . Both
systems can be directly solved for arbitrary n, and the solution is

ξk �
cn+1−k

cn+1
αi j , χk �

cn+1−k

cn+1
βi j , k � 1, . . . , n ,

with ci given by the recurrence relation

c0 � 0 , c1 � 1 , ck−1 + 4 ck + ck+1 � 0 . (C.15)

Using Eq. (C.14), we can actually write

ξk �
cn+1−k

cn+1
αi j , χk �

cn+1−k

cn+1
βi j , k � 0, . . . , n + 1, (C.16)

Plugging the computed partial derivatives into Eq. (C.13) yields

1

4

∂Ek
γ

∂eu
i

� 3(xk − xk+1)(ξk + ξk+1) + tk(2ξk + ξk+1) + tk+1(ξk + 2ξk+1) (C.17)

�

αi j

cn+1

(
3(xk − xk+1)(cn−k+1 + cn−k) + tk(2cn−k+1 + cn−k) + tk+1(cn−k+1 + 2cn−k)

)
The expression for ∂Ek

γ/∂ev
i
is obtained by replacing αi j with βi j . Summing the

contributions of all Hermite segments yields derivative of the energy of a spline
γ:

∂Eγ

∂e
i

�

n∑
k�0

∂Ek
γ

∂e
i

�

4yi j

cn+1

[
3

n∑
k�0

(cn−k+1 + cn−k)(xk − xk+1)+

+ t0(2cn+1 + cn) + t1 (cn+1 + 4cn + cn−1)︸                  ︷︷                  ︸
�0

+ · · · + tn (c2 + 4c1 + c0)︸           ︷︷           ︸
�0

+tn+1 (c1 + 2c0)︸     ︷︷     ︸
�1

]

(C.18)

where either ei � eu
i
, yi j � αi j ; or ei � ev

i
, yi j � βi j . All inner tangent terms vanish

since (ck−1 + 4ck + ck+1) � 0, and (c1 + 2c0) � 1; see Eq. (C.15). Denote the term
independent from ei by

Cγ � 3

n∑
k�0

cn−k+1 + cn−k

cn+1
(xk − xk+1).

Using the de nition of node tangent vectors from Eq. (C.8) gives

∂Eγ

∂e
i

� 4yi j

[
(2 + cn/cn+1)t0 + 1/cn+1tn+1 + Cγ

]
(C.19)

� 4yi j

[
(2 + cn/cn+1)(αi je

u
i + βi je

v
i ) − 1/cn+1(α jie

u
j + β jie

v
j ) + Cγ

]
(C.20)
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What about the derivative ∂Ecurv/∂ei of the energy for the whole network? Impor-
tantly, only the curves adjacent to υi a ect the change of energy with respect to ei .
Indeed, if γ � (υi , υ j) then

∂Eγ

∂e
i

, 0 i υ j ∈ link (υi) .

Summing the energy (C.9) for all splines using the expression fromEq. (C.20) there-
fore yields a tensor-product linear system in eu

i
, ev

i
of the form


A11 . . . A1V
...

. . .
...

AV1 . . . AVV



X1
...

XV


�


B1
...

BV


. (C.21)

Each Ai j is a 2 × 2 matrix, Xi is a 2 × 3 matrix, and Bi is a 2 × 3 matrix, de ned by

Aii �

∑
υ j∈ link(υi)

−(2 + cn/cn+1)(αi j βi j)⊺(αi j βi j),

Ai j �

{
1/cn+1(αi j βi j)⊺(α ji β ji) : υ j ∈ link (υi) ,
02×2 : υ j < link (υi) ∪ {υi} ,

Bi �

∑
υ j∈ link(υi)

(αi j βi j)⊺Cγ ,

Xi � (eu
i ev

i )
⊺ .

C.4 Constraining the normals

In the previous section, the basis vectors eu
i
, ev

i
needed for Hermite interpolation

were computed byunconstrainedminimization of the curvature energy of the spline
network. This approach ignores our knowledge of normals Ni . In this section we
modify the above optimization in order to respect the input normals at nodes. If
Ni is the surface normal at node υi , we want the basis vectors to lie in the plane
orthogonal to Ni , resulting in a set of linear constraints:

min
eu

i
,ev

i

Ecurv s.t. eu
i ·Ni � 0, ev

i ·Ni � 0, i � 1, . . . ,V. (C.22)

The two linear constraints per node are concisely written in matrix form as

N
⊺

i
(eu

i ev
i ) � N

⊺

i
X
⊺

i
� 0

and enforced using Lagrange multipliers.

Fig. C.2 shows results obtainedusing thismethod for input networks fromFig. C.1.
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Figure C.1: Examples of input data for Hermite spline interpolation from Ap-
pendix C. All above networks of polylines were extracted from meshes
provided by Cindy Grimm1.
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Figure C.2: Hermite spline networks with tangent plane continuity interpolating
data from Fig. C.1 using the method from Appendix C.
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