
HAL Id: hal-01876579
https://hal.archives-ouvertes.fr/hal-01876579

Submitted on 18 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Packed-Memory Quadtree: a cache-oblivious data
structure for visual exploration of streaming

spatiotemporal big data
Julio Toss, Cicero A. L. Pahins, Bruno Raffin, João Luiz Dihl Comba

To cite this version:
Julio Toss, Cicero A. L. Pahins, Bruno Raffin, João Luiz Dihl Comba. Packed-Memory Quadtree: a
cache-oblivious data structure for visual exploration of streaming spatiotemporal big data. Computers
and Graphics, Elsevier, 2018, 76, pp.117-128. �10.1016/j.cag.2018.09.005�. �hal-01876579�

https://hal.archives-ouvertes.fr/hal-01876579
https://hal.archives-ouvertes.fr

Packed-Memory Quadtree: a cache-oblivious data structure for
visual exploration of streaming spatiotemporal big data

Julio Toss1,2, Cı́cero A. L. Pahins1, Bruno Raffin2, and João L. D. Comba1

1Instituto de Informática - UFRGS, Porto Alegre, Brazil
2Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble

September 18, 2018

Abstract

The visual analysis of large multidimensional spatiotem-
poral datasets poses challenging questions regarding stor-
age requirements and query performance. Several data
structures have recently been proposed to address these
problems that rely on indexes that pre-compute differ-
ent aggregations from a known-a-priori dataset. Con-
sider now the problem of handling streaming datasets, in
which data arrive as one or more continuous data streams.
Such datasets introduce challenges to the data structure,
which now has to support dynamic updates (insertion-
s/deletions) and rebalancing operations to perform self-
reorganizations. In this work, we present the Packed-
Memory Quadtree (PMQ), a novel data structure designed
to support visual exploration of streaming spatiotemporal
datasets. PMQ is cache-oblivious to perform well under
different cache configurations. We store streaming data
in an internal index that keeps a spatiotemporal ordering
over the data following a quadtree representation, with
support for real-time insertions and deletions. We validate
our data structure under different dynamic scenarios and
compare to competing strategies. We demonstrate how
PMQ could be used to answer different types of visual
spatiotemporal range queries of streaming datasets.

1 Introduction

Advanced visualization tools are essential for big data
analysis. Most approaches focus on large static datasets,
but there is a growing interest in analyzing and visual-
izing data streams upon generation. Twitter is a typical
example. The stream of tweets is continuous, and users
want to be aware of the latest trends. This need is ex-
pected to grow with the Internet of things (IoT) and mas-
sive deployment of sensors that generate large and het-
erogeneous data streams. Over the past years, several
in-memory big-data management systems have appeared
in academia and industry. In-memory databases systems
avoid the overheads related to traditional I/O disk-based
systems and have made possible to perform interactive
data-analysis over large amounts of data. A vast literature
of systems and research strategies deals with different as-
pects, such as the limited storage size and a multi-level
memory-hierarchy of caches [42]. Maintaining the right
data layout that favors locality of accesses is a determi-
nant factor for the performance of in-memory processing
systems.

Stream processing engines like Spark [41] or Flink [1]
support the concept of window, which collects the latest
events without a specific data organization. It is possi-
ble to trigger the analysis upon the occurrence of a given
criterion (time, volume, specific event occurrence). Af-
ter a window is updated, the system shifts the process-
ing to the next batch of events. There is a need to go

1

a

b

c d

Figure 1: A Twitter stream is consumed in real-time, indexed and stored in the Packed-Memory Quadtree. (a) : live
heat-map displays tweets in the current time window. (b) : alerts indicate regions with high activity of Twitter posts
at the moment. (c) : the interface allows to drill-down into any region and query the current data. (d) : the actual data
can be retrieved from the Packed-Memory Quadtree to analyze the tweets in the region of interest.

one step further to keep a live window continuously up-
dated while having a fine grain data replacement policy
to control the memory footprint. The challenge is the de-
sign of dynamic data structures to absorb high rate data
streams, stash away the oldest data to stay in the allowed
memory budget while enabling fast queries executions to
update visual representations. A possible solution is the
extension of database structures like R-trees [20] used
in SpatiaLite [37] or PostGis [34], or to develop dedi-
cated frameworks like Kite [26] based on a pyramid struc-
ture [27, 28].

In this paper, we propose a novel self-organized cache-
oblivious data structure, called Packed-Memory Quadtree
(PMQ), for in-memory storage and indexing of fixed
length records tagged with a spatiotemporal index. We
store the data in an array with a controlled density of
gaps (i.e., empty slots) that benefits from the properties
of the Packed Memory Arrays [3]. The empty slots guar-
antee that insertions can be performed with a low amor-
tized number of data movements (O(log2(N))) while en-
abling efficient spatiotemporal queries. During insertions,
we rebalance parts of the array when required to respect
density constraints, and the oldest data is stashed away
when reaching the memory budget. To spatially subdi-
vide the data, we sort the records according to their Mor-

ton index [17], thus ensuring spatial locality in the ar-
ray while defining an implicit, recursive quadtree, which
leads to efficient spatiotemporal queries. We validate
PMQ for consuming a stream of tweets to answer visual
and range queries. Figure 1 shows the user interface pro-
totype built to support the data analysis process. PMQ
significantly outperforms the widely adopted spatial in-
dexing data structure R-tree, typically used by relational
databases, as well as the conjunction of Geohash and B+-
tree, typically used by NoSQL databases [15]. In sum-
mary, we contribute (1) a self-organized cache-oblivious
data structure for storing and indexing large streaming
spatiotemporal datasets; (2) algorithms to support real-
time visual and range queries over streaming data; (3)
performance comparison against tried and trusted index-
ing data structures used by relational and non-relational
databases.

2 Related Work
In building an efficient system to enable interactive explo-
ration of data streams, we must deal with challenges com-
mon to areas like in-memory big-data, stream processing,
geospatial processing, and information visualization.

Data Structures. Data structures need to dynamically

2

process streams of geospatial data while enabling the fast
execution of spatiotemporal queries, such as the top-k
query that ranks and returns only the k most relevant
data matching predefined spatiotemporal criteria. One
approach is to store data continuously in a dense array
following the order given by a space-filling curve, which
leads to desirable data locality. Inserting an element takes
on average O(n) data movements, i.e., the number of el-
ements to move to make room for the newly inserted el-
ement. The cost of memory allocations can be reduced
using an amortized scheme that doubles the size of the ar-
ray every time it gets full. However, elements are often
inserted in batches in an already sorted array. In that case,
one approach is to use adaptive sorting algorithms to take
advantage of already sorted sequences [13, 11, 31]. Tim-
sort [33] is an example of an adaptive sorting algorithm
with efficient implementations. We show experiments
that compare our data structure to Timsort. Another pos-
sibility is to rely on trees of linked arrays. The B-tree [2]
and its variations [10] are probably the most common data
structure for databases. The UB-Tree is a B-tree for mul-
tidimensional data using space-filling curves [35]. These
structures are seldom used for in-memory storage with a
high insertion rate. They are competitive when data ac-
cess time is large enough compared to management over-
heads, often the case for on-disk storage. Such data struc-
tures are cache-aware, i.e., to ensure cache efficiency they
require a calibration according to the cache parameters of
the target architecture.

Sparse arrays are an alternative that lies in between
dense arrays and trees of linked arrays. Data is stored
in an array larger than the actual number of elements to
store, using the extra room to make insertions and dele-
tions more efficient. Itai et al. [21] were probably the first
to propose such data structure. Bender et al. [3, 5] refined
it, leading to the Packed Memory Array (PMA). The main
idea is that by maintaining a controlled spread of gaps, in-
sertions of new elements can be performed moving much
fewer than O(N) elements. The insertion of an element
in the PMA only requires O(log2(N)) amortized element
moves. This cost goes down to O(log(N)) for random
insertion patterns. Bender and Hu [5] also proposed a
more complex PMA, called adaptive PMA, that keeps this
O(log(N)) for specific insertion patterns like bulk inser-
tions. PMA is a cache-oblivious data structure [16], i.e. it
is cache efficient without explicitly knowing the cache pa-

rameters. Such data structures are interesting today since
the memory hierarchy is getting deeper and more complex
with different block sizes. Cache-oblivious data struc-
tures are seamlessly efficient in this context. Bender et
al. [3, 4] also proposed to store a B-tree on a PMA using
a van Emde Boas layout, leading to a cache-oblivious B-
tree. However, it leads to a complex data structure with-
out a known practical implementation. Still, PMA has
few known applications. Mali et al. [29] used PMA for
dynamics graphs. Durand et al. [12] relied on PMA to
search for neighbors in particle-based numerical simula-
tions. They indexed particles in PMA based on the Mor-
ton index computed from their 3D coordinates. They pro-
posed an efficient scheme for batch insertion of elements,
while Bender relied on single element insertions. In this
paper, we propose to extend PMA for in-memory storage
of streamed geospatial data.

Stream Processing and Datacubes Structures. Stream
processing engines, like GeoInsight for MS SQL
StreamInsight [22], are tailored for single-pass processing
of the incoming data without the need to keep in memory
a large window of events that require an advanced data
structure. The emergence of geospatial databases led to
the development of a specialized tree, called R-Tree [20],
that associates a bounding box to each tree node. Sev-
eral data processing and management tools have been ex-
tended to store geospatial data relying on R-trees or varia-
tions like the SpatiaLite [37] extension for SQLite or Post-
Gis [34] for PostgreSQL. Our experiments include com-
parisons with both. Though such spatial libraries brought
flexibility for applications in the context of traditional spa-
tial databases, their algorithms are not adapted to con-
sume a continuous data stream. Magdy et al. [27, 28] pro-
posed an in-memory data structure to query and update
real-time streams of tweets. Initially called Mercury, then
Venus and eventually Kite [26] for the latest implementa-
tion (Kite is also benchmarked in our experiments). They
rely on a pyramid structure that decomposes the space into
H levels. Periodically the pyramid is traversed to remove
the oldest tweets to keep the memory footprint below a
given budget. This idea to rely on bounding volume hier-
archies is also popular in computer graphics for indexing
3D objects and accelerating collision detection [40]. One
difficulty in these data structures is to ensure fast inser-
tions while keeping the tree balanced. The data structure

3

may also become too fragmented in memory leading to
an increase of cache misses. The partitioning criteria are
based on heuristics. There is often no theoretical perfor-
mance guarantees.

Finally, we point out that several data structures were
proposed recently for the visual analysis of big data. A
common theme is the idea of pre-computing aggregations
in datacubes proposed by Gray et al. [19]. Representa-
tive work include imMens [25], Nanocubes [24], Hashed-
cubes [32] and Gaussian Cubes [39], all designed for pro-
cessing static data. Streamcube [14] combines an ex-
plicit spatio-temporal quadtree with datacubes for on-pass
hashtag clustering. The PMQ proposes a dynamic data
structure supporting the main visual queries described in
these works.

3 Packed-Memory Quadtree
In this section, we explain the PMQ internal organization,
update methods, and query types to support stream data
analysis. In our description, we used as motivation dataset
a stream of tweets, each with spatial location and associ-
ated satellite data. Our PMQ builds upon a PMA data
structure but departs from the original one on different as-
pects:

• Data are indexed and sorted according to their Mor-
ton index to enforce data locality for efficient spatial
queries;

• Data insertions are performed by batches in a top-
down scheme to factor rebalance operations, while
the PMA inserts elements one by one using a bottom-
up scheme;

• The PMQ has a limited memory budget. Once we
reach the maximum size and density, we stash the
oldest data through a customized process;

• Support for answering geospatial visual queries to
allow interactive analysis of streaming datasets.

3.1 The PMQ Data Structure
We present here the PMQ data structure that strongly re-
lies on the Packed-Memory Array [21, 5]. A PMQ is

an array with extra space to maintain a given density of
(empty) gaps between the (valid) elements. An array of
size N (counting the gaps) is divided into O(N/ log(N))
consecutive segments of size O(log(N)). For conve-
nience, the number of segments is chosen to be a power
of 2. PMQ is stored in memory and keeps, for each ele-
ment, an indexing key and associated value. Segments are
paired hierarchically by windows following a tree struc-
ture. A level 0 window corresponds to a single segment,
while the h level window encompasses the full array. The
density of a window is the ratio between the number of
(valid) elements in the window and its size. As we will
see, the PMQ goal is to control the window densities to
ensure insertion or removal of elements can be performed
at low cost.

The minimum and maximum density bounds for a win-
dow at level l are respectively ρl and τl . We define density
bounds such that:

ρ0 < · · ·< ρh < τh < · · ·< τ0. (1)

Thus, the larger a window, the more constraining its
density bounds. The minimum and maximum densities of
windows at intermediate levels are linearly interpolated
between the [ρ0,ρh] and [τh,τ0] thresholds as defined be-
low:

τl = τh +(τ0− τh)
(h− l)

h
, (2)

ρl = ρh− (ρ0−ρh)
(h− l)

h
, (3)

and 2ρh < τh. The upper (resp. lower) density thresh-
old decreases (resp. increases) by O(1/ log(N)). This
O(1/ log(N)) interval is fundamental to guarantee that an
insertion or deletion requires O(log2(N)) amortized data
movements. A valid PMQ is the one that satisfies density
values for all windows. To compute a window density in
constant time without having to scan its content, we asso-
ciate an auxiliary accounting array to store the number of
valid elements per window. This array requires an extra
O(2 N

log(N)) of memory space. Figure 2 illustrates a PMQ
for 9 elements. The density thresholds are: ρ0 = 0.08,
ρ2 = 0.3, τ2 = 0.7, τ0 = 0.92, and the values for ρ1 and
τ1 are defined according to Equation 2 and Equation 3.

3.2 Data Indexing
Space-filling curves define a map of multidimensional
points to one dimension, which allows to order the data

4

d=3/4=0.75 d=2/4=0.5

4

9

PMA to store tweets

ρ2 = 0.3
τ2 = 0.7

ρ1 = 0.19
τ1 = 0.81

ρ0 = 0.08
τ0 = 0.92

2 5 7
d=2/4=0.5 d=2/4=0.5

8 9 10 11 15 35

d= 9/16 = 0.5625

d=5/8=0.625

5

3 2 2 2

d=4/8=0.5

Level 2

Level 1

Level 0

Segment 0 Segment 1 Segment 2 Segment 3

he
ig

ht

root window

Figure 2: PMQ with 4 segments: ρl and τl are the min-
imum and maximum densities allowed at each level l of
PMQ, d the actual window density. The numbers in cir-
cles count the valid element per window and are stored in
the PMQ accounting array.

in a 1D array. The PMQ relies on the Morton space-
filling curve to store the elements sorted according to their
Morton index. The Morton curve enables to linearly in-
dex data with 2D coordinates through a low cost bit-level
operation, while preserving well the data spatial locality.
Data that are close in 2D tend to have close Morton in-
dex (also called Z-index or geohash) and thus are stored
nearby in the PMQ. Elements with the same Morton in-
dex are sorted according to their timestamp (e.g., tweet
timestamp).

The Morton curve actually defines a recursive Z-shaped
space partitioning that follows a quadtree subdivision.
The ordering generated by the Morton curve is equiva-
lent to the ordering produced by a depth-first traversal in
a quadtree [7]. The number of bits used for the Z-index
defines this quadtree max depth. For the PMQ, this num-
ber of bits is static. For each new incoming element, its Z-
index is computed from its (x,y) position coordinates by
interleaving the bits of x and y, defined according to Equa-
tion 4 and Equation 5 (note that both equations output in-
teger values). Truncating by 2 bits a Z-index provides the
index of the parent cell in the quadtree. Figure 3 illus-
trates a PMQ for 9 elements in a 2D domain. Elements
are sorted based on their Z-index that recursively defines
an implicit quadtree subdivision (never stored).

3.3 Dynamic Updates

The PMQ is designed to store a stream of data inserted
by batches. The insertion starts at the topmost window of
the PMQ (the full array) by checking if a violation of the
density bounds occurs after inserting a batch of incoming
elements. Consider a valid PMQ filled with K ordered
elements. Suppose we want to insert a batch of I new
elements stored in an insertion array. The goal is to insert
these new elements while keeping the PMQ valid. The
insertion algorithm follows a top-down approach.

If the density of the full PMQ array goes beyond τh
counting the I new elements, we first scan the array to
count the number of elements with a timestamp older
than a given threshold λ . If removing these elements the
PMQ meets its density bounds, we remove them, rebal-
ance evenly the remaining elements while inserting the
I new elements (sorted first). Otherwise, we perform the
same operation but first doubling the PMQ array size. The
constraint 2ρh < τh guarantees that the density of this dou-
ble size PMQ is above ρh.

We now describe the batch insertion. Consider the case
where inserting elements does not cause the full array
density to go over τh. Let p be the key of the first ele-
ment of the right top window. We re-order the insertion
array such that elements smaller than p are on the left of
the insertion array, while the others are on the right. The
left elements will go in the top left window of PMQ, the
others in the top right window. We test for both top win-
dows their new densities against the corresponding thresh-
olds, counting the elements to insert. If at least one top
window does not respect the density thresholds, we re-
balance the elements of the full array while including the
new ones, i.e., we evenly redistribute all elements. Af-
ter the rebalance we have the guarantee that all windows
down to segments satisfy their density bounds since den-
sities are less constraining as the window size decreases.
Otherwise, density thresholds are respected and the algo-
rithm proceeds recursively. In the best case, rebalances
only span individual segments. We update the accounting
array after each batch insertion.

Note that when performing a rebalance we keep the el-
ements sorted based on their Morton index and insertion
timestamp. Since the sorting during rebalancing is sta-
ble, the only requirement is that we order the elements
in the batch array by arrival time (which is the natural

5

0 1
2 3

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

Implicit Quadtree

000 030 031 032 033 103 121 303002

4

9

5

3 2 2 2

Level 2

Level 1

Level 0

PMQ

000 030002
z-ordering

031 032 033 103 121 303

z-ordering

0 1
2 3

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

Implicit Quadtree

000 030 031 032 033 103 121 303002

4

9

5

3 2 2 2

Level 2

Level 1

Level 0

PMQ

000 030002
z-ordering

031 032 033 103 121 303

Figure 3: PMQ storage of 9 z-indexed elements from a 2D domain (right). Z-indices correspond to a quadtree
actually never built as z-index are directly computed by interleaving their x-y bits (Right).

order in a real-time stream). Rebalancing is automati-
cally triggered when needed. No heuristic is needed to
decide when to split or delete a node as in [27, 28]. Mem-
ory allocations are only needed when doubling the array.
We control memory consumption by setting the threshold
timestamp λ based on the arrival rate of the data stream.
In practice, PMQ self-stabilizes: it doubles its size un-
til reaching a steady state where insertions and deletions
balance themselves. The accounting array is updated with
each window rebalance.

Notice that none of these operation use the lower den-
sities. But they are kept in the PMQ description and sup-
ported in our implementation for completeness. They can
be useful for scenarios not evaluated here. They enable to
trigger window rebalances when removing elements.

The PMQ is a cache-oblivious data structure as it does
not depend on cache parameters. The worst-case amor-
tized cost is O(log2(N)) per insertion. The proof is given
in A.

3.4 Query Types
We present three types of queries that we support in the
current implementation of PMQ: heatmap, range, and top-
k queries. Other types of queries can be incorporated if
needed.

Heatmap Queries. The visual interface of our system
uses a world heatmap continuously updated based on the
content stored in the PMQ (see Figure 4). An important
observation is that Z-cells do not align with the tiles of
the heatmap. Also, the interface allows zooming into spe-

Figure 4: The heatmap is updated dynamically as the
stream of tweets is received. With an average insertion
rate of 1000 tweets/sec we show the heatmap when PMQ
contains 100K (left) or 10M (right) elements.

cific regions of the world, thus needing to map the tiles
of the heatmap grid to Z-cells. We compute the zoom
level ζ in the quadtree of Z-cells corresponding to each
heatmap tile. If ζ = 0, we need to aggregate the full PMQ
data into a single tile, corresponding to the full PMQ data.
Heatmap construction for a single tile consists of counting
the number of data samples for each pixel drawn inside
the tile. For instance, a tile of 256x256 pixels correspond-
ing to a quadtree node at level ζ is computed by counting
for each pixel the number of elements stored in the corre-
sponding descendant Z-cells at depth ζ + 8. As we only
need to count the elements per tile (element values are not
necessary), we accelerate counting using the accounting
array.

Range Queries. A range query is a spatial query that
requests all elements stored in a rectangular region (Fig-
ure 5). We define a range query by the corners of a bound-
ing box in the map. Given a range query, we have to ac-

6

Figure 5: Heatmap zoom and range queries are used to explore the latest stream of tweets around the New York
city area. The in-memory storage of PMQ provides fast access to the actual tweets’ content allowing real-time user
interaction even on large range queries (R = radius of the selected area).

cess the PMQ to retrieve all records within the rectangu-
lar region. We return the result to the application for any
post-processing of this information. In our interface, we
currently display a subset of the results (e.g., a fixed num-
ber of tweets). Unlike heatmaps, which queries the PMQ
using a fixed resolution grid, the range query can define an
arbitrary region. Therefore, we need to find the coarsest
Z-cells that contain the bounding box of the range query.
Since we do not store the quadtree explicitly, we follow
the Z-ordering recursively to find the Z-cells that fully en-
close the bounding box. We refine each Z-cell to locate
the leaf Z-cells intersecting or included in the bounding
box. We refer to the book by Samet [36] for the range
query algorithm for quadtrees. Using the Z-cell indices,
we locate through binary searches in the PMQ the ranges
that contain the needed elements.
Top-k queries. The top-k query combines the temporal
ordering with the spatial dimension to find the most rel-
evant data according to a given spatiotemporal interval.
This query is processed like the range query but filters the
candidate values in a temporary priority queue of size k.
Given a 2D point p, the top-k query finds the elements
with k lowest values according to a score function. The
search space of the top-k queries can be reduced using
both spatial and time thresholds. The parameter R de-
fines a radius where records are going to be ranked by
distance to p. Similarly, the parameter T limits the old-
est timestamp to consider in the scoring function. Both
scores are then normalized and combined into a final score

to balance the importance of the spatial and temporal di-
mensions. Elements in the same Z-cell (i.e., with the
same Morton code) are ordered based on their timestamp.
The top-k search uses the same refinement algorithm as
for range queries to find the records included inside the
bounding box of radius R centered at p. We insert the
returned elements into a priority queue of max-size k or-
dered by the spatiotemporal score to keep only the k ele-
ments with the highest score.

4 Implementation
We implemented PMQ in C++. Each element has a 64-bit
key representing the spatial index plus a value for stor-
ing additional information. We rely on 50-bit length Mor-
ton code for the spatial index, defining a quadtree with a
fixed depth of 25 levels of refinement. The Morton index
is computed from the (x,y) coordinated obtained through
the EPSG:3857 projection of the longitude (lon) and lati-
tude (lat) associated with each element, defined as:

x =
(

lon+180
360

.2z
)
, (4)

y =

1−
ln
(

tan
(
lat. π

180

)
+ 1

cos(lat. π
180)

)
π

 .2z−1, (5)

where both (x,y∈Z | 0≤ x,y< 4z) and Z is the maximum
quadtree depth.

7

The choice of record content to consider depends on
the application needs. If only the metadata is required, we
used a 16-byte struct to store latitude (32-bit float), lon-
gitude (32-bit float) and insertion timestamp (64-bit un-
signed integer).

Our implementation uses PMQ segments of a fixed size
of eight elements as we found no significant performance
benefit in increasing the segment size with the array size.
When rebalancing a window, we always pack data at the
left of each segment to favor low-level optimizations like
prefetching. Besides giving the window densities, the
accounting array is also used to get the position of the
last valid element of each segment, to avoid scanning the
empty slots.

We target streaming scenarios where the PMQ is used
to store the most recent incoming data sorted in memory,
keeping as much data as possible for a given memory bud-
get. Data are removed only when the PMQ is full, keeping
the PMQ density high enough to avoid reducing its size
(waste of memory and time as leading to a PMQ oscillat-
ing through cyclic size halving and doubling). Thus rebal-
ances are only triggered when the window upper density
bounds are reached. In our experiment we use τ0 = 0.92
and τh = 0.7 that give the best performance tradeoff (see
Section 6.3).

5 Examples of Visualization Analy-
sis using PMQ

We present an example of the interactive exploration of
tweets enabled by PMQ and its user interface. The dataset
consists of geolocated tweets collected with the Twitter
API between November 2011 and June 2012 over the
United States. The dataset has a total of 210.6 million
tweets. We simulate an incoming stream of tweets by
grouping them into batches of fixed size and iteratively
inserting them into a given data structure.

5.1 Drill-down exploration of a Twitter
stream

We provide a visual interface that allows a drill-down ex-
ploration of a tweet stream and support different queries.
PMQ supports the storage in memory of the latest tweets,
thus filling the gap between stream processing engines

working only on a small window of the input stream, and
classical solutions on persistent storage. The heatmap en-
ables to display the concentration of tweets posted over
the last hours. PMQ can index one second of tweets and
keep all the elements sorted in less than 1.5 ms on aver-
age, with a maximum at about 1s when a batch triggers a
top rebalance with element removal (Table 3). It is more
than capable of keeping up with the stream rate and sup-
port visual queries. The interface allows the user to zoom
into the heatmap or to perform range queries. We display
the tweets inside selected areas in a separate area next to
the map. Figure 5 shows the combined use of heatmaps
and range queries at different zoom levels over New York.
The user can interactively zoom until finding the desired
information.

5.2 Allert detection of regions with high
tweet rates

Systems like TwitInfo [30] provide an interface for visu-
alizing real-time Twitter data. Based on the user-given
keyword search, the system fetches the matching twit-
ter stream and generates an aggregated higher-level vi-
sualization, which is kept up-to-date with the incoming
tweets. Such exploratory framework enables a better
understanding of on-going events. However, since the
stream is filtered with a fixed input keyword, it is not suit-
able when monitoring unexpected events. One example
of an unexpected event is the monitoring of the volume
of tweets in a given region. We implemented a simple
pre-processing of batches to trigger alerts in regions with
high tweet activity. Once an alert is triggered, the user can
further investigate it by interactively exploring the last re-
ceived tweets. During exploration, one can also perform
top-k queries to retrieve the top-most relevant tweets at
a given point. For instance, on February 5th of 2012 at
14:22 UTC, the system indicates a high tweet activity over
Indianapolis. Zooming into the alert zone and using range
queries, we observe that many people are at the Lucas Oil
Stadium commenting about the Super Bowl game. We set
a top-k query at the stadium to follow the most relevant
tweets nearby. The filtered feed displayed on the right
panel of the interface shows tweets with information like
the teams playing (New York Giants Vs. New England
Patriots), or about the Madonna’s show during half-time

8

(Figure 6).

6 Performance Evaluation
We created a series of benchmarks to evaluate the perfor-
mance of PMQ. When possible, we showed comparisons
against competing solutions from the industry and other
open-source libraries. The B-Tree compared in our ex-
periments is the stx::btree, an efficient open source
implementation of in-memory B+Tree [8]. The R-Tree
implementation is from the Boost C++ template library
[9]. We conducted the experiments to allow reproducing
results and exploring different parameter configurations.
We created a GitHub repository to store supplemental ma-
terial and additional benchmarks1. The benchmarks were
run on a dedicated Linux machine with an Intel i7-4790
CPU @ 3.60GHz with 32GB of main memory.

6.1 Evaluating Storage Solutions for Spa-
tial Data

We conducted a set of experiments to evaluate PMQ
against two different storage solutions for spatial data.
The first type of storage solution is traditional open source
relational databases (RDBMS) with geospatial library ex-
tensions, such as: (1) in-memory SQLite + SpatiaLite and
(2) PostgreSQL + PostGIS. SQLite uses in-memory stor-
age, while PostgreSQL uses a disk. Typically, RDBMS
store entries in a table and build an additional spatial in-
dex separately. This optional index supports efficient spa-
tial queries that contain geometric predicates. The second
storage solution are dense vectors using a pointer-based
quadtree index on a dense C++ std::vector. Spatial
ordering in the container uses two sorting algorithms: (1)
the C++ std::sort() implementation from GNU GCC

libstdc++ and (2) the C++ TimSort [18] adaptive sort-
ing algorithm.

This set of benchmarks gives an insight into the scal-
ability of insertion and query operations of the solutions
above. The different data structures are initially empty
and increase their size as elements arrive in batches. We
measured the insertion time of each batch, including the
time for updating the index (in case of RDBMS) and phys-
ically storing the data. We also measured the time for

1https://github.com/pmq-authors/pmq-extras

accessing data from the storage. After each batch inser-
tion, we queried all elements indexed by the data struc-
ture (Figure 7). As can be seen, even with a small num-
ber of elements, the database solutions have poor scala-
bility. While PostGIS uses disk storage, it spends most of
the time optimizing the index and physically reordering
elements on disk. SpatiaLite, on the other hand, seems
to have a less efficient indexing strategy than PostGIS. It
spends less time on indexing and insertion operations, but
pays a significant cost to access the data, even if stored in
memory. None of the database solutions are suited to the
real-time latency requirements of update and read opera-
tions. The spikes on PMQ benchmarks correspond to dou-
bling the array size when the structure reaches the maxi-
mum density. The sparse storage of PMQ allows reducing
the time on insertion when compared to the dense vectors.
In the next experiments, we remove the database solutions
from the comparisons since they are an order of magni-
tude slower than the vector-based storage approaches, and
compare against low-level structures such as B-trees and
R-trees.

6.2 Evaluating Insertions
We evaluate the scalability of the data structures by com-
paring their trade-offs between insertions and scanning
operations. These two operations represent a performance
compromise of two conflicting workloads. While tree-
based data structures, like B-Tree and R-Tree, show good
insertion performance (Figure 8(a)), they fail in maintain-
ing in-memory data locality, which has a significant im-
pact on scanning operations (Figure 8(b)). The solution
using dense sorted vectors reveals the importance of data
locality when scanning. We derive the lower-bounds of
scanning performance when we achieve the best locality.
However, its update costs for frequent insertions make it
impracticable for large amounts of data. PMQ shows a
good compromise between these two operations. On in-
sertions, it performs similarly to the R-Tree, it is 2X times
slower than the B-Tree and scales logarithmically with the
size of the data structure. At the same time, PMQ pays
only a small constant overhead relative to best possible
scanning data-structure, the dense vector. Compared to
the tree-based data-structures, with 10 M elements, the
scan operations on PMQ are 3X times faster than B-Tree
and 5X faster than R-Tree.

9

Figure 6: Allert detection: triggers configured by the user show alerts (yellow squares) on several cities with a high
rate of tweet arrival during Super Bowl 2012. We select the Indianapolis region (where the game occurs) and filter
tweets using a top-k query to retrieve the most relevant tweets in the area.

Insertion

0 25 50 75 100

0

100

200

300

400

500

0.0

0.1

0.2

0.3

0.4

Batch number

T
im

e
(m

s)

Global Query

D
atabases

V
ector C

ontainers

0 25 50 75 100

0

10

20

30

40

50

0.000

0.025

0.050

0.075

0.100

Batch number

PostGIS SpatiaLite PMQ Dense/std::sort Dense/TimSort

Figure 7: Performance comparison of spatial data storage
solutions. Top row: standard geospatial databases can
not handle real-time insertions. Bottom row: in-memory
containers based on dense or sparse (PMQ) vectors.

6.3 Evaluating Bulk Deletions

In the case of streaming data, the memory available limits
the storage of information. We used a stashing procedure
to evict old data while receiving new incoming records.
Data structures are in a steady regime if they cannot grow
after inserting a given number of records. At this point, a
bulk removal is triggered to remove a number of the old-
est elements in the data structure, given by the threshold
parameter λ . How often removals are triggered depends
on the rate of the incoming stream and the threshold λ .
We keep the incoming rate constant by inserting a batch
of 1000 elements at each simulation step. Because the
bulk removal is slower than regular insertions, the choice
of λ has an impact in two performance indicators: the av-
erage execution time of each operation (Figure 9(a)) and
the bulk removal execution time (Figure 9(b)). To evalu-
ate the indicators and choose the best λ , we insert in each
structure a dataset of nearly 46 million elements and set
the maximum number of elements to be stored to half of
this size.

Figure 9 shows running times for λ varying from 0.1%
to 50% of the maximum capacity. For both the B-Tree
and the R-Tree, the removal size has to be chosen care-
fully to balance the time spend on each removal oper-
ation and the total running time. If the removal size is
large (over 3.13%), each operation deletes many elements

10

(a) Insertion of 10M elements by batches of 1000 ele-
ments.

(b) Time for a full scan of the dataset after each batch in-
sertions.

Figure 8: Scalability insertion and scan operation.

at once causing expensive removal operations that take
over 1 second (black horizontal line in Figure 9(b)). If
the removal size is small (under 0.78%), each removal is
fast since only a small percentage of elements are evicted.
However, it increases the frequency of removals impair-
ing the total running time (Figure 9(a)). In opposite, the
PMQ triggers element removal automatically when the
top density threshold is reached. As a consequence, the
execution time of removals is much less sensitive to λ .
As Figure 9(b) shows, for any removal size, the running
time is under one second. As expected, the total running
time for all structures is best with larger and less frequent

0

10

20

0.1 0.2 0.4 0.78 1.57 3.13 6.25 12.5 25 50

Removal size (%)

R
un

ni
ng

 ti
m

e
(m

s)

BTree PMQ RTree

(a) Total average running time of the experiment.

0

5000

10000

15000

0.1 0.2 0.4 0.78 1.57 3.13 6.25 12.5 25 50

Removal size (%)

R
un

ni
ng

 ti
m

e
(m

s)

BTree PMQ RTree

(b) Average time of each bulk removal operation.

Figure 9: Steady data regime: deletions are performed
periodically. For each test, we insert a dataset of 46 mil-
lion elements. The maximum number of elements al-
lowed is half of the dataset size (around 23 million ele-
ments), and removals are configured with different per-
centages of the maximum.

removals (Figure 9(a)). Therefore the choice of the pa-
rameter λ should favor larger removal sizes.

In Table 1, we summarize the results from Figure 9(a)
and Figure 9(b). We show, for each structure, the best
tradeoff between removal and average running time. The
B-Tree and R-Tree require a small removal percentage
(λ), while PMQ removes 50% of if elements and it is 2×
faster for both removal and average running time. In Ta-
ble 2, we take the λ value that gives the best performance
tradeoff for the B-Tree and set it to the other data struc-
tures. Once again, PMQ performs best and is the only one
to make removal operations in less than a second.

11

τh = 0.5 τh = 0.6 τh = 0.7 τh = 0.8 τh = 0.9

15000 20000 25000 15000 20000 25000 15000 20000 25000 15000 20000 25000 15000 20000 25000

1.00

1.25

1.50

1.75

2.00

Id of batch inserted

In
se

rt
io

n
T

im
e

(m
s)

Figure 10: PMQ performance at steady regime for different τh thresholds.

In Figure 10 we compare several values of τh thresh-
old (with fixed τ0 = 0.92) for the PMQ at steady regime:
when the PMQ density reaches τh a bulk removal is
triggered keeping at least 10.8 M elements. The value
τh = 0.7 gives the best average insertion time. The PMQs
with τh = 0.5 and 0.6 require twice more storage mem-
ory compared to the ones with 0.7, 0.8 and 0.9, with a
high average insertion time. High τh values (0.8 and 0.9)
leave the PMQ fill, leading to costly rebalances of large
windows. The value τh = 0.7, chosen for all our other ex-
periments, gives the best average insertion time with low
memory footprint. A high value τ0 = 0.92 gives the best
results, allowing some local high-density spots.

6.4 Evaluating the Rebalancing Procedure

PMQ supports a rebalancing procedure that is only acti-
vated when necessary. In Table 3 we simulate a tweet in-
sertion rate of 1000 tweets per second. We present the
average insertion time in PMQ after reaching a steady
state (i.e. after the first top-level rebalance that started
removing tweets). Notice that during this steady state,
elements deletion neither leads to halving nor doubling
the PMQ size. Between the top two level rebalances, the
number of elements in the container varies from Elts min
to Elts max. The maximum value in the table corresponds
to a single insertion that triggers a top-level rebalance. Al-
though these periodic rebalances can take up to one sec-
ond, this latency is hidden from the user as the mean in-
sertion time (and the 99th percentile) is much smaller than
the insertion rate.

We also evaluated how PMQ scales with varying inser-
tion rates. We used a time window of 6 hours and increase

Avg. Run RM
Algo. Min. Elts RM (ms) Time (ms) Interval λ

B-Tree 22.7 M 1331 2.19 735 3.13%
PMQ 11.7 M 550 1.09 11744 50%

R-Tree 23.1 M 1287 4.43 368 1.57%

Table 1: Parameter λ set for the best relation of removal
RM time and average Avg runnning time for each algo-
rithm.

Avg. Run RM
Algo. Min. Elts RM (ms) Time (ms) Interval λ

B-Tree 22.7 M 1331 2.19 735 3.13%
PMQ 22.7 M 601 1.80 735 3.13%

R-Tree 22.7 M 1984 3.60 735 3.13%

Table 2: Comparison using same λ optimized for the B-
Tree.

λ Elts min Elts max Mean 99% Max
3h 10.8∗106 11.74∗106 1.209 1.066 265.613
6h 21.6∗106 23.48∗106 1.310 1.134 554.971
9h 32.4∗106 46.97∗106 1.278 1.587 1007.040

12h 43.2∗106 46.97∗106 1.423 1.321 1045.950

Table 3: Insertion time of batches of 1K elements in a
PMQ with different time-windows λ . The number of el-
ements in the container varies from Elts min to Elts max.
The Mean, 99% and Max times are in ms.

the insertion rate up to 8k tweets/s. Figure 11 shows the
average insertion time and standard deviation. PMQ takes
less than 8 ms to digest 6000 tweets per second, the cur-
rent average number of tweets posted per second world-
wide [38].

12

Figure 11: PMQ average insertion time with a window of
6h and varying rates. Current Twitter insertion rate (6K
tweets/s) can be processed under 7.5 ms.

6.5 Evaluating Range Queries
We evaluated the range query performance of the different
data structures. We defined synthetic queries at varying
sizes and different positions to simulate searches over the
world map. Queries are defined using latitude and lon-
gitude coordinates over a rectangular map of the world
using the Mercator projection. Each query is specified
by its center latitude and longitude coordinates (lat, lon),
where lat ∈ ℜ−90,+90 and lon ∈ ℜ−180,+180, and by its
width W = {w ∈ ℜ : w = 90

2i ∧ 0 ≤ i < 8}. For each w
in W , we randomly pick ten tweet coordinates from the
dataset to generate a unique query. We discarded queries
not fully contained on the world map. As a result, the
query dataset we built has 80 queries. This set of queries
was run over 8 different datasets at varying sizes from
1M to 128M elements, for a total of 640 query results.
The size of the dataset is given by a parameter S defined
as {1M× 2i : 0 ≤ i < 8}. We performed each query 10
times and computed the average running time. Since we
fixed the number of elements in memory, we computed
the throughput of each query as the number of records re-
turned by the query divided by the running time (in ms).

We compared the throughput by showing the speedup
of PMQ over B-Tree and R-Tree (Figure 12). The box-
plots in Figure 12 show the speedup grouped by w. The la-
bels on the x-axis show the range query coverage relative
to the total area of the domain. PMQ and B-Tree use the

+

+
+ +

+ +
+ +

+

+
+

+

+
+ + +

PMQ / RTree

PMQ / BTree

0.001 0.004 0.015 0.059 0.235 0.941 3.764 15.057

0.001 0.004 0.015 0.059 0.235 0.941 3.764 15.057
0

2

4

6

8

0

2

4

6

8

Range query coverage of the domain (%)

S
pe

ed
up

 o
f P

M
Q

Figure 12: Range queries: PMQ speedup over the B-
Tree and R-Tree. Each boxplot represents the speedup of
throughput for each query instance. The average speedup
is denoted by red crosses. PMQ is faster than the B-Tree
in all cases. Compared to the R-Tree, PMQ has a speedup
on 97% of queries tested. The cases where PMQ performs
worst corresponds to queries returning a small number of
elements compared to the dataset size.

same querying mechanism based on the recursive space
partitioning of a quadtree. In this case, PMQ is always
better than the B-Tree, with speedups that can achieve up
to 7× on the largest range queries. The speedup over the
B-Tree is proportional to the number of elements returned
by the query and is mainly due to the memory locality of
PMQ. When the number of elements scanned to answer
a query increases, the B-Tree has to access nodes scat-
tered in memory locations, thus causing a poor usage of
the cache memories. The average speedup increases with
the range query size.

Since the R-Tree is a pointer-based data structure, its

13

−50

0

50

−100 0 100
Lon

La
t

Query Width
0.703 1.406 2.812 5.625

11.25 22.5 45 90

2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214

2−3

2−1

21

22

23

2−3

20

23

2−3

20

23

2−6

2−3

20

20

22

2−6

2−4

2−2

20

20

22

Geohash refinement level

Q
ue

ry
 e

xe
cu

tio
n

tim
e

in
 (m

s)
Query Width

0.703125 1.40625 2.8125 5.625
11.25 22.5 45 90

2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214 2 4 6 8 101214

2−3

2−1

21

22

23

2−3

20

23

2−3

20

23

2−6

2−3

20

20

22

2−6

2−4

2−2

20

20

22

Geohash refinement level

Q
ue

ry
 e

xe
cu

tio
n

tim
e

in
 (m

s)

Query Width
0.703125 1.40625 2.8125 5.625
11.25 22.5 45 90

Figure 13: Examples of Range Queries. We define 8 different query widths. The B-Tree and PMQ use 10 levels of
quadtree refinement for range queries. We choose this parameter experimentally to provide the best overall results.

internal nodes have bounding boxes containing the space
occupied by its children, and only leaf nodes have the
actual elements. Because of its internal index, the R-
Tree is efficient for point queries, with good performance
when a small amount of elements is queried. In a stream-
ing dataset, elements are inserted individually in the data
structure, as they arrive from the stream and without any
specific ordering in memory. When the size of the range
queries increases, the cost of scanning more elements hin-
ders the throughput. The query algorithm uses a max
depth parameter to limit the refinements done in the lin-
ear quadtree. The max depth of 10 used in this experi-
ments was found to give the best results (for B-Tree and
PMQ) as shown in Figure 13. The refined quadrants that
do not fall entirely inside the queried region are scanned
linearly to test the elements contained in the queried re-
gion. As a consequence, small range queries in regions
with a high density of elements suffers from discontinu-
ities in the Z-curve ordering. The throughput has a nega-
tive impact when the number of valid elements returned is
low compared to the number of records scanned. Despite
this, in our experiments the PMQ query algorithm outper-
forms the R-Tree (which does not rely on a Z-curve) by
5.5 times in 97% of the largest range queries.

6.6 Evaluating Top-k Queries
We compared the performance of top-k queries imple-
mented on top of our PMQ against the Kite framework
[26]. We generated 10K top-K queries from the check-in
locations of the Brightkite social network [23]. Queries

Figure 14: Top-k Queries: cumulative percentages of
query latency for K = 100 , R = 30 km and T = 10000
seconds. We compared the search performance of PMQ
against the Kite framework.

correspond to users, in a given location, trying to find the
most relevant tweets nearby.

At the moment of execution of the top-k queries, there
were 10M tweets stored in PMQ. For each query, we mea-
sured the latency of accessing the storage array and com-
puting the top-k elements. The top-k ranking function
used the default parameters values K = 100 , R = 30km
and λ = 10000 seconds. Temporal and spatial scores in
PMQ were balanced with values 0.2 and 0.8 respectively.
Kite does not offer a balancing parameter for the tempo-
ral and spatial dimensions, ranking elements with radius
r merely according to the temporal dimension. Figure 14

14

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700

0.00 5.20 11.74 15.60 20.80 23.48 26.00

Millions of Elements

M
em

or
y

U
sa

ge
 (

M
B

)

BTree PMQ Dense Vector RTree

Figure 15: PMQ memory usage depends on density
thresholds 2ρh < τh. Boost C++ R-Tree has a bigger in-
dex overhead than stx::btree.

shows queries for different latency values. PMQ answers
90% of the queries in less than 4 ms while Kite can only
process 3% of it. Kite uses a regular grid as a spatial in-
dex. Since the grid does not change to adapt to the com-
plexity of the data, Kite does not perform well under sce-
narios of streaming datasets.

The data being sorted first based on their Z-index and
next their timestamp, a pure time based query with no
spatial constraint would need to scan all the elements of
PMQ. We have seen that the PMQ shows a good scan per-
formance (Fig. 8(b)). But if a majority of requests of this
type are expected it may be advantageous to index data
based on their timestamp first.

6.7 Evaluating Memory Usage
We measured the amount of resident set size used by each
data structure individually (e.g., the physical memory
used by the process code and data). The Linux Kernel

maintains a pseudo-file system directory for each running
process. By parsing /proc/self/statm we have ac-
cess to the current resident set size in pages. We multi-
ply this value by the page size from sysconf() to obtain
the amount of used memory in bytes. We set the record
size to 16 bytes, the minimum space required to store
spatial and timestamp metadata. Each batch inserts 1000
records per iteration. For every iteration, we measured
the current resident set size used by the data structures.

Number of Elements stored
Algorithm 11.7 M Elts 23.4 M Elts
Dense Vector 275.32 MB 545.97 MB
PMQ 882.97 MB 882.97 MB
B-Tree 477.00 MB 951.63 MB
R-Tree 510.42 MB 1019.15 MB

Table 4: Memory usage summary

Memory usage in a dense vector is directly proportional to
the number of records, as shown in Figure 15, and serves
as a baseline since this alternative does not have any stor-
age overhead. PMQ memory usage depends on the max
density parameter, τh (see Section 3.1). In our experi-
ments τh is configured to 0.7, i.e., the used memory slots
correspond at maximum to 70% of slots allocated. As the
number of elements in the data structures increases, PMQ
doubles its size when the maximum density is reached
(note the staircase-shaped curve of PMQ in Figure 15).
In the experiments of Section 6.3, the maximum number
of elements presented in memory was 23.488.000, which
corresponds to the memory consumption show in Table 4.

6.8 Discussion of the Evaluation Results
The design of a data structure that is at the same time
efficient for insertion/removal operations and large range
queries requires careful analysis of trade-offs. Experi-
ments have shown that PMQ offers a good tradeoff be-
tween both types of workloads. At a steady regime PMQ
can perform efficient bulk removals, which are usually ex-
pensive in tree-based data structure because they require
a full scan of the data.

The execution of queries in PMQ is substantially dif-
ferent from R-Trees because there are no index pointers to
locate records. Instead the PMQ keeps data sorted based
on Z-indices, and it suffices to use a fast range search-
ing algorithm. We used the same Z-order in PMQ and
B-Tree. However, as data is inserted and removed dy-
namically, a tree structure becomes fragmented in mem-
ory. PMQ avoids this issue by keeping the locality of its
records along the Z-curve. Our experiments always veri-
fied that PMQ outperforms the B-Tree.

Some insertions in the PMQ can lead to higher execu-
tion times when a full rebalance is required: when the
PMQ size needs to be doubled (Figure 7), or, with a lesser
impact, at steady regime during bulk data removals (Fig-

15

ure 10). To mitigate the impact on query response time,
one could rely on multithreading to overlap as much as
possible rebalances with queries, adapting the approach
proposed in [6] for the PMA.

7 Conclusion and Future Work
We introduced PMQ, a new data structure to keep sorted
a stream of data that can fit in a controlled memory
budget. PMQ reorganizes itself when needed with a
low amortized number of data movements per insertion
(O(log2(N))). Amongst the data structure compared,
PMQ, B-Tree, and R-Tree, PMQ proved to have the best
performance trade-off between insertion and searching
times. Experiments showed that PMQ enables query-
ing a continuously updated window with the latest ar-
rived tweets in real-time. PMQ can maintain a significant
amount of data in memory, filling the gap between stream
processing engines working only on small windows of re-
ceived stream, and other classical persistent storage solu-
tions.

One direction for improvement would be to combine
in-memory and persistent storage in a multi-level PMQ.
The lazy stashing protocol might not adapt to some needs,
as old data may stay a long time (up to the next top rebal-
ancing) before being removed. We plan to develop a more
reactive protocol for such situations. The current imple-
mentation imposes that every operation must acquire a
thread lock before accessing or modifying PMQ. All re-
quests are thus performed sequentially, which limits the
number of transactions that PMQ can support.

8 Acknowledgment

The authors wish to thank the anonymous reviewers for
their valuable comments and suggestions to improve the
quality of the paper. This work was supported in part by
CNPq 308851/2015-3 and CNPq 140313/2017-6.

References

[1] Apache flink. https://flink.apache.org,
2017.

[2] R. Bayer and E. McCreight. Organization and main-
tenance of large ordered indexes. Acta Informatica,
1:173–189, 1972.

[3] M. A. Bender, E. D. Demaine, and M. Farach-
Colton. Cache-oblivious b-trees. SIAM J. Comput.,
35(2):341–358, 2005.

[4] M. A. Bender, M. Farach-Colton, J. T. Fineman,
Y. Fogel, B. Kuszmaul, and J. Nelson. Cache-
oblivious streaming b-trees, June9–11 2007.

[5] M. A. Bender and H. Hu. An adaptive packed-
memory array. ACM Trans. Database Syst., 32(4),
Nov. 2007.

[6] M. A. M. Bender, E. D. E. E. D. E. Demaine, and
M. Farach-Colton. Cache-Oblivious B-Trees. SIAM
Journal on Computing, 35(2):341–358, jan 2005.

[7] M. Bern, D. Eppstein, and S.-H. Teng. Parallel con-
struction of quadtrees and quality triangulations,
pages 188–199. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1993.

[8] T. Bingmann. STX B+ Tree C++ Template
Classes v0.9. https://github.com/bingmann/

stx-btree, 2013.

[9] Boost. Geometry Index. http://www.boost.

org/, 2017.

[10] G. S. Brodal and R. Fagerberg. Lower bounds for
external memory dictionaries, 2003.

[11] C. R. Cook and D. J. Kim. Best sorting algorithm for
nearly sorted lists. Commun. ACM, 23(11):620–624,
Nov. 1980.

[12] M. Durand, B. Raffin, and F. Faure. A Packed Mem-
ory Array to Keep Moving Particles Sorted, Dec.
2012.

[13] V. Estivill-Castro and D. Wood. A survey of adaptive
sorting algorithms. ACM Comput. Surv., 24(4):441–
476, 1992.

[14] W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang,
C. Aggarwal, and J. Huang. Streamcube: Hierar-
chical spatio-temporal hashtag clustering for event

16

exploration over the twitter stream. In 2015 IEEE
31st International Conference on Data Engineering,
ICDE 2015, pages 1561–1572, 2015.

[15] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon.
Spatio-temporal indexing in non-relational dis-
tributed databases, Oct 2013.

[16] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandran. Cache-oblivious algorithms, 1999.

[17] I. Gargantini. An effective way to represent
quadtrees. Commun. ACM, 25(12):905–910, Dec.
1982.

[18] F. Goro. Timsort. https://github.com/gfx/

cpp-TimSort, 2016.

[19] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pira-
hesh. Data cube: A relational aggregation opera-
tor generalizing group-by, cross-tab, and sub-totals.
Data Mining and Knowledge Discovery, 1(1):29–
53, Jan. 1997.

[20] A. Guttman. R-trees: a dynamic index structure for
spatial searching, volume 14. ACM, 1984.

[21] A. Itai, A. G. Konheim, and M. Rodeh. A Sparse
Table Implementation of Priority Queues, 1981.

[22] S. Kazemitabar, U. Demiryurek, M. Ali, A. Akdo-
gan, and C. Shahabi. Geospatial stream query pro-
cessing using Microsoft SQL Server StreamInsight.
Proc. of the VLDB Endowment, 3(1-2):1537–1540,
2010.

[23] J. Leskovec and A. Krevl. Snap datasets: Stanford
large network dataset collection, Mars 2017.

[24] L. Lins, J. T. Klosowski, and C. Scheidegger.
Nanocubes for real-time exploration of spatiotempo-
ral datasets. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2456–2465, Dec. 2013.

[25] Z. Liu, B. Jiang, and J. Heer. immens: Real-time
visual querying of big data, 2013.

[26] A. Magdy and M. Mokbel. Kite. http://kite.

cs.umn.edu, Mars 2017.

[27] A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and
Y. He. Mercury: A memory-constrained spatio-
temporal real-time search on microblogs. Proc. - In-
ternational Conference on Data Engineering, pages
172–183, 2014.

[28] A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and
Y. He. Venus: Scalable Real-Time Spatial Queries
on Microblogs with Adaptive Load Shedding. IEEE
Transactions on Knowledge and Data Engineering,
28(2), 2016.

[29] G. Mali, P. Michail, A. Paraskevopoulos, and
C. Zaroliagis. A New Dynamic Graph Structure for
Large-Scale Transportation Networks, pages 312–
323. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013.

[30] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger,
S. Madden, and R. C. Miller. Twitinfo, 2011.

[31] R. J. McGlinn. A parallel version of cook and kim’s
algorithm for presorted lists. Softw. Pract. Exper.,
19(10):917–930, Sept. 1989.

[32] C. Pahins, S. Stephens, C. Scheidegger, and
J. Comba. Hashedcubes: Simple, Low Memory,
Real-Time Visual Exploration of Big Data. IEEE
Transactions on Visualization and Computer Graph-
ics, pages 1–1, 2016.

[33] T. Peters. Timsort. http://svn.python.org/

projects/python/trunk/Objects/listsort.

txt, 2002.

[34] PostGIS. Spatial and geographic objects for post-
gresql. http://postgis.net, 2018.

[35] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt,
and R. Bayer. Integrating the ub-tree into a database
system kernel., 2000.

[36] H. Samet. Foundations of Multidimensional and
Metric Data Structures (The Morgan Kaufmann Se-
ries in Computer Graphics and Geometric Model-
ing). Morgan Publishers Inc., San Francisco, CA,
USA, 2005.

17

[37] SpatiaLite. Spatial and geographic objects for
sqlite. https://www.gaia-gis.it/fossil/

libspatialite/index, 2018.

[38] I. L. Stats. Twitter usage statistics.
http://www.internetlivestats.com/

twitter-statistics, Mars 2017.

[39] Z. Wang, N. Ferreira, Y. Wei, A. S. Bhaskar, and
C. Scheidegger. Gaussian cubes: Real-time model-
ing for visual exploration of large multidimensional
datasets. IEEE Transactions on Visualization and
Computer Graphics, 23(1):681–690, Jan 2017.

[40] S.-E. Yoon and D. Manocha. Cache-efficient layouts
of bounding volume hierarchies, 2006.

[41] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster comput-
ing with working sets, 2010.

[42] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, and
M. Zhang. In-Memory Big Data Management
and Processing: A Survey. IEEE Transactions
on Knowledge and Data Engineering, 27(7):1920–
1948, 2015.

A Proof of the PMQ Amortized
Cost

Let first identify an important property on windows den-
sities after rebalance. A j-level window w j is rebalanced
when overfull (d(w j)> τ j)). The rebalance occurs at the
smallest underfull upper window wl with l > j, i.e. the
smaller one checking d(wl) < τl)). In worst case this is
a top level rebalance requiring to double the PMQ size.
After rebalance the density of w j checks:

d(w j)< τl < τ j, (6)

by Equation 1 of page 4. So w j gets a density d(w j) <
τ j+1.

Now let consider a window w j and let see how many
insertions are necessary in this window so that it triggers a
rebalance, i.e. it requires to rebalance the parent window
w j+1. We assume w j just get rebalanced, thus d(w j) <

τ j+1 by Equation 6. The next rebalance triggered by w j
occurs once d(w j)> τ j, i.e. after the insertion of

(τ j− τ j+1)2 jK

elements where K = O(log(N)) is the segment size.
Such rebalance requires to move 2 j+1K elements. If

the rebalance occurs at the root window (j = h), the PMQ
first makes a full scan of the PMQ to identify the data to be
stashed. These data are next removed during the rebalance
that is either performed on wh = O(N) if the new density
is bellow τh or on a twice larger window after doubling
the PMQ size. Thus a root rebalance cost is bounded by
2h+2K. We also need to count the cost of updating the
accounting array. Each rebalance triggered by wl leads to
update 2 j+2− 1+ h− (j+ 1) elements of the accounting
array.

Putting all these costs together, we have a cost associ-
ated to a rebalance triggered by w j bounded by:

2 j+2 +h− j−2+2 j+2K < 2 j+2K +2 j+2 + log(N).

This leads to the amortized cost per insertion of:

2 j+2K +2 j+2 + log(N)

(τ j− τ j+1)2 jK
<

4K +4+ log(N)

(τ j− τ j+1)K
,

= O(log(N))

by Equation 2 of page 4.
When an element is inserted into the PMQ, it actually

contributes to the density of all enclosing windows from
the segment up to the root, i.e. of h = O(log(N)) win-
dows. The amortized rebalance cost per insertion into the
PMQ is thus O(log2(N)).

Each element needs to be inserted in the right place in
the PMQ. If inserted one by one a binary sort is used with
cost O(log(N)). If inserted by batches, the insertion ar-
ray is sorted with a cost per element that is also bounded
by O(log(N)). Added to the amortized rebalance cost,
we get an unchanged total amortized cost per insertion of
O(log2(N)).

18

