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Cyclic pre-proofs can be represented as sets of finite tree derivations with back-links. In the frame of
the first-order logic with inductive definitions (FOLID), the nodes of the tree derivations are labelled
by sequents and the back-links connect particular terminal nodes, referred to as buds, to other nodes
labelled by a same sequent. However, only some back-links can constitute sound pre-proofs. Previ-
ously, it has been shown that special ordering and derivability conditions, defined along the minimal
cycles of the digraph representing a particular normal form of the cyclic pre-proof, are sufficient
for validating the back-links. In that approach, a same constraint could be checked several times
when processing different minimal cycles, hence one may require additional recording mechanisms
to avoid redundant computation in order to downgrade the time complexity to polynomial.

We present a new approach that does not need to process minimal cycles. It based on a normal
form that allows to define the validation conditions by taking into account only the root-bud paths
from the non-singleton strongly connected components of its digraph.

1 Introduction

In [4, 5, 7], Brotherston and Simpson introduced the notion of cyclic (pre-)proof in the frame of first-
order logic with inductive definitions (for short FOLID and detailed, e.g., in [1]) and including equality.
In this setting, the cyclic pre-proofs are sequent-based proof derivations usually presented in the form
of finite trees. Some of their terminal nodes, called buds, are labelled by ‘not-yet proved’ sequents that
already labelled other nodes, called companions. For each bud there is only one companion and the
bud-companion relations are referred to as back-links.

Not all back-links may constitute sound pre-proofs. Indeed, a pre-proof can be constructed for any
false sequent S by applying a stuttering inference step1 that creates a copy of S. This terminal node is a
bud whose companion is the root of the pre-proof. [5, 7] also introduced the CLKIDω inference system
for building cyclic pre-proofs and defined a sufficient criterion for checking their soundness in terms of
a global trace condition. This condition is an ω-regular property that can be checked as an inclusion
between two Büchi automata. The inclusion test includes an automata complementation procedure [9]
whose time complexity is exponential in the number of states of the automaton to be complemented.

A more effective soundness criterion was given in [11] for pre-proofs generated by CLKIDω
N , a

restricted version of CLKIDω . Inspired from a previous method [10, 12] for checking the soundness of
cyclic proofs built using the Noetherian induction principle for reasoning on conditional specifications,
its time complexity can be downgraded to polynomial. To do this, a CLKIDω

N pre-proof is normalised
to some set of finite tree derivations which can be represented as a directed graph (for short, digraph)
having some arrows labelled by substitutions. The soundness criterion asks that some derivability and
ordering constraints hold along the paths leading root nodes to bud nodes in the minimal cycles of the
digraph, i.e., cycles that do not include other cycles.

1for example, by applying the LK’s (Subst) rule with an identity substitution (see the definition of (Subst) in Definition 2).
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2 Validating Back-links of FOLID Cyclic Pre-proofs

In general, the number of minimal cycles in a digraph with n nodes can be much greater than the
number of its buds (which is always smaller than n). For complete digraphs, i.e., digraphs for which
every pair of distinct nodes is connected by arrows in the two ways, one can define the number of
minimal cycles built by k ∈ [2..n] nodes, as follows. We take one of the n nodes as the starting node
in the cycle, then the next one from the remaining n− 1 nodes, and so on for k− 1 times. So there are
n× (n− 1)× . . .× (n− k+ 1) ways to do it. Since the cycle consisting of the k nodes can be built in k
different times, depending which is the starting node among its nodes, this number is n!

(n−k)!k . Hence, the
total number of minimal cycles in a complete digraph with n nodes is

n

∑
k=2

n!
(n− k)!k

Fortunately, the number of arrows in any digraph built with the approach from [11] is smaller than
that for the complete digraphs because each bud node has only one companion. However, a ordering-
derivability constraint can be checked several times as it may be defined w.r.t. different minimal cycles.
In [11], it was already suggested that their number can be reduced to the number of buds from the
minimal cycles, hence smaller than n. This redundancy can be avoided, for example, by using recording
mechanisms.

In this paper, we present an improved version of the soundness criterion for validating CLKIDω
N pre-

proofs. The advantage is that the computation of minimal cycles is not needed and there is no redundancy
in the computation of the ordering-derivability constraints. In order to do this, we propose a new normal
form of CLKIDω

N pre-proofs and define ordering and derivability constraints for every root-bud path that
occurs in a non-singleton strongly connected component (SCC) of the digraphs associated to the new
normal forms. We show that the number of constraints is that of the buds from the non-singleton SCCs.

The rest of the paper is structured as follows. Section 2 gives a brief presentation of FOLID and
CLKIDω

N . Section 3 introduces the soundness criterion for CLKIDω
N pre-proofs by detailing the normal-

isation procedure, the digraph construction and the definition of the ordering and derivability conditions.
A comparison is made with the soundness criterion from [11]. The conclusions and future work are given
in the last section.

2 Induction-based sequent calculus

Syntax. The logical setting is that presented in [7], based on FOLID with equality using a standard
(countable) first-order language Σ. The predicate symbols are labelled either as ordinary or inductive,
and we assume that there is an arbitrary but finite number of inductive predicate symbols. The terms are
defined as usual. By t, we denote a vector of terms (t1, . . . , tn) of length n, the value of n being usually
deduced from the context.

New terms and formulas are built by instantiating variables by terms via substitutions. A substitution
is a mapping from variables to terms, of the form {x1 7→ t1; . . . ;xp 7→ tp}, for some p > 0, which can be
written in a more compact form as {x 7→ t}, where x≡ (x1, . . . ,xp), t ≡ (t1, . . . , tp), and ≡ is the syntactic
equality. The composition of σ1 with σ2 is denoted by σ1σ2, for all substitutions σ1 and σ2. A term t is
an instance of t ′, or t matches t ′, if there is a substitution σ such that t ≡ t ′σ . Similarly, the notion of
matching can be extended to vector of terms, atoms, and formulas. For any substitution σ applied to a
formula F , we use the notation F [σ ] instead of Fσ .
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Deductive sequent-based inference rules. The proof derivations are built from sequents [8] of the form
Γ ` ∆, where Γ and ∆ are finite multisets of formulas called antecedents and succedents, respectively.
FV (Γ ` ∆) denotes its set of free variables. An inference rule is represented by a horizontal line followed
by the name of the rule. The line separates the lower sequent, called conclusion, from a (potentially
empty) multiset of upper sequents, called premises. Most of the rules introduce an explicitly represented
formula from the conclusion, called principal formula. In this case, the rules are annotated by L (resp.,
R) if the rule is introduced on the left (resp, right) of the ` symbol from the conclusion.

A specification is built from a finite inductive definition set of axioms Φ consisting of formulas of
the form

h∧
m=1

Qm(um)∧
l∧

m=1

Pm(tm)⇒ P(t), (1)

where h, l are naturals, Q1, . . . ,Qh are ordinary predicate symbols, P1, . . . ,Pl,P are inductive predicate
symbols.

∧0
m=1 is a shortcut for the ‘true’ boolean constant and can be ignored.

The deductive part of the sequent-based reasoning about FOLID is performed using the Gentzen’s
LK rules [8] and an ‘unfold’ rule. The unfold rule (R.(rname)) replaces an atom P(t ′) using the axiom
(rname) defining P. E.g., (1) can be applied on Γ ` P(t ′),∆ if P(t ′) ≡ P(t)[σ ] for some substitution σ ,
as:

seq Q inst seq P inst
(R.(1)) ,

Γ ` P(t ′),∆

where seq Q inst (resp., seq P inst) is the multiset of sequents
⋃h

m=1{Γ ` Qm(um)[σ ],∆} (resp.,⋃l
m=1{Γ ` Pm(tm)[σ ],∆}).

Semantics. The standard interpretation of inductive predicates is built from prefixed points of a mono-
tone operator issued from the set of axioms representing Φ [1]. Its least prefixed point, approached by
an iteratively built approximant sequence, helps defining a standard model for (Σ,Φ) (see, e.g., [7] for
details).

Definition 1 (validity). Let M be a standard model for (Σ,Φ), Γ ` ∆ a sequent and ρ a valuation which
interprets in M the variables from FV (Γ ` ∆). We write Γ |=M

ρ ∆ if every G ∈ Γ holds in M there is some
D ∈ ∆ that also holds in M. We say that Γ ` ∆ is M-true and write Γ |=M ∆ if Γ |=M

ρ ∆, for any ρ .

When M is implicit from the context, we use true instead of M-true. A rule is sound, or preserves the
validity, if its conclusion is true whenever its premises are true. Hence, the conclusion of every 0-premise
sound rule is true.

2.1 The CLKIDω
N cyclic inference system

CLKIDω [7] includes the LK rules, the rules from Figure 1 that process equalities, the ‘unfold’ rule and
the (Case) rule which represents a left-introduction operation for inductive predicate symbols:

case distinctions
(Case P(t ′))

Γ,P(t ′) ` ∆

For each axiom of the form (1),

Γ, t ′ = t,Q1(u1), . . . ,Qh(uh),P1(t1), . . . ,Pl(t l) ` ∆ (2)
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(= R)
Γ ` t = t,∆

Γ[{x 7→ u;y 7→ t}] ` ∆[{x 7→ u;y 7→ t}]
(= L)

Γ[{x 7→ t;y 7→ u}], t = u ` ∆[{x 7→ t;y 7→ u}]

Figure 1: Sequent-based rules for equality reasoning.

is the case distinction for which each free variable y from (1) is fresh w.r.t. the free variables from
the conclusion of the rule (y can be renamed to a fresh variable, otherwise). P1(t1), . . . ,Pl(t l) are case
descendants of P(t ′).

The inference system CLKIDω
N , introduced in [11], is the restricted version of CLKIDω for which

(= L) is replaced by the generalization rule (Gen) that substitutes a term by a variable:

Γ′[{t 7→ u}] ` ∆′[{t 7→ u}]
(Gen)

Γ′, t = u ` ∆′

where t is a free variable that does not occur in u.
(Gen) is the particular instance of (= L) from Figure 1 when y 6∈ FV (Γ ` ∆) and t 6∈ FV (Γ ` ∆)

that also does not occur in u. By using the property that Φ[{y 7→ u}] ≡ Φ, holding whenever y is a free
variable not occurring in a formula Φ, the last condition can simplify (= L) to a form equivalent to (Gen):

Γ[{x 7→ u}] ` ∆[{x 7→ u}]
(= L)

Γ[{x 7→ t}], t = u ` ∆[{x 7→ t}]

CLKIDω
N pre-proof trees. A derivation tree for a sequent S is built by successively applying inference

rules starting from S. We consider only finite derivation trees whose terminal nodes can be either leaves
or buds. The leaves are labelled by sequents that represent conclusions of 0-premise rule, e.g., the unfold
rule using unconditional axioms. For each bud there is another node, called companion and having the
same sequent labelling. The bud and its companion are annotated by the same sign, e.g., †. In addition,
the buds having a same companion are labelled by the sign followed by a number that makes them
unique, e.g., †1, †2,. . . . A back-link is a relation bud-companion.

Notation 1 (pre-proof tree, induction function for tree). The pair (D , R) denotes a pre-proof tree, where
D is a finite derivation tree and R is a defined induction function assigning a companion to every bud
in D .

Example 1. To highlight the changes w.r.t. [11], we take the same running example (also presented
in [6]). Let N and R be two inductive predicates defined by:

⇒ N(0) (3)

N(x)⇒ N(sx) (4)

⇒ R(0,y) (5)

R(x,0)⇒ R(sx,0) (6)

R(ssx,y)⇒ R(sx,sy) (7)

where the parentheses around the argument of s are omitted. One can build the following pre-proof of
N(x),N(y) ` R(x,y):



S. Stratulat 5

(R.(5))
Ny ` R(0,y)

(R.(5))
` R(0,0)

Nx′ ` R(x′,0) (†1)
(Subst)

Nx′′ ` R(x′′,0)
(R.(6))

Nx′′ ` R(sx′′,0)
(Case N)

Nx′ ` R(x′,0) (†)
(R.(6))

Nx′ ` R(sx′,0)

Nx,Ny ` R(x,y) (∗1)
(Subst)

Nssx′,Ny′ ` R(ssx′,y′)
(Cut)

Nx′,Ny′ ` R(ssx′,y′)
(R.(7))

Nx′,Ny′ ` R(sx′,sy′)
(Case N)

Nx′,Ny ` R(sx′,y)
(Case N)

Nx,Ny ` R(x,y) (∗)
where the double line means that (Gen) was applied after (Case) and the principal formulas of the

(Case) steps are underlined. (Cut) is applied as in [6]. For lack of space, the parentheses around the
argument of N are omitted.

We denote by S(N) the sequent labelling any node N. A path is a list [N0,N1, . . .] of nodes in a
pre-proof tree such that, for all i≥ 0, S(Ni+1) is either one of the premises of the rule applied on S(Ni) if
Ni is not a terminal node, or S(R(Ni)) if Ni is a bud.

Definition 2 (Trace, Progress point [11]). Let (D , R) be a CLKIDω
N pre-proof tree and let [N0,N1, . . .] be

one of its infinite paths and denoted by l. A trace following l is a sequence (τi)i≥0 of inductive antecedent
atoms (IAAs) such that, for all i, we have that Ni is labelled by Γi ` ∆i and:

1. τi is some Pji(ti) ∈ Γi;

2. if Γi ` ∆i is the conclusion of (Subst) then τi = τi+1[θ ], where θ is the substitution used by the
LK’s (Subst) rule defined as:

Γ ` ∆ (Subst)
Γ[θ ] ` ∆[θ ]

3. if Γi ` ∆i is the conclusion of (Gen) having t = u as principal formula, there is a formula F such
that τi = F and τi+1 = F [{t 7→ u}];

4. if Γi ` ∆i is the conclusion of a (Case) rule then either a) τi+1 = τi, if τi is not the principal formula
of the rule instance, or b) τi is the principal formula and τi+1 is a case descendant of τi. In the
latter case, i is said to be a progress point of the trace;

5. if Γi ` ∆i is the conclusion of any other rule then τi+1 = τi.

Remark 1. Non-equality relations between (instances of) τi and τi+1 in the above definition are possible
only when i is a progress point.

Remark 2. Condition 3 is an abbreviated form of the case dealing with (= L) in Definition 5.4 from [7],
by applying the discussed restrictions to (= L), i.e., if Γi ` ∆i is the conclusion of (= L), of the form
Γ[{x 7→ t;y 7→ u}], t = u ` ∆[{x 7→ t;y 7→ u}] and having t = u as principal formula, there is a formula
F ′ such that τi = F ′[{x 7→ t;y 7→ u}] and τi+1 = F ′[{x 7→ u;y 7→ t}] under the following conditions:
y 6∈ FV (Γi\{t = u} ` ∆i), t is a free variable not occurring in u and t 6∈ FV (Γ ` ∆).

An infinitely progressing trace is a trace with infinitely many progress points.

3 The criterion for validating the soundness of CLKIDω
N pre-proofs

The proof that some cyclic pre-proof is sound is done by using a Descente Infinie argument. The general
technique is to assume, by contradiction, that the root of a pre-proof is labelled by a false sequent. Then,
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we have to show that there is an infinite path of nodes in the pre-proof for which there is an infinite
progressing trace following some tail of it. This means that all successive steps in the tail are decreasing
and the steps corresponding to the progress points are strictly decreasing w.r.t. some semantic ordering
over ordinals. We get a contradiction because it is not possible to built an infinite strictly decreasing
sequence of ordinals.

Since the inference rules are sound, an infinite path of nodes labelled by false sequents should exist
in the pre-proof whenever its root sequent is false. A sufficient criterion for validating the soundness of
CLKIDω pre-proofs is the global trace condition [4, 5, 7]: for every infinite path, there is an infinitely
progressing trace following some tail. A different sufficient criterion for validating the soundness of
CLKIDω

N pre-proofs was given in [11]; it defines ordering and derivability conditions to be satisfied by
the digraph representing some normal form of the pre-proof. The normalisation procedure transforms
the pre-proof into a set of pre-proof trees, for short pre-proof tree-sets, such that the root of the pre-proof
is among the roots of the trees from the normal form. If the sequent labelling the root of the pre-proof
is false, one can build an infinite path in the digraph, whose nodes are labelled by false sequents and for
which there is an infinite progressing trace following some tail of it.

In the following, we present an improved version of the criterion from [11].

3.1 Normalising pre-proof trees

The normalisation process consists in the exhaustive application of the following three operations. The
first operation applies on an internal node labelled by some premise of (Subst), of the form

...
Γ ` ∆ (Subst)

Γ[σ ] ` ∆[σ ]

...

The result is displayed in Figure 2. The internal node is duplicated and the subtree derivation rooted by
it is detached to become a new tree derivation. At the end, we get two distinct pre-proof trees. The two
occurrences of the duplicated node establish a new bud-companion relation.

Γ ` ∆ (∗1)
(Subst)

Γ[σ ] ` ∆[σ ]

...

...
Γ ` ∆ (∗)
(new tree)

Figure 2: The result of the first operation.

The second operation applies on a non-root companion which is duplicated and the subtree derivation
rooted by it becomes a new pre-proof tree. The result is displayed in Figure 3. The sequent labelling the
copy of the companion (∗) becomes the conclusion of a new (Subst) rule. The substitution used by the
new (Subst) rule is chosen such that its premise labels a new bud node labelled by the same sequent as
the conclusion, e.g., the empty substitution. The new bud node will have (*) assigned as companion.

The last operation applies on a bud node labelled by some sequent that is the premise of a rule r
different from (Subst) such that
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Γ ` ∆ (∗1)
(Subst)

Γ ` ∆

...

...
Γ ` ∆ (∗)
(new tree)

Figure 3: The result of the second operation.

Γ ` ∆ (∗1)
r is transformed to

Γ′ ` ∆′

...

Γ ` ∆ (∗1)
(Subst)

Γ ` ∆ r
Γ′ ` ∆′

...
Let (∗) denote the companion of the bud node. A new application of (Subst) with the empty substi-

tution was performed on the bud sequent such that the node labelled by its premise becomes the new bud
node whose companion is (∗).

Compared with the normalisation procedure from [11], the two procedures share only the first oper-
ation. The procedure from [11] also includes an operation that applies on non-root companions but does
not include the (Subst)-step from Figure 3. It does not have an equivalent transformation for the third
operation.

The following properties, related to the normalisation process and the resulted normal form as given
by Lemmas 1 and 2, are satisfied.

Lemma 1 (termination). The normalisation process terminates.

Proof. The number of nodes that can be processed by the three operations is finite, for every pre-proof
tree. In addition, it decrements after applying each operation.

The induction function is extended to allow new bud-companion relations between nodes from dif-
ferent pre-proof trees.

Definition 3 (rb-path, IH-node). An rb-path is a path of the form [R, . . . ,H,B] that leads the root R to a
bud B in some pre-proof tree of a pre-proof tree-set such that B is the only bud in the path. We will call
H an inductive hypothesis node (for short, IH-node).

A path in a pre-proof tree-set (MD , MR) is a list [N0,N1, . . .] of nodes in MD such that, for all
i≥ 0, S(Ni+1) is one of the premises of the rule applied on S(Ni) if Ni is an internal node, or S(MR(Ni))
if Ni is a bud.

Lemma 2. The normalisation of any pre-proof (D ,R) of a sequent S builds a pre-proof tree-set (MD ,
MR)

1. that has a pre-proof tree rooted by a node labelled by S, and

2. for which each of its rb-paths [R, . . . ,B] has B as the only node that is labelled by the premise of a
(Subst) rule. A node is a (Subst)-node if and only if it is an (IH)-node.

Proof. Claim 1) holds because the first operation duplicates only non-root nodes and the third operation
expands bud nodes, so the root nodes do not change. If S labels the root node of a pre-proof tree t having
a non-root companion n, t will be processed by the second operation applied on n but will still have its
root labelled by S.

Claim 2) holds by the construction of the normal forms.
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Example 2. The second operation can be applied on the non-root companion from Example 1, denoted
by (∗), to give the following normalised pre-proof tree-set:

(R.(5))
Ny ` R(0,y)

Nx′ ` R(x′,0) (†1)
(Subst)

Nx′ ` R(x′,0)
(R.(6))

Nx′ ` R(sx′,0)

Nx,Ny ` R(x,y) (∗)
(Subst)

Nssx′,Ny′ ` R(ssx′,y′)
(Cut)

Nx′,Ny′ ` R(ssx′,y′)
(R.(7))

Nx′,Ny′ ` R(sx′,sy′)
(Case N)

Nx′,Ny ` R(sx′,y)
(Case N)

Nx,Ny ` R(x,y) (∗)

(R.(5))
` R(0,0)

Nx′ ` R(x′,0) (†)
(Subst)

Nx′′ ` R(x′′,0)
(R.(6))

Nx′′ ` R(sx′′,0)
(Case N)

Nx′ ` R(x′,0) (†)

3.2 Building the digraph of a pre-proof tree-set

Any pre-proof tree-set can also be represented as a digraph of sequents built from the nodes of its tree-
set. The digraph associated to a pre-proof tree-set (MD , MR) is crucial in our setting to check whether
(MD , MR) is a proof tree-set. Its edges are arrows built as follows:

• a forward arrow leads a node N1 to a node N2 if there is a rule that was applied on the sequent
labelling N1 and the sequent labelling N2 is a premise of the rule;

• a back-link (or backward arrow) starts from a bud and ends to its companion.

Some arrows will be annotated by substitutions. Each forward arrow, starting from a (Gen)-node
whose principal formula is x = u, is annotated by the equality substitution {x 7→ u}. The forward arrow
starting from a node N that is different from (Gen)- and (Subst)-nodes is annotated with the identity
substitution for S(N), which maps the free variables from S(N) to themselves. Finally, the forward
arrows starting from (Subst)-nodes and the back-links are not annotated. They help to build infinite
paths but do not play any role when defining the soundness constraints.

By abuse of notation, a path in a digraph is a (potentially infinite) list of nodes built by following the
arrows in the digraph. An rb-path is any path leading a root to some bud node and does not have other
bud nodes. Unless otherwise stated, we will consider only rb-paths in the digraphs associated to
normalised pre-proof tree-sets.

Remark 3. According to Lemma 2, the bud node B of any such rb-path is the only node in the rb-path
for which S(B) is the premise of a (Subst) rule.

Definition 4 (cumulative substitution). An rb-path [N1, . . . ,Nn,B] (n > 0) can be annotated by the cu-
mulative substitution σall

id σ1 · · ·σn−1, where σi is the substitution annotating the forward arrow leading
Ni to Ni+1, for each i ∈ [1..n−1], and σall

id is the overall identity substitution ∪N∈[N1,...,Nn−1]{x 7→ x | x ∈
FV (S(N))}.

A list of sequents [S1, . . . ,Sn] (n > 0) is admissible if either i) it is a singleton (n = 1), or ii) for every
i ∈ [2..n], Si is the premise of some rule whose conclusion is Si−1. By construction, the list of sequents
labelling the nodes from every path from the digraph associated to a pre-proof tree-set is admissible.
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Lemma 3. Let [N1, . . . ,Nn−1,Nn,B] be an rb-path. We define its cumulative list lc as
[S(N1)[θ c

(1,n)], . . . ,S(N
n−1)[θ c

(n−1,n)],S(N
n),S(B)], where θ c

(i,n) is the cumulative substitution for
[Ni, . . . ,Nn−1,Nn]. Then, the following properties hold:

1. lc is admissible, and

2. the rule applied on each S(Ni) is also applicable on S(Ni)[θ c
(i,n)], ∀i ∈ [1..n− 1], if it is different

from (Gen). If the rule is (Gen), the (Gen)-step can be replaced by a (Wk)-step, where the LK’s
(Wk) rule is defined as

Γ′ ` ∆′ (Wk) if Γ′ ⊆ Γ,∆′ ⊆ ∆
Γ ` ∆

Proof. We will perform induction on n. If n = 1, then Nn ≡ N1 and [S(N1)] is a singleton, hence it is
admissible.

If n > 1, let p denote the path [N1, . . . ,Nn−1,Nn,B]. By induction hypothesis, we assume that
[S(N1)[θ c

(1,n−1)], . . . ,S(N
n−2)[θ c

(n−2,n−1)],S(N
n−1)] is admissible, where θ c

(i,n−1) (i ∈ [1..n−2]) is the cu-
mulative substitution annotating [Ni, . . . ,Nn−1] and the rules applied on S(Ni)[θ c

(i,n−1)] and S(Ni) are the
same. We denote by θ c

(n−1,n−1) the identity substitution for S(Nn−1).
Let θ c

(i,n) be the cumulative substitution annotating [Ni, . . . ,Nn−1,Nn], for all i ∈ [1..n− 1]. Let also
θ be the substitution annotating the forward arrow leading Nn−1 to Nn, which can be either an identity
substitution, or an equality substitution. In the first case, for every i ∈ [1..n−1], θ c

(i,n) is i) θ c
(i,n−1)∪{x 7→

x | x ∈ x} if the rule applied on S(Nn−1) is the LK’s rule (∀R) or (∃L), defined below:

Γ ` F,∆
(∀R) if x∩FV (Γ∪∆) = /0

Γ ` ∀xF,∆

Γ,F ` ∆
(∃L) if x∩FV (Γ∪∆) = /0

Γ,∃xF ` ∆

and x is the vector of new free variables introduced by these rules, or ii) θ c
(i,n−1), other-

wise. Since S(Ni)[θ c
(i,n−1)] ≡ S(Ni)[θ c

(i,n)] by induction hypothesis, we can apply the same rules
on S(Ni)[θ c

(i,n)] and S(Ni), hence the list [S(N1)[θ c
(1,n)], . . . ,S(N

n−1)[θ c
(n−1,n)],S(N

n)] is admissible.
[S(N1)[θ c

(1,n)], . . . ,S(N
n−1)[θ c

(n−1,n)],S(N
n),S(B)] is also admissible since S(B) is the premise of a (Subst)

rule whose conclusion is S(Nn), by property 2) from Lemma 2.
For the second case, θ is an equality substitution. We have that θ c

(i,n) equals θ c
(i,n−1)θ , for all i ∈

[1..n− 1]. Since the rule applied on a sequent can also be applied on every instance of it, we have that
[S(N1)[θ c

(1,n)], . . . ,S(N
n−1)[θ c

(n−1,n)],S(N
n)] is admissible; the rule applied on S(Ni) can also be applied

on S(Ni)[θ c
(i,n)], for all i ∈ [1..n− 1]. Notice that the (Gen) rule has S(Nn) as premise when applied on

S(Nn−1)[θ c
(n−1,n)θ ]. Let us assume that x = u is the principal formula of S(Nn−1)[θ c

(n−1,n)]. Then, θ is
{x 7→ u}. On the one hand, (Gen) cannot be applied on S(Nn−1)[θ c

(n−1,n)θ ], whose principal formula is
u = u, when u is a non-variable term. On the other hand, the generalised form of (Gen) from CLKIDω ,
displayed in Figure 1, would replace u by u and delete u = u. If S(Nn−1)[θ c

(n−1,n)θ ] is of the form
Γ,u = u ` ∆, the same result can be achieved with CLKIDω

N by applying (Wk) instead:

Γ ` ∆ (Wk)
Γ,u = u ` ∆
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So, the list [S(N1)[θ c
(1,n)], . . . ,S(N

n−1)[θ c
(n−1,n)],S(N

n)] is admissible.
[S(N1)[θ c

(1,n)], . . . ,S(N
n−1)[θ c

(n−1,n)],S(N
n),S(B)] is also admissible, as shown for the first case.

A path has cycles if some nodes are repeated in the path. The set of strongly connected components
(SCCs) of a digraph P of some pre-proof tree-set (MD , MR) is a partition of P , where each SCC is
a maximal sub-graph for which any two different nodes are linked in each direction by following only
arrows from the sub-graph. Therefore, every non-singleton SCC has at least one cycle. Additionally, if
P is acyclic, each of its nodes is a singleton SCC.

Example 3. The digraph of the normalised pre-proof tree-set from Example 2 is:

Nx,Ny `1 R(x,y)

{x 7→0}

zz

{x 7→sx′}

''
Ny `2 R(0,y) Nx′,Ny `3 R(sx′,y)

{y7→0}

&&
{y7→sy′}

��
Nx′,Ny′ `5 R(sx′,sy′)

��

Nx′ `4 R(sx′,0)

��

Nx′ `10 R(x′,0)

{x′ 7→0}

zz
{x′ 7→sx′′}
��

Nx′,Ny′ `6 R(ssx′,y′)

π ′
��

Nx′ `9 R(x′,0)

//

`11 R(0,0) Nx′′ `12 R(sx′′,0)

π
��

Nssx′,Ny′ `7 R(ssx′,y′)

��

Nx′′ `13 R(x′′,0)

��
Nx,Ny `8 R(x,y)

FF

Nx′ `14 R(x′,0)

>>

The sequent labelling a node is annotated by the number of the node in the digraph. The digraph has
two non-singleton SCCs: i) π:{N10,N12,N13,N14}, and ii) π ′ : {N1,N3,N5,N6,N7,N8}.

3.3 Defining the ordering and derivability conditions

The premises for defining the new soundness criterion are similar to [11]. Let π be a SCC from P
and <a an ordering stable under substitutions defined over the set S of instances of the IAAs from the
sequents labelling nodes inside π , i.e., if l <a l′ then l[σ ] <a l′[σ ], for all l, l′ ∈S and substitution σ .
Given a path p in π , we say that an IAA τ j derives from an IAA τi using the trace (τk)(k≥0) along p if
i < j. Also, given two arbitrary substitutions γ and δ , we say that τ j[γ] derives from τi[δ ] using (τk)(k≥0)
along p. <π is the multiset extension [2] of <a.

The ordering constraints from a multiset extension relation comparing two sequent instances can
be combined with derivability constraints on IAAs to give the <π -derivability relation, referred to as
ordering-derivability when the ordering is not known. For this, we assume that every sequent S has
associated a measure value (weight), denoted by AS and represented by a multiset of IAAs of S.

Definition 5 (<π -derivability). Let Ni and N j be two nodes occurring in some path p from π , and θ , δ

be two substitutions. We define A′S(Ni)[θ ] (resp., A′S(N j)[δ ]) as the multiset, resulting from AS(Ni)[θ ] (resp.,
AS(N j)[δ ]) after the pairwise deletion of all common IAAs from AS(Ni)[θ ] and AS(N j)[δ ]. In addition, we
assume that for each l ∈ AS(N j)[δ ]\A′S(N j)[δ ], there is l′ ∈ AS(Ni)[θ ]\A′S(Ni)[θ ] satisfying i) l ≡ l′, and ii) l is
the unique literal from AS(N j)[δ ] that derives from l′ using some trace following p.
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Then, S(N j)[δ ] is <π -derivable from S(Ni)[θ ] along p if for each l ∈A′S(N j)[δ ] there exists l′ ∈A′S(Ni)[θ ]

such that l′ >a l and l derives from l′ using some trace following p.

By the definition of <π as a multiset extension of <a, the following results can be proved when
considering some path in π .

Lemma 4. If S is <π -derivable from S′ then AS <π AS′ .

Proof. By the definition of the ordering constraint in the <π -derivability relation.

Lemma 5. The ‘<π -derivability’ relation is stable under substitutions and transitive.

Proof. Let S and S′ be two sequents such that S is <π -derivable from S′ along some path p in π . By
Lemma 4, AS′ >π AS. Since <π is stable under substitutions, we have that AS′[σ ] >π AS[σ ], for every
substitution σ . According to Definition 5, the derivability relations between their IAAs do not change
by instantiation operations. Therefore, S[σ ] is <π -derivable from S′[σ ] along p. We conclude that the
‘<π -derivability’ relation is stable under substitutions.

To prove the transitivity property, let us assume three sequents S1, S2 and S3 labelling nodes in a path
p built by the concatenation of two paths p1 and p2 such that S3 is <π -derivable from S2 along p2 and S2
is <π -derivable from S1 along p1. We will try to prove that S3 is <π -derivable from S1 along p.

Since S3 is <π -derivable from S2 along p2, by Definition 5 we have that

(i1) for each l3 ∈ A′S3
there exists l2 ∈ A′S2

such that l2 >a l3 and l3 derives from l2 using some trace
following p2, and

(ii1) for each l3 ∈ AS3\A′S3
, there is some l2 ∈ AS2\A′S2

such that l3 ≡ l2 and l3 is the unique IAA that
derives from l2 using some trace following p2,

where A′S3
(resp., A′S2

) is the multiset resulting from AS3 (resp., AS2) after the pairwise deletion of all
common IAAs from AS3 and AS2 . Also, since S2 is <π -derivable from S1 along p1, we have that

(i2) for each l2 ∈ A′′S2
, there exists l1 ∈ A′S1

such that l1 >a l2 and l2 derives from l1 using some trace
following p1, and

(ii2) for each l2 ∈ AS2\A′′S2
, there is some l1 ∈ AS1\A′S1

such that l2 ≡ l1 and l2 is the unique IAA that
derives from l1 using some trace following p1,

where A′′S2
(resp., A′S1

) is the multiset resulting from AS2 (resp., AS1) after the pairwise deletion of all
common IAAs from AS2 and AS1 . We have to check that for each l3 ∈ A′′S3

, there exists l1 ∈ A′′S1
such that

l1 >a l3 and l3 derives from l1 using some trace following p, where A′′S3
(resp., A′′S1

) is the multiset resulting
from AS3 (resp., AS1) after the pairwise deletion of all common IAAs from AS3 and AS1 . Moreover, for
each l3 ∈ AS3\A′′S3

, there is some l1 ∈ AS1\A′′S1
such that l3 ≡ l1 and l3 is the unique IAA that derives from

l1 using some trace following p. We consider the following cases:

1. If l3 ∈A′S3
there exists l2 ∈A′S2

such that l2 >a l3 and l3 derives from l2 using some trace t2 following
p2.

(a) If l2 ∈ A′′S2
there exists l1 ∈ A′S1

such that l1 >a l2 and l2 derives from l1 by using some trace t1
following p1. Then l1 >a l3 by the transitivity of <a, so l1 ∈ A′′S1

, l3 ∈ A′′S3
and l3 derives from

l1 using the concatenation of t1 and t2 following p.
(b) If l2 ∈ AS2\A′′S2

, there is l1 ∈ AS1\A′S1
such that l2 ≡ l1 and l2 is the unique IAA that derives

from l1 by using some trace t1 following p1. Since l1(≡ l2) >a l3, we have that l1 ∈ A′′S1
,

l3 ∈ A′′S3
and l3 derives from l1 using the concatenation of t1 and t2 following p.
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2. If l3 ∈ AS3\A′S3
there exists l2 ∈ A′S2

such that l3 ≡ l2 and l3 is the unique IAA that derives from l2
using some trace t2 following p2.

(a) If l2 ∈ A′′S2
there exists l1 ∈ A′S1

such that l1 >a l2 and l2 derives from l1 by using some trace
t1 following p1. Then, l1 >a (l2 ≡)l3, so l1 ∈ A′′S1

, l3 ∈ A′′S3
and l3 derives from l1 using the

concatenation of t1 and t2 following p.
(b) If l2 ∈ AS2\A′′S2

there exists l1 ∈ A′S1
such that l1 ≡ l2 and l2 is the unique IAA that derives

from l1 by using some trace t1 following p1. This means that l3 ∈ AS3\A′′S3
, l1 ∈ AS1\A′′S1

with l1 ≡ (l2 ≡)l3 and l3 derives from l1 using the concatenation of t1 and t2 following p. In
addition, l3 is the unique IAA in AS3 that derives from l1.

The soundness criterion consists in checking if the sequents labelling (IH)-nodes from every non-
singleton SCC, referred to as induction hypotheses, satisfy some constraints.

Definition 6 (induction hypothesis (IH), IH discharged by a SCC). Let π be a non-singleton SCC and
[R, . . . ,H,B] an rb-path p in π . We say that the induction hypothesis (IH) S(H) is discharged by π if
S(H) is <π -derivable from S(R)[θ c] along p, where θ c is the cumulative substitution annotating p.

Theorem 1 (soundness). The sequents, labelling the roots from every normalised pre-proof tree-set
whose non-singleton SCCs discharge their IHs, are true.

Proof. Let M be a standard model for (Σ,Φ) and assume a normalised pre-proof tree-set. Let also P
denote its digraph whose non-singleton SCCs discharge their IHs. By contradiction, we assume that
there exists a root node N such that S(N) is false. We define a partial (well-founded) ordering <R over
the (finite number of) root nodes from P such that, for every two distinct root nodes N1 and N2, we have
N1 <R N2 if i) N1 and N2 are not in the same SCC, and ii) N1 can be joined from N2 in P .

By induction on <R , we consider the base case when N is a <R-minimal node. (The step case, when
N is not a <R-minimal node, will not be detailed since it can be treated similarly by assuming that all
<R-smaller root nodes are labelled by true sequents.) If N is included in a one-node SCC, N is also a leaf
node. The only 0-premise rules are the LK’s (Ax) rule as well as (R.) when unfolding with unconditional
axioms. In both cases, S(N) is true which leads to a contradiction.

Let us now assume that N is a <R-minimal node from some non-singleton SCC π . We will analyse
all possible scenarios and show that each of them leads to a contradiction. The tree t from P and rooted
by N should have buds labelled by false sequents, otherwise S(N) would be true. Let B be such a bud such
that Nh is its companion and [N, . . . ,H,B] is an rb-path in π . Nh should be a root node from π because N
is <R-minimal; it is labelled by the false sequent S(B). Since the CLKIDω

N rules are sound, by Lemma 3,
we conclude that the cumulative instance S(N)[θc] is false, where θc is the cumulative substitution for
[N, . . . ,H,B]. π discharges its IHs, so we have that S(B)[δh](≡ S(H)) is <π -derivable from S(N)[θc],
where δh is the substitution used by the (Subst)-step whose conclusion is S(H). By Lemma 4, we have
that AS(Nh)[δh]

<π AS(N)[θc].

We perform a similar reasoning on Nh as for N. There is an rb-path [Nh, . . . ,H ′,N f ′] such that the
companion of N f ′ (in π) is Nh′ and S(Nh)[δh] shares false instances with S(Nh)[θ c

1 ], where θ c
1 is the cu-

mulative substitution annotating [Nh, . . . ,H ′,N f ′]. By contradiction, we assume that no false instance of
S(Nh)[δh] is shared. Then, one can build a finite bud-free pre-proof tree of S(Nh)[δh], by using only sound
rules. Hence, S(Nh)[δh] is true, so contradiction. Therefore, there are two substitutions ε and τ such that
S(Nh)[δhε] ≡ S(Nh)[θ c

1 τ] and S(Nh)[θ c
1 τ] is false. Let S(Nh′)[δ ′h](≡ S(H ′)) be the instance of S(Nh′)

used as IH. Since it is discharged by π , we have that AS(Nh)[θ c
1 ]
>π AS(Nh ′)[δ ′h]

. From AS(N)[θ c] >π AS(Nh)[δh]
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and the previous ordering constraint, we get AS(N)[θ cε] >π AS(Nh)[δhε] and AS(Nh)[θ c
1 τ] >π AS(Nh ′)[δ ′hτ], by the

‘stability under substitutions’ property of <π . Hence,

AS(N)[θ cε] >π A(S(Nh)[δhε] ≡) AS(Nh)[θ c
1 τ] >π AS(Nh ′)[δ ′hτ]

For similar reasons as given for S(Nh)[δh], we can show that S(Nh′)[δ ′hτ] is false, hence it can be
treated similarly as S(Nh)[δh]. And so on, the process can be repeated to produce an infinite strictly
<π -decreasing sequence s of measure values associated to instances of sequents labelling root nodes
from π , of the form

AS(N)[θ cε··· ] >π AS(Nh)[θ c
1 τ··· ] >π AS(Nh ′)[··· ] >π . . .

We can associate to s the infinite admissible list ls of its sequents
[S(N)[θ cε · · · ],S(Nh)[θ c

1 τ · · · ],S(Nh′)[· · · ], . . .] and define the path p underlying ls as the concate-
nation of the rb-paths from π that built s, i.e., [N, . . . ,B,Nh, . . . ,N f ′ , . . .]. By the construction of s, every
successive (Subst)-, bud and root nodes in p are labelled by the same sequent instance in ls, so the
(Subst)-steps are stuttering in ls. By Lemma 4, all (Gen)- can be replaced by (Wk)-steps. p is of the
form [N∞ . . . ,N1, . . . ,N0] where N0, N1, . . . , N∞ are an infinite number of all the occurrences of N in p.

We will show that there is a trace following p that has an infinite number of progress points. As
explained in [7], it means that there is an infinite strictly decreasing sequence of ordinals, hence contra-
diction. Since p is the concatenation of rb-paths in π and π discharges its IHs, for each such rb-path
the bud sequent is <π -derivable from the cumulative instance, along the rp-path, of the root sequent. By
Lemma 5, there is an instance S(N∞)[θ∞] such that S(N0) is <π -derivable from it along p, where θ∞ is the
composition of all cumulative substitutions of the rb-paths from l. For any two consecutive nodes Ni and
Ni−1 (i ∈ [1..∞]), we have that S(Ni−1)[θi−1] is <π -derivable from S(Ni)[θi], where θi (resp., θi−1) are the
compositions of all cumulative substitutions of the rb-paths along [Ni, . . . ,N0] (resp., [Ni−1, . . . ,N0]).

Let us denote by S (resp, S′) the sequent S(Ni)[θi] (resp., S(Ni−1)[θi−1]), for some i ∈ [1..∞]. By
Definition 5 and the transitivity of the <π -derivability relation, for each IAA l from AS there is an IAA l′

from AS′ such that l derives from l′. Therefore, there are n traces along the path p′ [N∞, . . . ,Ni], where n
is the number of IAAs from S.

We will show that the traces along p′ have an infinite number of progress points. By contradiction,
we assume that this number is finite. Therefore, there is a subpath p′′ of p whose traces have no progress
points and there exists j ∈ [1..∞] such that N j and N j−1 belong to p′′. Let us denote by S j (resp, S j−1) the
sequent S(N j)[θ j] (resp., S(N j−1)[θ j−1]). Since S j−1 is <π -derivable from S j, we have that AS j−1 <π AS j .
By the definition of <π as a multiset extension of the ordering <a over the instances of IAAs from the
root sequents in π , there should be an IAA l ∈ AS j−1 for which there is another IAA l ∈ AS j such that
l <a l′ and l derives from l′, i.e., l and l′ are from an infinite trace t following (a subpath of) p′′ which
has no progress points. According to the definition of a trace (see Definition 2) and the way ls was built,
l <a l′ is possible only if the subtrace of t from l′ to l has at least one progress point, so contradiction.
Otherwise, l ≡ l′ since i) ls is admissible, ii) the (Subst)-steps are stuttering, iii) the (Gen)-steps can be
replaced by (Wk)-steps, and iv) the instantiation steps that built s preserve the equality relations.

Example 4. For the sequents labelling the nodes from the digraph given in Example 2, we define the
measure values ANt`R(t,0) = {Nt}, ∀t, and ANt1,Nt2`R(t1,t2) = {Nt2}, ∀t1, t2. The IH S(N13) is <π -derivable
from S(N10)[{x′ 7→ sx′′}], hence discharged by the SCC π using the trace [Nx′,Nx′′,Nx′′], if {Nx′′} <π

{Nsx′′}. Also, the IH S(N7) is <π ′-derivable from S(N1)[{x 7→ sx′;y 7→ sy′}] in the SCC π ′ using the
trace [Ny,Ny,Ny′,Ny′,Ny′,Ny′] if {Ny′} <π ′ {Nsy′}. The ordering constraints hold if <π and <π ′ are
the multiset extensions of a recursive path ordering [2] <rpo for which z <rpo sz, for every variable z.
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By Theorem 1, the root sequents in the pre-proof tree-set, S(N1) and S(N10), are true.

Comparison with the soundness checking criterion from [11]. In [11], the ordering-derivability con-
straints issued when analysing if a pre-proof tree-set is a proof are defined at the level of the minimal
cycles of its digraph, referred to as n-cycles. A n-cycle is defined as a finite circular list [N1

1 , . . . ,N
p1
1 ], . . . ,

[N1
n , . . . ,N

pn
n ] of n (> 0) paths leading root nodes to buds such that N1

next(i) =MR(N pi
i ), for any i∈ [1..n],

where next(i) = 1+(i mod n).

Let π be a non-singleton SCC and C an n-cycle [N1
1 , . . . ,N

p1
1 ], . . . , [N1

n , . . . ,N
pn
n ] from π . The induction

hypotheses are defined at the n-cycle level. For all i ∈ [1..n], let θ c
i be the cumulative substitution anno-

tating [N1
i , . . . ,N

f
i ], where the IH-node N f

i is either i) N pi
i if (Subst) is not applied along [N1

i , . . . ,N
pi
i ], or

ii) N pi−1
i , otherwise. The sequents labelling the IH-nodes correspond exactly to the induction hypotheses

used in the paper. We say that the IHs S(N f
j ) ( j ∈ [1..n]) are discharged by C if, ∀i ∈ [1..n], S(N f

i ) is <π -
derivable from S(N1

i )[θ
c
i ] along [N1

i , . . . ,N
pi
i ]. In [11], a proof is every pre-proof tree-set whose digraph

has only n-cycles that discharge their IHs and it has been shown that its root sequents are true.

N1
1 (†)

��

N1
2 (∗)

��

�� ��

���� ����
N N2

1 (∗1)

==

N2
2 (†1)

aa

N2
2
′
(†2)

gg

Figure 4: Two 2-cycles sharing the same path.

Since several n-cycles may share the same root-bud path, some ordering-derivability constraints may
be duplicated when checking that a pre-proof is a proof. For example, the path [N1

1 , . . . ,N
2
1 ] is shared

between the two 2-cycles [N1
1 , . . . ,N

2
1 ][N

1
2 , . . . ,N

2
2 ] and [N1

1 , . . . ,N
2
1 ][N

1
2 , . . . ,N

2
2
′
] from the digraph given

in Figure 4. Even if the number of n-cycles from a digraph can be large, as explained in the introduction,
the number of distinct ordering-derivability constraints is always smaller or equal than the number of
buds from the non-singleton SCCs. With the approach from [11], the duplicates of the constraints do
not need to be again processed if the already processed constraints are recorded. It has been shown that
the time complexity of the soundness checking procedure is polynomial if the number of the ordering-
derivability constraints is that of the buds from the non-singleton SCCs. With our new approach, the
number of operations for normalising a CLKIDω

N pre-proof of n nodes is given by the sum of non-root
companions, non-terminal (Subst)-nodes and nodes labelled by some sequent that is the premise of a rule
r different from (Subst). So, it is smaller than 3n. Let c be the maximal cost of an operation, including
the node duplication and the creation of a (Subst)-node or bud-companion relation. Their total cost is
smaller than 4nc (the second operation duplicates it twice). The costs for annotating substitutions and
for evaluating an ordering-derivability constraint are given in [11].
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4 Conclusions and future work

We have defined a more efficient soundness criterion for a class of CLKIDω pre-proofs considered
in [11], by building a set of non-redundant ordering-derivability constraints. We have shown that these
constraints can also be extracted from those that define the soundness criterion from [11], by deleting
the duplicated values. The new normal forms and their digraphs allow to uniformly represent rb-paths
and can be built in linear time. We conclude that the two soundness checking criteria have the same
polynomial-time complexity if the time complexity for comparing two IAAs is at most polynomial.

In the future, we plan to adapt our approach to make more effective other soundness criteria based
on minimal cycles, e.g., those involving cyclic formula-based Noetherian induction reasoning [10, 12],
and other systems where the soundness can be checked by the global trace condition, as CLJIDω [3].
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