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ABSTRACT
An efficient unsupervised method is developed for automatic segmentation of the area covered
by upwelling waters in the coastal ocean of Morocco using the Sea Surface Temperature (SST)
satellite images. The proposed approach first uses the two popular unsupervised clustering
techniques, k-means and fuzzy c-means (FCM), to provide different possible classifications to
each SST image. Then several cluster validity indices are combined in order to determine the
optimal number of clusters, followed by a cluster fusion scheme, which merges consecutive
clusters to produce a first segmentation of upwelling area. The region-growing algorithm is
then used to filter noisy residuals and to extract the final upwelling region. The performance
of our algorithm is compared to a popular algorithm used to detect upwelling regions and
is validated by an oceanographer over a database of 92 SST images covering each week of
the years 2006 and 2007. The results show that our proposed method outperforms the latter
algorithm, in terms of segmentation accuracy and computational efficiency.

KEYWORDS
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1. Introduction

The canary current system is considered one of the four major eastern boundary currents,
which are affected by the upwelling phenomenon. In particular, the Moroccan Atlantic coast,
located in the central canary system, is exclusively dominated by persistent and variable up-
welling throughout the year (Atillah et al. 2005). In fact, under the influence of northeasterly
winds, the coastal upwelling takes place along the Moroccan continental shelf, which is evi-
denced at the surface by cold and usually nutrient-rich waters near the coast and by filaments
extending hundreds of km offshore. The upwelling regions are shown to be loci of high bio-
logical activity and fishery production (Chassot et al. 2011).

The Sea Surface Temperature (SST) images obtained from the Advanced Very High Reso-
lution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric Adminis-
tration satellite (NOAA) are largely used to detect the thermal upwelling front located at the
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boundary between two distinct temperature populations. Nevertheless, the large amount of
SST images daily collected renders the visual interpretation made by oceanographers labour-
intensive and time-consuming. So, the need for automatic tools of upwelling detection keeps
growing.

A number of automated techniques have been proposed to detect the upwelling areas in
oceanographic satellite images. Some of the most popular approaches include the use of the
histogram-based separation (Nieto, Demarcq, and McClatchie 2005), which relies on the fact
that upwelling fronts are usually regarded as boundaries between two water masses of con-
stant temperature; neural networks (Chaudhari, Balasubramanian, and Gangopadhyay 2008),
where the SST image is trained based on k-means segmentation results and a quantitative
criterion is developed to test the existence of upwelling in each segmented image; hybrid
method (Marcello, Marques, and Eugenio 2005), that has also been developed to identify the
area covered upwelling waters, using region of interest histogram and region-growing pro-
cess.

In the study carried out for the Portuguese coastal ocean (Nascimento et al. 2012), the in-
vestigators are specifically interested in locating the upwelling areas using the fuzzy c-means
clustering. The algorithm used the Affinity Propagation-Fuzzy C-means (AP-FCM) cluster-
ing for the purpose of finding clusters of homogeneous and non-overlapping temperatures.
Then a set of features is gathered from each cluster in order to detect the main upwelling
front separating the cold waters near the coast and warmer offshore waters. The upwelling
boundaries are delineated using measures of classification uncertainty. Compared to the pre-
ceding segmentation methodologies, the latter constitutes a natural advantage to classify the
SST images, due to the presence of smooth thermal boundaries between the upwelling regions
(Nascimento et al. 2012). Additionally, the algorithm does not require a relatively heavy pre-
processing step in order to ensure an acceptable segmentation results. However, the AP-FCM
algorithm suffers from the following shortcomings: 1) the quality of the segmentation results
highly depends on the accuracy of the single IAP (Iterative Anomalous Pattern) algorithm
(Mirkin, Boris 2005), used to determine the good number of clusters in SST images; 2) the
use of control parameters, which should be adjusted to obtain an admissible segmentation.
In this context, our proposed approach is designed to overcome these inconveniences and to
achieve accurate segmentation of the main upwelling front in an efficient way and without
tuning parameters.

Clustering techniques are among the unsupervised methods, which aim at partitioning ob-
jects into a number of clusters, showing a certain degree of closeness or similarity. One pos-
sible classification of clustering techniques can be according to whether an object belongs
exclusively to a one cluster (hard clustering) (Likas et al. 2003), or to several clusters (fuzzy
clustering) (Leski 2003). In the present study, we have respectively used the k-means and
FCM algorithms as underlying hard and fuzzy clustering for the purpose of labeling the orig-
inal SST images.

Whatever the clustering method is, one first needs to determine the right number of clusters,
resulting of compact and well-separated groups. To achieve this end, we have used 19 validity
functions that quantitatively evaluate individual groups of clusters partition, and extract the
number of classes that better fits the oceanographic structures in SST images. The objective
of this study is to provide a simple, fast and efficient algorithm for identification of the main
upwelling front between cold and warm waters. The algorithm can be summarised by the
following three steps:

1 Classification methodology, to obtain a labelled image, based on the two possible strate-
gies of classification, k-means and FCM, with the number of clusters determined using
19 validity indices;
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Year January February March April May June July August September October November December

2006 06, 14,
24, 28

03, 16,
25

05, 13,
15, 25

02, 07,
22, 25

04, 15,
22

01, 07,
17, 23,
30

07, 19,
27, 31

11, 19,
21, 31

10, 20,
25

01, 10,
19, 24

02, 14,
24, 26

06, 15,
26, 29

2007 02, 14,
20, 30

09, 14,
22

02, 12,
14, 22

04, 14,
22, 27

08, 11,
19, 30

08, 16,
19, 28

07, 15,
22

03, 05,
16, 25

04, 11,
14, 24

03, 12,
21, 29

01, 09,
17

02, 03,
17, 26

Table 1. Dates of the 92 SST images used in this study covering the years 2006 and 2007.

2 Segmentation methodology, to detect the main upwelling front, corresponding to strong
variation between two consecutive clusters, using the simple arithmetic SST Mean col-
lected from each labelled region;

3 Post-processing methodology, to extract and separate the upwelling area from the re-
maining noisy structures in offshore waters, using the region-growing process.

2. Study area and data

In this study 92 AVHRR SST images obtained during the years 2006 and 2007 are used,
covering the southern Moroccan Atlantic coast. The data is received and processed at the
Royal Centre of Remote Sensing (CRTS) of Morocco, including radiometric, geometric and
atmospheric corrections with cloud and land masks. The cloud overlay is generated using
the multispectral radiance measurements algorithm tested over the AVHRR images (Stowe,
Davis, and McClain 1999). Each SST image consists of 770 × 990 pixels with a spatial
resolution of 1.1× 1.1 km and each pixel is a temperature in °C.

An automatic tool for selecting the SST images from the years 2006 and 2007 is developed
due to the large amount of data and due to the fact that heavy cloud cover will exist in several
image analysed. For this purpose, one image among the eight generated during the week is
retained for the analysis if it has a maximum value of valid information (no clouds or missing
pixels) between the coast and 200 km offshore in a direction perpendicular to the coastline.
This is due to the fact that the Moroccan coastal upwelling is largely conditioned by the width
and the direction of the continental shelf (Atillah et al. 2005). The dates of the 92 SST images
selected from the years 2006 and 2007 are detailed in Table 1.

A colour scale of 26 levels is applied to each image in order to help the oceanographers for
visual inspection of the upwelling area.

Fig. 1 shows two data, selected from our database of 92 SST images, illustrating two up-
welling scenarios encountered throughout this study: 1) well-defined upwelling in terms of
continuity along the coast, with a clear and visible thermal upwelling front separating cold
waters near the coast and warmer offshore waters (Fig. 1(a)); 2) SST images where the pres-
ence of clouds and missing pixels over the upwelling area, masks the true underlying structure
of upwelling (Fig. 1(b)).

3. Classification methodology

Simplicity and computational efficiency are major concerns in our task. We thus choose two
widely used unsupervised clustering techniques, k-means and FCM, representing respectively
hard and fuzzy clustering, to divide a given SST image into coherent and contrasted clusters.
In order to make the paper self-contained, we briefly recall the preceding two algorithms.
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(a) (b)

Figure 1. SST images obtained on (a) 11 September 2007 and (b) 15 May 2006, showing two upwelling scenarios.

3.1. Clustering algorithms

Among the various hard clustering methods, the k-means algorithm (Jain Anil, and Dubes
Richard 1988) is one of the simplest. Based on the temperature value in each pixel, the SST
images is converted into a data set X = {x1, x2, . . . , xN} of N pixels, and the algorithm
allocates each data point to one of c clusters to minimize the within-cluster sum of squares:

c∑
i=1

∑
k∈Ii

||xk − vi||2 , (1)

where Ii is a set of objects in the i-th cluster and vi is the mean for that points over the cluster
i. In k-means clustering, vi is called the cluster prototype:

vi =

∑Ni
k=1 xk
Ni

, xk ∈ Ii , (2)

and Ni is the number of objects in cluster Ii.
In the other hand, the fuzzy partition can be seen as a generalization of hard partition.

In particular, the FCM algorithm (Bezdek James 1981) is based on the minimization of an
objective function:

J =

c∑
i=1

N∑
k=1

(µi,k)
m||xk − vi||2 , (3)

where V = [v1, v2, . . . , vc] is a vector of cluster centers, and ‖xk−vi‖2 is the Euclidean norm.
The parameter ‘m’ controls the fuzziness of the clusters found by the algorithm. It must be
given as a scalar greater or equal to one (m ∈ [1,∞]). For example, if m = 1, the clusters are
separated by hard partitions and µmi,k = 0 or 1. As ‘m’ increase, the partitions become more
fuzzy. In the case of the Fuzzy clustering method, the default value of the weighting exponent
m is 2.

The cluster centroids and the respective membership functions that solve the constrained
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Measure Notation Definition Optimal values

Partition coefficient PC (Bezdek James 1981)
1

N

∑Nc

i=1

∑N
k=1(µi,k)

2 local maxima2≤Nc≤N−1PC

Partition entropy PE (Bezdek, Ehrlich, and Full 1984) − 1

N

∑Nc

i=1

∑N
k=1 µi,k log2 µi,k local minima2≤Nc≤N−1PE

Dave index MPC (Dave 1996) 1− Nc

Nc−1(1− PC) local maxima2≤Nc≤N−1MPC

Extended partition entropy EPE (Zhang, Zhou, and Martin 2008) − 1

N × ln(Nc)

∑Nc

i=1

∑N
k=1 µi,k local minima2≤Nc≤N−1EPE

Chen and Linkens Index P (Chen and Linkens 2004)
1

N

∑N
k=1 maxi(µi,k)−

1∑Nc−1
i=1 i

∑Nc−1
i=1

∑Nc

j=i+1

[ 1

N

∑N
k=1 min(µi,k, µj,k)

]
local maxima2≤Nc≤N−1P

Table 2. Description of the 5 validity indices involving only the membership values. N : number of objects in the dataset X;
Nc : number of clusters in the dataset c; µi,j grade of membership of the jth element to the ith cluster.

optimization problem in equation (3) are given by the following equations:

vi =

∑N
j=1 (µi,j)

m xj∑N
j=1(µi,j)m

, 1 6 i 6 Nc , (4)

µi,k =
1∑Nc

j=1( ||xk−vi||||xk−vj ||)
2

(m−1)

, 1 6 i 6 Nc , 1 6 k 6 N. (5)

The goal of FCM algorithm is to iteratively improve a sequence of sets of fuzzy clusters in
equation (3) by a simple iteration through the equation (4) and equation (5).

3.2. Cluster validity indices

A common problem in unsupervised clustering is the optimal choice of the number of classes,
and cluster validity has been widely investigated for this purpose (Xu and Brereton 2005).
In particular, Sousa et al. (2008) uses the cluster validity indices to extract the appropriate
number of clusters in SST images.

A large number of validity functions exist in the literature, which can be grouped according
to two different criteria: indices using only the membership values and have the advantage of
being easy to compute; and indices which involve both the membership values and the dataset
itself, which take into account the underlying connection in the data.

In our proposed strategy of determining the right number of clusters, 19 validity indices
are selected and computed according to three criteria: well-established, implementation sim-
plicity and computational considerations. In Table 2 and Table 3 we respectively present a
detailed study of 5 widely used validity indices involving only the membership values, and a
suite of 14 widely used validity indices involving the membership values and the dataset.

The indices are thus applied to our database of 92 SST images and the appropriate number
of clusters is selected through a vote scheme.

3.3. Determining the optimal number of clusters

The 19 validity indices used in our study can be applied either in hard or fuzzy partition, and
each of these index gives the optimal clustering scheme for the given image based on two
criteria: compactness (measure of closeness of cluster elements) and separation (indicate how
distinct two clusters are).

The foremost shortcoming encountered when attempting to detect the optimal number of
cluster using the validity indices, is the nature of the data itself. In fact, we have noticed that
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Measure Notation Definition Optimal values

Partition index SC (Bensaid et al. 1996)
∑Nc

i=1

∑N
j=1(µi,j)

m||xj − vi||2

Ni
∑Nc

k=1 ||vk − vi||2
local minima2≤Nc≤N−1SC

Xie and Beni XB (Xie and Beni 1991)

∑Nc

i=1

∑N
j=1(µi,j)

m||xj − vi||2

N mini,j ||vi − vj ||2
local minima2≤Nc≤N−1XB

Fukuyama and Sugeno FS (Fukuyama and Sugeno 1989)
∑Nc

i=1

∑N
j=1 µ

m
i,j ‖xj − vi‖2 −

∑Nc

i=1

∑N
j=1 µ

m
i,j

∥∥∥vi −
∑Nc

i=1
vi
Nc

∥∥∥2
local minima2≤Nc≤N−1FS

Kwon index K (Kwon 1998)
∑N
j=1

∑Nc
i=1 µ

2
i,j‖xj−vi‖

2+ 1

Nc

∑Nc
i=1‖vi−

∑N
j=1

xj

N ‖
2

mini6=k‖vi−vk‖2
local minima2≤Nc≤N−1K

T index T (Tang, Fuchun, and Zengqi 2005)
∑N
j=1

∑Nc
i=1 µ

2
i,j‖xj−vi‖

2+ 1

Nc(Nc−1)

∑Nc
i=1

∑Nc
k=1,k 6=i‖vi−vk‖

2

mini6=k‖vi−vk‖2+ 1

Nc

local minima2≤Nc≤N−1T

Separation and compactness index Z (Zahid and Essaid 1999)
∑Nc
i=1

‖vi−∑N
j=1

xj
N ‖2

Nc∑Nc
i=1

(∑N
j=1

µm
i,j‖xj−vi‖2∑N
j=1

µi,j

) − ∑Nc
i=1

∑N
l=i+1

(∑N
j=1(min (µij,µl,j))

2∑N
j=1

min (µi,j ,µl,j)

)
∑N
j=1

(max1≤i≤Nc
µi,j)

2∑N
j=1

max1≤i≤Nc
µi,j

local maxima2≤Nc≤N−1Z

Fuzzy hypervolume validity FHV (Gath and Geva 1989)
∑Nc

i=1

[
det

∑N
j=1 µ

m
i,j(xj−vi)(xj−vi)T∑N

j=1 µ
m
i,j

] 1

2 local minima2≤Nc≤N−1FHV

Average partition density APD (Davies et Bouldin 1979) 1
Nc

∑Nc

i=1

∑
x∈Xi

µi,j[
det

∑N
j=1

µm
i,j

(xj−vi)(xj−vi)
T∑N

j=1
µm
i,j

] 1
2

local maxima2≤Nc≤N−1APD

Partition density PD (Davies et Bouldin 1979)
∑Nc
i=1

∑
x∈Xj

µi,j

FHV local maxima2≤Nc≤N−1PD

PBMF index PBMF (Pakhira, Bandyopadhyay, and Maulik 2004)
(

1
Nc
×

∑N
j=1 µi,j‖xj−v‖∑N

j=1

∑Nc
i=1 µ

m
i,j‖xj−vi‖

× Nc
max
i,j=1

‖vi − vj‖
)2 local maxima2≤Nc≤N−1PBMF

Bouguessa and Wang index SCG (Bouguessa and Wang 2004)
trace
(∑Nc

i=1

∑N
j=1 µ

m
i,j(vi−v̄)(vi−v̄)T

)
∑Nc
i=1 trace

(∑N
j=1

µm
i,j

(xj−vi)(xj−vi)
T∑N

j=1
µm
i,j

) local maxima2≤Nc≤N−1SCG

Davies-Bouldin index DB (Davies et Bouldin 1979) 1
Nc

∑
i max
j,j 6=i

{ [ 1

Ni

∑
x∈ci

d(x ,vi)+
1

Nj

∑
x∈cj

d(x ,vj)]

d(vi,vj)

}
local minima2≤Nc≤N−1DB

Dunn’s index DI (Dunn 1973) min
i∈c

{
min
j∈c,i 6=j

{ min
x∈ci,y∈cj

d(x ,y)

max
k∈c

max
x,y∈c

d(x ,y)

}}
local maxima2≤Nc≤N−1DI

Calinski-Harabasz index CH (Calinski and Harabasz 1974)
∑
iNid

2(vi,v)/(Nc−1)∑
i

∑
x∈ci

d2(x ,vi)/(N−Nc)
local maxima2≤Nc≤N−1CH

Table 3. Description of the 14 validity indices involving the membership values and the dataset. N : number of objects in the
dataset X; Nc : number of clusters in the dataset c; µi,j grade of membership of the jth element to the ith cluster; v : center of
X; ci: the i-th cluster; Ni: number of objects in the cluster ci; vi: center of ci; d(x , y): distance between x and y ; Xj : set of
data points that are within a pre-specified region around cluster centroid vj .

Image PC PE EPE MPC P SC XB FS K T Z FHV APD PD PBMF SCG DB DI CH C∗

11 September 2007 – – 2, 6 4, 6 4, 6 – 2, 5 3, 5 2, 5 – – 3, 6 – 3, 6 – – 2, 6 2, 5 – 6
15 May 2006 2, 4 – 2, 4 2, 4 2, 4 4, 6 2, 4 – 2, 4 2, 4 4, 6 2, 4 – 2, 4 3, 5 2, 4 – 2, 4 – 4

Table 4. Optimal number of clusters, C∗, using 19 validity indices to the images in Fig. 1.

none of the abovementioned indices correctly recognizes the optimal cluster numbers ‘c∗’ for
all our 92 SST images. As Pal and Bezdek (1997) stated, no matter how good your index is,
there is a data set out there waiting to trick it. Indeed, the imprecise nature of remote sensing
SST’s in general and the upwelling patterns in particular, which are typically characterized
by the interaction of a complex set of upper ocean and atmospheric boundary layer processes
having spatial and temporal scales ranging from meters to hundreds of km and from seconds
to several days, can make the weighted voting scheme a very difficult task.

In this sense, we took the decision to use an equally weighted vote and the same amount
of influence over the outcome for all the 19 validity indices used in this study, and therefore
select the appropriate number of cluster based on the decision of these indices.

The proposed algorithm for determining the number of clusters in each image using the 19
validity indices can be summarised by the following steps:

• Application of the k-means and FCM algorithms to each SST image with the number
of clusters varying from Cmin = 2 to Cmax = 7. Our experiments show indeed that
a number of clusters larger than Cmax = 7, leads to multiple broken of one or more
compact clusters.
• Calculation of the 19 validity indices for each C-partition and extraction of the local

extrema for each index.
• Selection of the best C∗-partition for each image, being the one that have the maximum

number of occurrences of the collected local extrema.
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(a) (b)

(c) (d)

Figure 2. Results of four validity indices for the image in Fig. 1(a), using the FCM algorithm with the number of clusters
varying between Cmin = 2 and Cmax = 7 (the black arrows indicate the position of the local extrema). Fig. 2(d) and Fig. 2(a)
show respectively the result of the Partition entropy (PE) and the Extended partition entropy (EPE). Fig. 2(b) and Fig. 2(c) show
the result of the Partition density (PD) and Fuzzy hypervolume validity (FHV).

Table 4 shows the local extrema extracted from the 19 validity functions, by using FCM
algorithm to the images in Fig. 1. Fig. 2 illustrates the graphic chart of 4 validity indices,
among the 19 used in this study, of the image in Fig. 1(a).

According to the local minima of the curve in Fig. 2(a), the EPE index yields C∗ = 2
and C∗ = 6 as good cluster number estimate. In Fig. 2(b) and Fig. 2(c), the PD and FHV
indices show that C∗ = 3 and C∗ = 6 may be another good estimates according respectively
to the local maximums and local minimums of the two curves. The PE index in Fig. 2(d)
yields a monotonic tendency of the cluster number C. The validity indices that present a
monotonic tendency have been excluded from the process of determining the appropriate
number of clusters, because the extreme value in that case is generally not a good estimate
(Wu and Yang 2005). After a voting scheme the indices calculated over the two original
images indicate respectively, that C∗ = 6 and C∗ = 4 are the optimal number of clusters.
Fig. 3 illustrates the clustering results thus obtained over the images in Fig. 1 using the FCM
algorithm.
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(a) (b)

Figure 3. Visualization of the clustering results using the FCM method to the images in Fig. 1, with respectively C∗ = 6 and
C∗ = 4 clusters.

4. Segmentation of upwelling area

Once the classification algorithm is performed, the image is partitioned into C∗ clusters:

I =

C∗⋃
c=1

Ic (6)

The goal of the segmentation is then to find the frontier between cold and warm waters,
that is to find the clutter c̃ where there is a significant difference between the temperatures of
Ic̃ and I(c̃+1). The upwelling area is then defined as:

Iupw =

c̃⋃
c=1

Ic (7)

To do so, we compute the difference between the mean temperatures of consecutive clusters:

∆µIc = |µIc − µIc+1
|, 1 6 c 6 C∗ − 1, (8)

where µIc is the main temperature value of the cluster Ic. We define c̃ as the cluster where
∆µIc is maximum:

c̃ = argmaxc ∆µIc , c = 1, . . . , C∗ − 1 (9)

by convention, we consider that c̃ = 1 if C∗ = 2. The fourth column in Table 5 shows the
mean difference between each two consecutive clusters gathered from the labelled images in
Fig. 3. The main front in the first image is detected between the clusters I3 and I4, while in
the second image, the transition cluster is taken between the second and the third cluster.
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Images Ic µIc(°C) ∆µIc(°C)

11 September 2007 I1 19.658 1.264
I2 20.922 0.479
I3 21.401 1.757
I4 23.158 0.863
I5 24.021 0.693
I6 24.714 –

15 May 2006 I1 17.606 1.277
I2 18.882 1.305
I3 20.188 1.043
I4 21.230 –

Table 5. Statistical Data for the labelled images in Fig. 3. Bold number represents the cluster transition of the main front.

5. Post-processing

The region covered by upwelling waters corresponds to the first c clusters c 6 c̃, with the last,
c̃, being the cluster transition between two water masses. The problem encountered in the
extraction of upwelling zone, is the presence of cold and noisy structures in offshore waters.

The most popular methods used to remove the noisy structures in SST images, are the
morphological operators (Soille 2003; Holyer and Peckinpaugh 1989; Marcello, Marques,
and Eugenio 2005). We have used the cleaning operator to our problem, but the results are
not satisfactory. Indeed, despite the good performance in terms of reducing the isolated pixels,
not all the remaining pixels are removed, especially the big isolated groups of pixels in the
images (Fig. 4(b)(e)).

(a) (b) (c)

(d) (e) (f )

Figure 4. Upwelling area automatically retrieved. (a) and (d) show the interference between the upwelling area and the noisy
structures in left side of the figure. (b) and (e) show respectively the binary images results of the cleaning operator applied to (a)
and (b). (c) and (f ) show the results of the region-growing algorithm to the images (a) and (b).

Thus, based on the fact that all the segmented pixels pertaining to the upwelling must have
connectivity with the coastline, we used the region-growing process (Chang and Li 1994),
using three seed points near the coastline that correspond to the upwelling sources. Since we
apply the region-growing to the binary image, the algorithm does not require any adjustment
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of some threshold value, generally used in this process. This constitutes another important
advantage of our methodology. Fig. 4(c) and (f ) display the results of the region-growing
method, and it can be appreciated the precise elimination of the spatial isolated pixels, not
belonging to coastal upwelling.

Fig. 5(a),(b),(d) and (e) shows the results of upwelling areas, automatically contoured with
our proposed method, using respectively the k-means and FCM algorithms.

We shall call IAP-FCM-TCT, the algorithm used in Nascimento et al. (2012). The latter
provides labelled images with the corresponding number of clusters in each image by using
the IAP-FCM process. The main upwelling front separating the two water masses is detected
using the transition-cluster threshold procedure (TCT).

The results of the IAP-FCM-TCT method applied to the original images in Fig. 1 are
depicted in Fig. 5(c) and (f ). The upwelling area is automatically contoured with the black
bold colour.

The Moroccan Atlantic coast, belonging to the Canary upwelling system, is character-
ized by strong and persistent thermal structures (Atillah et al. 2005; Nykjaer and Van Camp
1994) including upwelling fronts which separate the cold coastal waters and warmer off-
shore oceanic waters, and also include the upwelling filaments which, represent the exten-
sions of upwelling fronts in open ocean. The upwelling filaments are very energetic, and their
knowledge is very important to study the oceanic circulation and fisheries management and
exploitation.

The Fig. 5(a) and Fig. 5(b) (also the Fig. 5(d) and Fig. 5(e)) shows the same segmentation
results and provide satisfactory results with a precise detection of the upwelling structure
and upwelling filaments over the original image in Fig. 1(a) (see also the Fig. 6 where the
segmented image in the Fig. 5(a) is zoomed in to concentrate on the region of filaments
structure). On the other hand, in the Fig. 5(c) and Fig. 5(f )(algorithm of Nascimento et al.
(2012)), the main thermal upwelling front is well identified, but the detail corresponding to
the upwelling filaments is not preserved, as shown in the Fig. 7 where the segmented image
in the Fig. 5(c) is zoomed in to concentrate on the region of filaments structure.

6. Experimental study and results

After rejecting images with heavy cloud occlusions and artefacts over the region of interest, a
complete database composed of 92 SST images is generated, keeping one image in each week
during the years 2006 and 2007. The goal of this section is two-fold. First, the comparison
between the two clustering methods used in this work, k-means and FCM, for deciding which
clustering algorithm will perform better on our data. Second, the comparison of our approach
and the “IAP-FCM-TCT” algorithm (Nascimento et al. 2012) developed to detect the main
upwelling front in SST images.

It is necessary to mention that, the in-situ measurements, e.g., the buoy data, of the up-
welling fronts can give us a sounder support to the results obtained by the proposed approach.
However, these measures are very complex to establish and would be extremely challenging
for a use in coastal zone context, because of lack of these measures for all the SST satellite
images used in this study and for every specific region of the study area. In this sense, it is
a well-known fact that validation in the case of ocean data is often and truly performed by
assessing the results by professional oceanographers (Nascimento et al. 2012; Tamim et al.
2013; Sousa et al. 2008), which has been done in the case of this work.

The oceanographers evaluation is performed in order to check if the delimitation of the
detected area with the proposed method matches visually with the true upwelling area.

The fuzzifier and the test of convergence parameters in the FCM algorithm are performed
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(a) (b) (c)

(d) (e) (f )

Figure 5. Upwelling zone automatically extracted from the original images using k-means (a)(d), FCM (b)(e) and IAP-FCM-
TCT algorithm (c)(f).

using respectively k = 2 and ε = 10−5.

6.1. Experiment 1

In this experiment, we evaluate the performance of each of the two unsupervised clustering
techniques used in this work. The two graphs in Fig. 8 and Fig. 9 show the oceanographer’s
evaluation of the 92 SST images using 5 grades: “Bad”, “Poor”, “Acceptable”, “Good” and
“Excellent”. “Bad” is attributed when the location of the main upwelling front separating the
upwelling and no-upwelling water is not well-identified, and “Excellent” is assigned when it
is correctly identified.

Figure 6. Detection of the upwelling structure and filaments using our proposed method with FCM algorithm, zoomed in to
concentrate on the region of filaments structure.
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Figure 7. Detection of the upwelling structure and filaments using the Nascimento et al. (2012) algorithm, zoomed in to
concentrate on the region of filaments structure.

Figure 8. Comparison between the two proposed approach with k-means and FCM, for the segmentation of the main upwelling
front using the oceanographer’s evaluation over the 92 SST images.

The segmentation results in Fig. 8 reveal that 42% and 21% marks where respectively
Good and Excellent for k-means, which thus make a total of 63% for these two grades. For
FCM, a value of 80% is achieved by the addition of the two grades Excellent (34%) and Good
(46%). For the grades Bad and Poor, the total is 6% for FCM and 12% for k-means. So we can
conclude based on the oceanographer evaluation, that the FCM algorithm provides globally a
better accuracy than k-means, so it can be selected as our reference clustering technique.

6.2. Experiment 2

The next experiment focuses on the comparison of the proposed approach with the IAP-
FCM-TCT algorithm. The latter is used with the scatter threshold parameter τ = 10−3 for
the fuzzy segmentation process, and respectively the threshold values τd = 4.5 × 105 and
τc = 0.52 × 1005 for the features TDiff and CCard used to determine the main upwelling
front (TCT algorithm). These parameters are chosen in accordance with the values used in
the article Nascimento et al. (2012).

The graphic result in Fig. 9 shows that our proposed segmentation is more accurate and
reliable compared to “IAP-FCM-TCT” algorithm. Indeed, the oceanographer attributed 34%
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Figure 9. Comparison between the proposed approach and IAP-FCM-TCT algorithm for the segmentation of the main up-
welling front using the oceanographer’s evaluation on the 92 SST images.

Excellent to our segmentation approach against 18% to IAP-FCM-TCT algorithm. For the
grade Good, the values of 46% and 36% are reached respectively for the proposed method
and IAP-FCM-TCT algorithm. For the grade Bad, a value of 1% is achieved by our approach
against 14% by the IAP-FCM-TCT algorithm.

These results show that our approach significantly outperforms the IAP-FCM-TCT algo-
rithm, in terms of segmentation accuracy, and it is worth to highlight that our approach does
not require the adjustment of some tedious thresholds. Thus, our method has additionally the
major advantage of being efficient and easy to implement. More importantly, the upwelling
zone detection quality obtained by our proposed method suggests that they can be used to
obtain a first approximation of the upwelling area and serve as a basis for a further and subse-
quent step in the analysis of the SST images (spatial and temporal variability of the upwelling
intensity and upwelling extension), and also discuss and compare the results with that of the
article of Benazzouz et al. (2014).

The scientific explanation behind the limitation of the method proposed by Nascimento et
al. (2012) for detecting the upwelling filaments in our region of interest can be the following:

• The method proposed by Nascimento et al. (2012) is not well suited for our database
covering the Moroccan Atlantic coast. In fact, each region has its own characteristics
and our region compared with the Portugal coastal ocean is characterized by a strong
variation in the upwelling intensity and extension that persist all around the years (Atil-
lah et al. 2005; Nykjaer and Van Camp 1994; Marcello, Marques, and Eugenio 2005).
• The method proposed by Nascimento et al. contains several tuning parameters, which

affects the segmentations results, and its hard to know the best value of these parameters
for our region.

7. Conclusion

This paper deals with the problem of developing of an automatic tool for segmentation of
upwelling region in SST images. The proposed method starts with automatic identification of
the appropriate number of clusters in each image using several validity indices over k-means
and FCM classifications. Afterwards, the difference of arithmetic mean between consecutive
clusters is applied to provide an indicator of the position of the main upwelling front, sep-
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arating cold waters near the coast and warmer offshore waters. The proper segmentation of
the upwelling and filaments, however, is interfered by the presence of clouds and remaining
waters in the image. For this purpose, the region-growing process is applied to filter out noisy
structures and thus provides the final segmentation.

We compared our method to a popular algorithm using a database of 92 SST images from
years 2006 and 2007, covering the southern Moroccan Atlantic coast. The evaluation was
carried out visually by an oceanographer, and show that the method yields a more accurate
and reliable upwelling segmentation. Moreover, our method is threshold-free and easy to
implement.
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