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Abstract
We define HyPOL, a local hyper logic for partial order models, expressing properties of sets of
runs. These properties depict shapes of causal dependencies in sets of partially ordered executions,
with similarity relations defined as isomorphisms of past observations. Unsurprisingly, since
comparison of projections are included, satisfiability of this logic is undecidable. We then address
model checking of HyPOL and show that, already for safe Petri nets, the problem is undecidable.
Fortunately, sensible restrictions of observations and nets allow us to bring back model checking of
HyPOL to a decidable problem, namely model checking of MSO on graphs of bounded treewidth.
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1 Introduction

Hyperproperties. A way to address information security in systems is to guarantee various
information flow properties. Examples of such properties are non-interference [17] (an
attacker of a system cannot obtain confidential information from its observation of the
system), or opacity of secrets [2] (an attacker cannot decide whether the system is in some
particular secret configuration). For a long time since the seminal work of [17] introducing
non-interference, security properties have been characterized as equivalences between partially
observed behaviors of systems. This idea was later formalized [22] as combinations of language
closure properties, the so-called "basic security predicates". We refer to [27] for a survey on
language based information flow properties. More recently, logics with path equivalences [1]
encompassing indistinguishability among partially observed executions have been proposed
as a generic framework to define security conditions. Security properties are now frequently
called hyperproperties [10, 9], i.e. properties of sets of runs.

Most proposals address verification questions in an interleaved setting, ignoring concur-
rency aspects. For instance, non-interference properties were considered for Petri nets [7],
but still with techniques relying on interleaved interpretation of behaviors. Recently, [6]
showed how to characterize some non-interference properties that cannot be handled in an
interleaved model. This result is interesting, as it shows that even if complexity gains are
not straightforward, considering causal dependences in systems leads to characterize types of
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NN:2 Hyper Partial Order Logic

attacks of a system that cannot be characterized in an interleaved setting.
Local logics. We focus here on local logics, that account for causal dependencies and
concurrency in behaviors of models. Several variants of local logic have been proposed :
TLC−, LD0, PDL, LPOC, or even MSO. The first one, proposed by [25], is a logic tailored
for Message Sequence Charts (MSCs). The logic features propositions, a next and an until
operator and is interpreted over causal paths of MSCs. Model checking TLC− is decidable
for families of partial orders generated by High-level Message Sequence Charts (HMSCs). It
is linear in the size of the considered HMSC, but exponential in the size of the formula.

The logic LD0 [24] addresses properties of causal paths in partial orders. It resembles
LTL in that its atomic propositions are attached to events, but it follows causal paths rather
than linearizations, and is equipped with successor/predecessor relations.

An extension of TLC− called Propositional Dynamic logic (PDL), which also subsumes
LD0, is given in [8] to express properties of Communicating Finite State Machines (CFSM).
This logic is divided into path formulas and local formulas. Path formulas make it possible
to navigate forward or backward in partially ordered executions via two relations: One that
indicates whether an event f is the next executed event after e on the same process, and
one that indicates whether a pair (e, f) forms a message. At each event along a followed
path, truth of a local formula can be checked. Local formulas are used to check whether
some atomic proposition holds at a given event, or whether some path formula holds at an
event together with another PDL subformula. In general, verification of PDL for CFSM is
undecidable, but checking whether some B-bounded execution of a CFSM (in which buffer
contents can remain of size smaller than B) satisfies a PDL formula is PSPACE-complete.
This result extends to HMSC specifications, which executions are naturally bounded. Another
approach to study properties of partial orders generated by system executions is to express
them directly as MSO properties. As MSO verification can easily be undecidable for some
families of graphs, decidability is proved for families of partial orders generated by Message
Sequence Charts in [20]. The result is obtained thanks to the particular shape of orders
generated by MSCs that are "layered". Similarly, [21] considers restrictions in executions of
CFSMs that have to synchronize frequently.

LPOC [16] is a logic for partially ordered computations. It describes the shape of partial
orders, and not only of their causal paths. In addition to standard local operators, the logic
has the ability to require existence of a particular partial order pattern in the causal past
of an event. It was used as a specification formalism for diagnosis purposes, but without
restriction, satisfiability of an LPOC formula is undecidable.
Contributions. We propose a framework unifying path equivalence logics, hyperproperties
and partial order approaches. The logic borrows ingredients from LPOC [16]: in particular,
it expresses existence of a pattern in a partial order, rather than on a causal path. It also
borrows the idea of comparing executions up to observation, as proposed in CTL≡, one of
the branching logics with path equivalence proposed in [1]. Events in a pair of executions
are considered as equivalent if the (partial) observations of their causal pasts are isomorphic.
One of the artifacts used by [1] to obtain decidability of CTL≡ is to require equivalence to
hold only among events located at the same depth in executions. We do not use such an
interpretation of equivalence, and rather exhibit sufficient conditions on behaviors of systems,
that are almost a layeredness property [20], to obtain decidability.

We first define a partial order logic called Hyper Partial Order Logic (HyPOL for short).
While we show undecidability for the satisfiability of this logic, we address model checking
on true concurrency model, and start with Labeled Safe Petri Nets (LSPN). The universe of
all behaviors of an LSPN can be defined as the set of processes of its complete unfolding [23].



B. Bérard, S. Haar and L. Hélouët NN:3

Unsurprisingly, model checking HyPOL on runs of LSPNs is again undecidable. We then
consider sensible assumptions on nets and projections saying that behaviors of a Petri net
cannot remain unobserved for an arbitrary long time, and that equivalences necessarily link
events whose common past is “not too old”. We consider the unfolding of an LSPN as a
graph connecting events and conditions via a successor relation. Isomorphism of causal
pasts of events can be encoded as an additional relation on this unfolding graph. With
these restrictions on nets and observations, model checking HyPOL can be brought back to
verification of MSO on a graph generated by an hyperedge replacement grammar [18]. As
MSO is decidable for such graphs [12], this yields decidability of HyPOL model checking for
this subclass of nets and observations.
Outline. We introduce basic notations in Section 2. In Section 3, we define the logic HyPOL
and prove undecidability of satisfiability. In Section 4, we show undecidability of HyPOL
model checking on sets of processes of safe Petri nets, while decidability is proved in Section 5
for a subclass. Due to lack of space, proofs are provided in appendix.

2 Preliminaries

I Definition 1. A labeled partial order (LPO) over alphabet Σ is a triple O = (E,≤, λ) where
E is a set of events, ≤⊆ E×E is a partial ordering, i.e. a reflexive, transitive, antisymmetric
relation, and λ : E → 2Σ is a function associating with each event a set of labels from Σ.

e0 a,b

e1 b,c

e2 a,b
e3 a

e4 b,c

e5 a,b,c
e6 a,c

e7 b

f0 a

f1 b f2 a

f3 a,b

O T

Figure 1 A partial order O over
events {e0, e1, e2, e3, e4, e5, e6, e7}, a
template T with events {f0, f1, f2, f3},
and a mapping (dashed arrows) witness-
ing that O matches T .

We denote by LPO(Σ) the set of labeled partial
orders over Σ. For O = (E,≤, λ), we denote by
max(O) = {e ∈ E | @f 6= e, e ≤ f} the set of its max-
imal events, and by min(O) = {e ∈ E | @f 6= e, f ≤ e}
the set of its minimal events. The covering relation of
O is a relation <⊆ E × E such that e < f iff e ≤ f ,
e 6= f and ∀e′ : (e ≤ e′ ≤ f) ⇒ (e′ ∈ {e, f}). A
causal path of O is a sequence of events e1.e2 . . . en
such that ei < ei+1. If e ∈ E, the ideal of e is the
set ↓e = {f | f ≤ e} and its ending section is the
set ↑ e = {f | e ≤ f}. The arrows and relations may
be indexed by the order in case of ambiguity. A set
H ⊆ E of events is downward closed iff H =

⋃
e∈H
↓e,

and upward closed iff H =
⋃
e∈H
↑e.

I Definition 2. The restriction of O = (E,≤, λ) to a
subset H ⊆ E is the LPO O|H = (H,≤|H , λ|H) where
≤|H=≤ ∩(H ×H) and λ|H is the restriction of λ to
H. The projection of O on a subset of labels Σ′ ⊆ Σ

is the restriction of O to events that carry labels in Σ′.

I Definition 3. Two partial orders O = (E,≤, λ) and O′ = (E′,≤′, λ′) over Σ are isomorphic
(written O ≡ O′) iff there exists a bijective function h : E → E′ such that e ≤ e′ ⇐⇒ h(e) ≤′
h(e′) and λ(e) = λ′(h(e)).

Note that two discrete LPOs O and O′ are isomorphic iff their coverings are isomorphic.

I Definition 4. Let O = (E,≤, λ) and T = (ET ,≤T , λT ) be partial orders over Σ. Then
O matches T iff there exists H ⊆ E and a bijective mapping h : H → ET such that
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e0 a,b

e1 c

e2 a,b

e3 c

e4 a,b

e5 b,c

e0 a,b

e2 a,b

e4 a,b

e5 b

e0 a,b

e1 c

e2 a,b

e3 c

e4 a,b

e5 b,c

O O1(O) O2(O)

Figure 2 A partial order O, its projection O1(O) on events that carry label a or b, and its
restriction O2(O) to causal dependencies from any event carrying label a to other events.

λT (h(e)) ⊆ λ(e), and e <T e′ implies h−1(e) < h−1(e′). The partial order T is called a
template and we say that h is witnessing the matching.

In the sequel, we constrain the mapping witnessing a matching, using the notion of
anchored matching. We say that there exists an anchored matching of template T at event e
in O and f in T iff O matches T , and there exists a mapping he,f witnessing this matching
such that he,f (e) = f . In the example shown in Figure 1, the order O matches template T :
the mapping h (depicted by dashed arrows) is defined by h(e2) = f0, h(e4) = f1, h(e6) = f2,
h(e5) = f3. It satisfies: λT (f0) ⊆ λ(e2), λT (f1) ⊆ λ(e4), λT (f2) ⊆ λ(e6), λT (f3) ⊆ λ(e5).

An observation function is a mapping O : LPO(Σ)→ LPO(Σ′), representing the visible
part of the system. In what follows, we focus on observation functions that are the identity
function id (i.e., the function such that id(O) = O), relabelings, and various restrictions of
orders, for instance associating with O = (E,≤, λ) the order O|F for some F ⊆ E.

With a slight abuse, if O = (E,≤, λ) and F ⊆ E, we write O(F ) for the corresponding
subset of events of O(O). With observation functions like those described above, either an
event is kept by observation (but it can be relabeled) or deleted. When event e ∈ E has an
image in O(E), we denote this image by O(e).

Consider the example of Figure 2. The partial order O contains events labeled by atomic
propositions a, b, c. Let observation O1 be the projection of orders on events carrying a
proposition in {a, b}. Such a projection can be used to indicate which actions are observed by
a particular user. Now, consider observation O2, that restricts an order to causal dependencies
in ≤ ∩{(e, f) | a ∈ λ(e)}. This kind of observation can encode the fact that a particular user
observing the execution of a system is not able to know if some events are causally related
or not. Last, we can combine projections and order restriction: the observation defined by
O3(O) = O1(O2(O)) describes what would be visible to a user of the system that logs events
tagged with propositions a and b, and can only know dependencies from events tagged by a.
For the order O in Figure 2, O3(O) = O1(O).

3 Hyper Partial Order Logic

We are now ready to define HyPOL, a hyperproperty partial order logic. HyPOL is designed
to express properties of partially observed sets of executions described by LPOs in LPO(Σ).

3.1 Syntax and semantics
We consider a set A of atomic propositions, a finite set T of templates labeled over A, and a
finite set Obs of observation functions producing LPOs over A. We assume that Σ ⊆ A but,
since event labeling can be modified by observations, it is not always the case that A = Σ.
The syntax of HyPOL is given by:

φ ::= true | match(O, T, f) | EXD,O φ | EX≡,O φ | φ1 EUD,O φ2 | EGD,O φ | ¬ φ | φ1 ∨ φ2
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where D ⊆ A, T ∈ T , f is an event of T , and O ∈ Obs an observation function.
A formula is equivalence-free iff it does not use the EX≡,O operator. To reduce the

number of primitives in our logic, we address labeling of events via templates. For D ⊆ A,
we define a template TD composed of a single event fD labeled by all propositions in D.
In particular, when D = {a} for some proposition a ∈ A, we write Ta instead of T{a} and
fa instead of f{a}. When template Ta is matched at some event e in an order O under
observation O, this means that the image of e by O carries proposition a.

We define derived operators (with D ⊆ A):

λ6∈D ::=
∧
a∈D
¬match(id, Ta, fa)

λ=D ::= match(id, TD, fD) ∧ λ 6∈A\D
EFD,O φ ::= true EUD,Oφ

AGD,O φ ::= ¬EFD,O¬φ
AXD,O ::= ¬EXD,O¬φ
AX≡,O ::= ¬EX≡,O¬φ

The semantics of HyPOL formulas is defined over a set W ⊆ LPO(Σ) of orders, for
O=(E,≤, λ)∈ W and e ∈ E. Letting λO be the labeling of O(O) and <O its covering, we
say that O ∈ W satisfies φ at event e (denoted by O, e |= φ) if formula φ is satisfied when
starting its evaluation from event e in order O:

O, e |= true for every event e ∈ E;
O, e |= ¬φ iff O, e 6|= φ and O, e |= φ1 ∨ φ2 iff O, e |= φ1 or O, e |= φ2;
O, e |= match(O, T, f) if and only if f is an event of T , e has image e′ in O(↓ e), and
O(↓e) matches T with at least a witness mapping he′,f associating f with e′;
O, e |= EXD,O φ iff ∃f ∈ E, e has image e′ ∈ O(↑ e), f has image f ′ ∈ O(↑ f), e′ <O f ′,
such that λO(e′) ∩D 6= ∅ and O, f |= φ;
O, e |= EX≡,Oφ iff there exists O′ ∈ W and e′ 6= e ∈ O′ such that O(↓O e) ≡ O(↓O′ e′)
and O′, e′ |= φ;
O, e |= φ1 EUD,O φ2 iff there exists an event f ∈ E such that O, f |= φ2, and a finite set
of events e′1, e′2, . . . e′k ∈ O(O) such that

e′1 <O e
′
2 <O · · · <O e′k, e′1 = O(e) and e′k = O(f),

∀i ∈ 2..k−1, e′i is the image of some event ei ∈ E by O, λO(e′i)∩D 6= ∅ and O, ei |= φ1;

O, e |= EGD,Oφ iff

either there exists an infinite sequence of events (ei)i≥1 in E such that e = e1, every
ei has an image e′i in O(O), and ∀i ≥ 1, e′i <O e′i+1, λ(e′i) ∩D 6= ∅ and O, ei |= φ, or
there exists a finite set of events e1, . . . ek ∈ E such that e = e1, for every i ∈ 1..k, ei
has an image e′i by O with e′1 <O e′2 <O · · · <O e′k, λO(e′i) ∩D 6= ∅, O, ei |= φ, and
e′k ∈ max(O(O)).

In particular, O, e |= match(id, Ta, fa) iff e carries label a in order O, i.e. a ∈ λ(e).
Intuitively, formulas of the form O, e |= EGD,O φ, O, e |= φ1EUD,O φ2, and O, e |= EXD,O φ

describe properties of causal paths in orders, and have the standard interpretation seen for
instance in LTL for words. Observation O is used to select successive events along a path,
and set D performs an additional filtering among possible next events, by requiring the next
considered event in a path to carry a label in D. The definition O, e |= EX≡,O φ requires
existence of another order O′ ∈ W and of an event e′ ∈ EO′ such that e′ 6= e, but nothing
forces O′ and O to be different orders. Hence, e and e′ can be distinct events from the same
order that cannot be distinguished by observing their causal past.

An order O satisfies φ, denoted by O |= φ, iff there exists e ∈ min(O) such that O, e |= φ.
The set of orders W satisfies φ iff every LPO O ∈ W satisfies φ. Last, φ is satisfiable iff

FSTTCS 2018



NN:6 Hyper Partial Order Logic

there exists a set of LPOs W such that W |= φ. Unsurprisingly, HyPOL is very powerful
and satisfiability is undecidable on LPOs:

I Theorem 5. Satisfiability of a HyPOL formula is undecidable.

Proof Sketch. The proof is a reduction of Post’s Correspondence Problem (PCP): given
an instance I of PCP, we build a HyPOL formula φI such that I has a solution iff φI is
satisfiable. (See Appendix 6.1 for details). J

3.2 An example: Causal Non-Interference
We begin with a small example showing that, in the context of concurrent models, languages
are not discriminative enough. In Figure 3, the set W = {O1, O2} represents behaviors of a
concurrent system, where h labels a non observable secret action, while events with labels a
and b can be observed by an attacker. In a language-based setting, an attacker only observes
the linearizations a.b and b.a of these orders. Hence it is not possible to deduce whether h
has occurred or not. On the other hand, if causal dependencies are considered, observing
that a precedes b reveals the occurrence of h, thus leaking the information that h occurred.

O1:

e0 h

e1 a

e2 b
O2:

f1 a f2 b

Figure 3 Two orders where observing lin-
earizations is not enough to leak information.

For a more general example showing the
discriminating power of HyPOL, consider non-
interference. In the setting proposed by [17], a
system is non-interferent if users cannot infer
that classified actions have occurred only from
observation of the system, i.e. execution of a
classified event does not affect what a user can
see or do. Such situations occur in a distributed
system which can be accessed by two kinds of
users: those with a high accreditation level and

low-level users, that have limited access to operations and observations of the system. We
suppose that high-level users can perform classified actions, the occurrences of which shall
not be detected by low-level users. In a standard setting for non-interference properties, this
situation is modeled by associating with each event occurring in the system a particular
operation name. Let Σ be the set of all these names, with Σhigh the subset of confidential ones
and Σlow = Σ \Σhigh containing those which can be observed by low-level users. Observation
Olow projects orders on events that carry at least one label in Σlow. We can define a causal
non-interference property with HyPOL as follows:

φCNI ::= AGΣ,id
(
λ∈Σhigh

∨ Predh =⇒ EX≡,Olow
(λ 6∈Σhigh

∧ ¬Predh)
)

where λ∈Σhigh
stands for ¬λ/∈Σhigh

, Predh ::=
∨
a∈Σmatch(Oh,a, Th≤a, f), and Th≤a is

the template containing a pair of events fh, f such that fh ≤ f , fh carries proposition h, f
carries proposition a and Oh,a is the observation that projects orders on Σhigh ∪ {a} and
relabels events representing confidential operations with h.

Intuitively, satisfying Predh means that a confidential operation occurred in the causal
past of an event. Hence, an order O satisfies φCNI if, for every high-level event e in O,
there exists an order O′ and an event e′ ∈ O′ such that e 6= e′, no high-level operation has
occurred in the causal past of e′, and a low level user cannot distinguish e from e′ (i.e.,
Olow(↓e) ≡ Olow(↓e′)). A system is (causally) non-interferent iff every order generated by
this system satisfies φCNI, i.e. every order that contains a confidential operation cannot
be distinguished from other orders that do not contain confidential operations. Note that
Olow(O) is a partial order, hence φCNI uses the discriminating power of causal dependencies.
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4 Model-checking HyPOL

We address the question of model checking of HyPOL formulas for a model for which at least
reachability is decidable. As a starting point, we choose labeled safe Petri nets (LSPN).

I Definition 6. A Petri net is a tuple N = (P, T, F,M0) where P is a set of places, T is a
set of transitions with P ∩ T = ∅, F ⊆ P×T ∪ T×P is the flow relation, and M0 ∈ NP is
the initial marking.

A net is labeled if it is equipped with a (not necessarily injective) mapping λ : T → Σ
labeling the transitions. A marking is a multiset M ∈ NP . For x ∈ P ∪ T , we define its
preset by •x = {y | (y, x) ∈ F} and its postset by x • = {y | (x, y) ∈ F}. The interleaved
semantics of Petri nets can be defined as a (possibly infinite) transition system LTS(N )
where states are markings, the initial state is M0, and the transition relation is defined by:
M

t−→M ′, iff (i) M(p) ≥ 1 for all p ∈ •t, in which case transition t is said firable from M

and (ii) M ′ = (M \ •t) ] t • is the new marking reached by firing t. We write M0
∗−→ M

iff there exists a sequence of transition firings reaching M from M0. The set of reachable
markings is denoted by Reach(N ) = {M |M0

∗−→M}.
We henceforth consider only safe Petri nets, where Reach(N ) is a subset of {0, 1}P ; we

also assume that all transitions have at least one pre- and one post-place, i.e. ∀ t ∈ T : |•t| ≥
1 ≤ |t •|. Let us recall standard vocabulary and notations for nets (we borrow definitions
from [15]). Two nodes x, y ∈ P ∪ T are in causal relation iff xF ∗y. Transitions t and t′ are in
immediate (structural) conflict iff t 6= t′ and •t ∩ •t′ 6= ∅. Nodes x, x′ ∈ T ∪ P are in conflict,
written x#x′, iff there exist t, t′ ∈ T in immediate conflict such that tF ∗x and t′F ∗x′. A
subset C of T ∪ P is conflict free if for all x, x′ ∈ C, ¬(x#x′).

I Definition 7. An occurrence net is a Petri net ON = (B,E, F,Cut0) where the elements
of B are called conditions and those of E events, and Cut0 ⊆ B such that:

ON is acyclic, and hence < def= F+ and ≤ def= F ∗ are strict and weak partial orders;
∀e ∈ E : ¬(e#e) (no event is in conflict with itself);
∀b ∈ B, |•b| ≤ 1 (every condition has a unique predecessor);
ON is finitary: for all x ∈ E ∪B, the set Past(x) def= {y | y ≤ x} is finite; and
Cut0 contains exactly the <-minimal nodes of ON.

Nodes x and y are in concurrency relation, denoted x || y, if neither x < y, x > y nor x#y
holds. Note that every occurrence net is safe, and that occurrence net ON is conflict free iff
for every b ∈ B, one has |b •| ≤ 1.

I Definition 8. A prefix of an occurrence net ON = (B,E, F,Cut0) is an event set R ⊆ E
that is downward closed, i.e. such that e ∈ R and e′ < e together imply e′ ∈ R. A prefix
C ⊆ E is a configuration iff it is conflict free.

I Definition 9. Given a net N = (P, T, F,M0), and an occurrence net ON = (B,E, F̂ , Cut0),
a homomorphism is a map µ : E ∪B → T ∪ P such that:

µ(B) ⊆ P and µ(E) ⊆ T ,
for all e ∈ E, the restriction of µ to •e is a bijection from •e to •µ(e), and the restriction
of µ to e • is a bijection from e • to µ(e) •, and
µ(Cut0) = {p ∈ P |M0(p) = 1}

The "unfolding" semantics of a safe labeled Petri net yields a labeled occurrence net.

FSTTCS 2018
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I Definition 10 (Unfolding). A branching process of a labeled Petri net N = (P, T, F,M0, λ)
is a triple BR = (ON, µ, λ′) where ON = (B,E, F̂ , Cut0) is an occurrence net, µ is a
homomorphism and ∀e ∈ E, λ′(e) = λ(µ(e)). A process of a net N is a branching process
of N such that for every condition b ∈ B, |b •| ≤ 1, or equivalently, such that E is a
configuration. If BR1 = (B1, E1, F̂1, Cut0, µ1, λ

′
1) and BR2 = (B2, E2, F̂2, Cut0, µ2, λ

′
2) are

two branching processes of N , BR1 is a prefix of BR2 iff E1 ⊆ E2, and F̂1, µ1, λ
′
1 are the

respective restrictions of F̂2, µ2, λ
′
2 to B1 and E1. The unfolding of N , denoted by U(N ), is

the maximal branching process w.r.t. the prefix relation.

Appendix 6.2 gives an algorithm for constructing the unfolding of a labeled safe Petri
net. With every process BR = (ON, µ, λ) contained in U(N ), with ON = (B,E, F,Cut0),
is associated an LPO Ord(BR) = (E,≤, λ). Note that events in such LPOs are labeled by
a singleton (transition label), which is a sub-case of the LPOs defined in Section 2. We
define PR(N ), the set of processes - up to isomorphism - that can be built from N . Given a
HyPOL formula φ, we say that N satisfies φ iff Ord(PR(N )) |= φ.

I Theorem 11. The HyPOL model checking problem for safe Petri nets is undecidable.

Proof (Sketch). We reuse the encoding of PCP from the proof of Theorem 5, and build a
safe Petri net whose behaviors (processes) are exactly concatenations of the templates used
in the HyPOL formula φI associated with an instance I of PCP (see Appendix 6.3). J

5 Decidability

The reason for the undecidability results above is that projections give a huge expressive
power to HyPOL. Indeed, the difference in depth of equivalent events can be arbitrary large,
and labeling allows for the design of a pair of growing sequences of letters w1, w2 where w1
is always a prefix of w2, yielding a non-terminating instance of PCP. We show in this section
that one can recover decidability when restricting to Petri nets in which the difference in the
depth of equivalent events is bounded.

Since the set of processes of a safe Petri net can be depicted in a compact way by its
unfolding (as recalled in Section 4), a natural question is whether validity of a HyPOL
formula expressing hyperproperties of the processes of a safe Petri net N can be rewritten as
a property of its unfolding U(N ). We first prove that this unfolding can be seen as a graph
and defined as the production of a Hyperedge Replacement Grammar (HRG) [18].
I Proposition 1. Let N be a safe labeled Petri net. Then, there exists a hyperedge
replacement grammar GN that generates U(N ).

We detail the construction of GN in Appendix 6.4. Note that GN does not define a
semantics of N via application of one rewriting rule per transition firing, as proposed in
[3, 4], but rather builds the unfolding. The grammar GN starts from an axiom Ax. Denoting
by GωN (Ax) the (unique) graph generated from Ax, we have GωN (Ax) = U(N ). GN exhibits
a certain form of regularity, but this is not yet sufficient to check HyPOL formulas, nor to
express HyPOL properties in terms of properties of GN . Indeed, the graphical representation
of U(N ) does not address equivalences. We adapt the idea of [1], and represent isomorphism
of causal pasts of events w.r.t. an observation function as a new relation connecting events.
In other words, we augment U(N ) with additional edges connecting equivalent events.

I Definition 12 (Execution Graph). Given a set of observation functions O1, . . . ,Ok, the
execution graph of N is the graph GU(N ) = (E ∪B,−→, λ), where E and B are the sets of
events and conditions in U(N ), and −→⊆ (E×{0}×B) ∪ (B×{0}×E) ∪ (E×{1, . . . k}×E)
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is the relation defined by: (e, 0, b) ∈−→ iff e ∈ •b in U , (b, 0, e) ∈−→ iff b ∈ •e in U , and
(e, i, e′) ∈−→ for 1 ≤ i ≤ k iff e 6= e′ and Oi(↓e) ≡ Oi(↓e′).

We write e i−→ e′ for (e, i, e′) ∈−→. So far, we have simply recast ordering and equi-
valence of events into a graph setting, but this translation does not change decidability of
hyperproperties. Even if the unfolding U(N ) can be generated by an HRG, this is not the
case for GU(N ). Indeed, to produce edges, hyperarcs of an HRG need to memorize nodes
that will be at the origin or destination of an edge in future productions of the grammar. In
particular, for GU(N ), this means that hyperarcs of any HRG producing this graph have to
memorize a list of events that will be declared as equivalent to some event (w.r.t. a particular
observation Oi) generated in future rewritings.
I Proposition 2. There exist labeled safe Petri nets and observation functions whose
execution graphs are not of bounded treewidth, and cannot be represented by an hyperedge
replacement grammar.

Proof (Sketch). We exhibit a net, and an observation function whose execution graph
contains grid minors of arbitrary sizes. It is well known [26] that a family of graphs FG has
bounded treewidth iff there exists a constant m such that no graph G ∈ FG has a minor
isomorphic to the m×m grid and that HRGs can only generate graphs of bounded treewidth
(see for instance [11]). See appendix 6.5 for a complete proof. J

I Definition 13. Let ON = (B,E, F,Cut0) be an occurrence net. The height of en event e
or condition b in ON is the function H : B ∪ E → N be defined recursively by

∀ b ∈ Cut0 : H(b) def= 1
∀ x ∈ B ∪ E : H(x) def= 1 + max {H(y) | y ∈ •x} .

By extension, the height H(A) for a set A ⊆ (B ∪ E) is given by H(∅) = 0 and H(A) def=
supx∈AH(x). Now, define the distance dist : (B ∪ E)× (B ∪ E)→ N by

Hu(e, e′) def= H (↓e ∩ ↓e′)
dist(e, e′) def= max (H (e) ,H (e′))−Hu(e, e′).

Intuitively, dist(e, e′) measures the maximal number of edges between e, e′ and their common
past. This distance dist defines a pseudometric. Using this notion of distance, we can define
the K-Ball of an event e in the unfolding U(N ) as the set of nodes in U(N ) that are at
distance at most K from e. Formally, BallK(e) = {n ∈ U(N ) | dist(n, e) ≤ K}. In the rest
of the paper, we consider classes of unfoldings where two events can only be equivalent w.r.t.
any observation Oi if they are in the K-Ball of one another.

An important remark is that even for a safe Petri net N , given an integer K ∈ N, the
K-Ball of an event e may not be finite. Furthermore, the graph (E ∪B, 0−→) depicting the
unfolding U(N ) without equivalence edges is always a graph of finite incoming degree, but
this is not necessarily the case for GU(N ). In the rest of the paper, we will see that HyPOL
formulas can be encoded as MSO properties of GU(N ). The reason for undecidability of
HyPOL is hence the nature of execution graphs, that cannot be generated in general by
context free graph grammars, are not of bounded treewidth,... nor enjoy any of the properties
that usually make MSO decidable. We can recover decidability with some restrictions. Let
↓K e =↓e ∩ BallK(e) denote the K−bounded past of e.

I Definition 14. Let N be a safe Petri net, and Oi be an observation function. N is
K−layered w.r.t. Oi iff ∀e, e′ ∈ U(N ) :
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there is a bound SK ∈ N such that |BallK(e)| ≤ SK ;
dist(e, e′) > K implies e 6≡ e′;
dist(e, e′) ≤ K implies one can compute H = {f1, . . . fm} ⊆↓K e∪ ↓K e′ such that, letting
Fe,e′ =

⋃
i∈1..m

↓fi and F̂e,e′ = Fe,e′ \H,

e ≡i e′ iff Oi(↓e \ F̂e,e′) ≡i Oi(↓e′ \ F̂e,e′).

In the sequel, we assume that observation functions O1, . . .Ok are given, and we say that
a safe Petri net N is K−layered iff it is K−layered for every Oi. Intuitively, a Petri net is
K−layered w.r.t. observation Oi iff one can decide equivalence of a pair of events e, e′ w.r.t.
Oi from their K−bounded past.

H f1 a f2 b fm−1 b fm b

x a

e a e′ a
ii

↓ e ↓ e′

Figure 4 Equivalence w.r.t. Oi in the unfolding of a K−layered Petri net

I Proposition 3. Let N be a K−layered safe Petri net. Then, one can effectively compute
an hyperedge replacement grammar GK,N that recognizes the execution graph GU(N ).

Proof (sketch). First, one can notice that in the unfolding of a K−layered safe Petri net,
for every observation Oi, every event e has a bounded number of events connected to it
via relation i−→. This is due to the fact that this set is contained in its finite K-Ball. The
hyperedge replacement grammar GK,N starts from an axiom representing a complete finite
prefix of the unfolding of N with hyperarcs. Its hyperarcs represent possible extensions of this
prefix from its maximal markings. Rules of GK,N are of the form r = (ht,lab, HGt,lab) where
ht,lab contains all conditions and events appearing in the K-Balls of the next occurrence
of a transition t that can be appended after a maximal marking, and lab is a labeling
providing sufficient information to know the ordering among events and a part of their
common past. HGt,lab is an hypergraph containing the newly generated occurrences of
events and conditions in the execution graph, the flow relation among them, and connects
equivalent events (contained in the events of ht,lab and HGt,lab) and creating one hyperarc
per new maximal marking. Appendix 6.7 gives a complete construction of this grammar. J

We now show that model checking HyPOL on K−layered execution graphs can be brought
back to verification of an equivalent MSO property. But the first question to address is
decidability of MSO on execution graphs. An MSO formula uses the following syntax:

φ ::= laba(x) | edge(x, y) | edgei(x, y) | x = y | x ∈ X | ¬φ | φ1 ∧ φ2 | ∃x, φ | ∃X,φ

where x, y, ... are first order variables representing vertices in a graph, and X,Y, ... are
second order variables representing sets of vertices in a graph. In execution graphs, first order
variables will represent events or conditions, and an edge the flow relation or isomorphism.
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An interpretation I of an MSO formula φ over a graph G is an assignment of nodes of
G to first order variables used in φ and of subsets of nodes of G to second order variables.
An MSO formula φ holds for G under interpretation I iff replacing variables in φ by their
interpretation yields a tautology. A graph satisfies formula φ iff there exists an interpretation
I such that φ holds for G under I. Classes of graphs with decidable MSO theory have been
considered for a long time (see for instance [11] for a complete monograph on this topic).
As MSO is decidable for context free graphs such as the graphs generated by HRGs ([12],
Corollary 4.10), we immediately have the following property:
I Corollary 15. MSO is decidable on execution graphs of K−layered labeled safe Petri nets.

Note that the decidability highlighted in corollary 15 does not necessarily hold outside
the class of K−layered nets. As shown in Proposition 2, execution graphs of safe Petri nets
may contain grids minors of arbitrary sizes and hence in general do not have a bounded
treewidth [26]. MSO is also undecidable in general for execution graphs: one can use a safe
Petri net whose unfolding is a binary tree and an observation that implements the "same
level" relation on this tree. It is well known that MSO is undecidable on this graph [28].
We will use MSO to address decidability of HyPOL, by converting formulas to MSO, and in
particular equivalences into i−→ relations among events.
I Proposition 4. Let φ be a HyPOL formula. Then there exists an MSO formula ψ such
that N |= φ iff GU(N ) |= ψ.

Proof (sketch). We first encode in MSO a succ(e, e′) relation that relates pairs of events
such that e • ∩ •e 6= ∅. Then, causal precedence ≤ in an order can be encoded with MSO.
A property of the form x |= EX≡,Oi

φ asks existence of an edge x i−→ y where y satisfies
the MSO translation of φ. Until operations are described as properties of chains of events,
that can again be encoded with MSO, and patterns embedding are MSO properties checking
existence of some subgraph. A complete translation is given in Appendix 6.6. J

Proposition 4 holds for any net N and its execution graph GU(N ). However, in general,
GU(N ) is not of bounded treewidth. One can always choose an integer K, and build a
context free graph grammar GK,N as proposed in Proposition 3, but in general, the graph
generated by GK,N is only a subgraph of GU(N ), where some i−→ edges are missing. This
is not surprising: in non-layered nets, the sizes of equivalence classes in GU(N ) need not be
finite. If N is K−layered, the graph generated by GK,N and GU(N ) are equivalent. Further,
isomorphism is one of the building block of HyPOL, but in general cannot be expressed in
MSO. The translation from HyPOL to MSO applies to any HyPOLformula for any type of net
and observation. We know that MSO is decidable for HRGs [12, 19]. So, in general, GU(N )
is not the production of an HRG. Altogether, these remarks give the following corollaries:

I Corollary 16. It is undecidable whether the execution graph of a net N satisfies an MSO
formula.
I Corollary 17. Model checking equivalence-free HyPOL properties on labeled safe Petri nets
is decidable.
I Corollary 18. HyPOL model checking is decidable for K−layered safe Petri nets.

K−layeredness is a semantic property, that should hold on the possibly infinite unfolding
of a net. However, some syntactic classes of nets meet the conditions needed to layer equival-
ences. In the following, we only consider observations that are projections. Slightly abusing
our notations, for a transition t we will denote by Oi(t) the LPO obtained by applying
observation Oi to the LPO Ot that contains a single event e with λ(e)=λ(t).
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•

p0

p1p2 u1u2

ef
λ(u1) = u1, λ(u2) = u2
λ(e) = λ(f) = a

Figure 5 A net N1. Observation Oa projects LPOs on events labeled a. N1 is not observable:
Oa cannot distinguish behaviors in u1.e.(u1.e + u2.f)k from those in u2.f.(u1.e + u2.f)k

I Definition 19. Let N be a safe Petri net. Two transitions t, t′ are independent iff there is
no link from t to t′ in the flow relation of N . We will say that N is observable iff,
i) for every observation Oi, and every cyclic behavior t1 . . . tn of LTS(N ), Oi(t1 . . . tn) 6= ∅,
ii) For every reachable marking M of N , every observation Oi and every pair of conflicting

transitions t1, t2 enabled in M , there exists a bound kc such that for every pair of path
ρ = t1.t1,1 . . . t1,p and ρ2 = t2.t2,1 . . . t2,q, if p > kc or q > kc then Oi(Oρ1) 6= Oi(Oρ2),
where Oρ1 (resp Oρ2) is the process of N obtained by successively appending t1, t1,1, ...
(resp. t2, t2,1, ...) to M0.

iii) for every observation Oi and every cyclic behaviorM ρ−→M of LTS(N ) with ρ = t1 . . . tn
and such that t1 . . . tn can be partitioned into sets T1, T2, . . . Tk of independent transitions
∀j, j′ ∈ 1..k, there exists tj ∈ Tj and tj′ ∈ Tj′ such that Oi(tj) 6= Oi(tj′).
Condition i) forbids cyclic behaviors that cannot be observed. This is a sensible restriction

often required for diagnosis (where it is called convergence, as in [5]). It guarantees that an
event cannot be equivalent to an arbitrary number of predecessors. Condition ii) indicates
that each branch of a choice in the net is eventually visible by each observation after a
bounded duration. Condition iii) says that parallel sequences of transition cannot grow up
to an arbitrary size without becoming distinguishable by all observations.

I Proposition 5. Let N = (P, T, F,M0, λ) be a safe labeled observable Petri net for
observations O1, . . . ,Ok. Then N is K−layered, for some K ≤ max(2.kc, 3.|T |)

I Corollary 20. HyPOL model-checking is decidable for observable safe Petri nets.

6 Conclusion

HyPOL is a local logic for hyperproperties of partially observed set of labeled partial orders.
It is powerful enough to express properties such as non-interference in distributed systems.
This logic follows the same line as local logics such as TLC− or LD0, as it depicts shapes of
causal chains in partially ordered computations. In addition, it is possible to check whether
some finite behavior has occurred in the past, and a new modal operator is introduced to
move from an event in an LPO to another equivalent event in another LPO. Unsurprisingly,
such a powerful logic is undecidable, even for simple models such as safe labeled Petri nets.
However, upon some restrictions, one can bring back verification of HyPOL formulas to
verification of MSO properties on unfoldings of nets decorated with additional edges that
simulate equivalences. The restrictions forbid nets with infinite unobservable runs, and
assume bounds on the depth of indistinguishable suffixes. In this context, equivalence of runs
only depends on a bounded future and past of each event, and decorated unfoldings have
bounded treewidth. So far, we do not know whether K−layeredness is decidable for a fixed
K. Another interesting question is existence of a bound K such that a net N is K−layered.
We strongly believe that some restrictions used in observable nets can be relaxed, or adapted
to consider larger classes of nets for which decorated unfoldings are of bounded treewidth
or split-width [13]. A natural question that follows is whether theses classes of nets have
sensible and decidable syntactic characterizations.
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Appendix

6.1 Proof of Theorem 5
Theorem 5: Satisfiability of a HyPOL formula is undecidable.

Proof. The proof consists of a reduction of the Post Correspondence Problem (PCP). Recall
that an instance I of PCP is a sequence (x1, y1), . . . , (xn, yn) of n pairs of words over some
alphabet. A (non trivial) solution of size k is a (non empty) sequence of indices σ = i1 . . . ik
such that xi1 . . . xik = yi1 . . . yik . If the alphabet contains at least two letters, PCP is
undecidable for n ≥ 7. Moreover, we can assume that for all 1 ≤ i ≤ n, xi 6= yi (otherwise
the problem can be trivially decided with a solution of size k = 1).

Given an instance I, we build a formula φI of HyPOL such that φI is satisfiable if and
only if I has a (non trivial) solution.

Let I be the sequence (x1, y1), . . . , (xn, yn) of words over alphabet A. We write z =
z(1) . . . z(`) where ` = |z| is the length of word z, with `i = |xi| and hi = |yi|, 1 ≤ i ≤ n

and we consider the family of templates Ti, 1 ≤ i ≤ n, as depicted in Figure 6. The set of
events of Ti is Ei = {xi, yi, si, ei} ∪ {xi,j | 1 ≤ j ≤ `i} ∪ {yi,j | 1 ≤ j ≤ hi} and labels are
in Pi = A ∪ {], starti, endi}. We set Ind = {starti, endi, 1 ≤ i ≤ n}, S = {starti, 1 ≤ i ≤ n}
and the global set of labels is P = ∪ni=1Pi. Intuitively, a solution σ = i1 . . . ik will be
described by the sequence of templates Ti1 . . . Tik .

si starti

xi,1 xi(1)

xi,2 xi(2)

...

xi,`i xi(`i)

yi,1yi(1)

yi,2yi(2)

...

yi,hiyi(hi)

ei endi

xi ] yi]

f] ]

f1 [ f2 [ f3 [

Figure 6 Templates Ti and T].

To detect that a solution ends with an event labeled by ], we define the formula stop ::=
λ={]} ∧ ¬EXP,idtrue. We also need to express that any event with label ] has at most two
predecessors:

two-pred] ::= AGP,id(λ={]} =⇒ ¬match(O], T], f]))

where T] is the pattern depicted on Figure 6 right and O] keeps any event with label ]
unchanged and relabels all other events with [. Now, if OS denotes the projection on S,
keeping only events with labels in S, a solution is decribed by:

IsSeqIndex ::= EGS,OS
(∨ni=1HoldsTi) ∧ EFP,idstop
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where HoldsTi ::= match(id, Ti, si).
Finally, we consider the subsetW of orders of LPO(P ) where all labels are singletons. Note

that this condition can be ensured by the formula Sing ::= AGP,id(∨p∈Pλ={p}). For an order
O = (E,≤, λ) ∈ W , we write E = EA ∪E] ∪Eind as a disjoint union with EA = E ∩λ−1(A),
E] = E ∩ λ−1({]}) and Eind = E ∩ λ−1(Ind). We define the observation function Osol over
W by keeping all events and restricting ≤ to (E ×E) \ ((EA × Eind) ∪ (Eind × EA)), thus
removing the order between letters and indices.

The formula φI is then defined by :

φI ::= two-pred] ∧ IsSeqIndex ∧ (stop =⇒ EX≡,Osol
true),

where the last sub-formula means that from some final ], it will not be possible to
distinguish between paths with labels from the xi’s and those with labels from the yi’s.

Then, there is an order O in W satisfying φI if and only if I has a non trivial solution.
J

6.2 An algorithm to build an unfolding of a safe Petri net
Although the construction is rather standard since [14], we give here, for the sake of
completeness, a procedure to build an unfolding U(N ) of an SLPN N . We first define
the notion of co-set and cut. A co-set of a branching process BR = (ON,µ, λ) with
ON = (B,E, F̂ , Cut0) is a set of conditions that are pairwise concurrent. A maximal co-set
(w.r.t. set inclusion) is called a cut. Finite configurations, cuts and markings are related
as follows. If C is a configuration of a branching process BR = (ON, µ, λ′), then we can
define the co-set Cut(C) = (Min(ON) ∪ C •) \ •C. The set of places in Cut(C) represents
the marking reached after firing transitions in µ(C) in an order compatible with the ordering
prescribed by ON.

The construction of an unfolding of a net N = (P, T, F,M0) consists in iteratively
extending an initial branching process of N . For convenience, we assume a dummy event ⊥,
whose postset fills all places of M0. A condition of a branching process built by unfolding N
is of the form b = (e, p) where p ∈ P is such that µ(b) = p and e is the (unique) input event
of the condition b. Similarly, events are of the form e = (X, t) where X is a set of conditions
(and more precisely a co-set) and t the transition such that µ(e) = t. One can notice that
with these definitions of events and conditions, the flow relation in an unfolding is implicit
: for an event e = (X, t) and a condition b = (e′, p), b ∈ •e iff b ∈ X, and e ∈ •b iff e′ = e.
A possible extension of a branching process BR is an event (X, t), where t ∈ T and X is a
co-set such that µ(X) = •t and which does not belong to BR.

The initial branching process of the unfolding algorithm is BR0 = (ON0, µ0, λ0), where
ON0 = (B0, E0, F0), B0 = {(⊥, p) |M0(p) = 1}, E0 = ∅, F0 = {(⊥, b) | b ∈ B0}, µ0((⊥, p)) =
p. The following steps are then iterated to produce BRi+1 = (Bi+1, Ei+1, Fi+1, µi+1, λi+1)
from BRi = (Bi, Ei, Fi, µi, λi):

1) find the set PE of possible extensions of BRi;
2) if PE is not empty, choose a particular event e = (X, t);
3) Ei+1 = Ei ∪ {e}

Bi+1 = Bi ∪X ′ with X ′ = {(e, p) | p ∈ t •}
Fi+1 = Fi ∪ (X × {e}) ∪ ({e} ×X ′)
µi+1 extends µi by µi+1(e) = t and for any b = (e, p) ∈ X ′, µi+1(b) = p

λi+1 extends λi by λi+1(e) = λ(t).
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6.3 Proof of Theorem 11
Theorem 11: The HyPOL model checking problem for labeled safe Petri nets is undecidable.

Proof. We reuse the encoding of PCP from the proof of Theorem 5, and build a labeled
safe Petri net whose behaviors (processes) are exactly concatenations of the templates
used in the formula φI associated with an instance I of PCP. For such an instance I =
(x1, y1), . . . , (xn, yn), we compute a safe (labeled) Petri net NI such that NI satisfies φI iff
there is a solution for I. We create an initially marked place p0, and for i ∈ 1..n a place
pstarti , a transition tstart,i labeled by starti, a pair of transitions tendi,1, tendi,2 labeled by
endi and a pair of transitions t]i,1, t]i,2 labeled by ]. Then, for every word xi = xi,1 . . . xi,`i

we create a set of places pxi,0, . . . pxi,`i
and a set of transitions txi,1, . . . , txi,`i

, respectively
labeled by the letters xi,1, . . . , xi,`i

. We repeat this operation for each yi, creating places
pyi,0, . . . pyi,hi

and transitions tyi,1, . . . , tyi,hi
. Last, we create places pendi,1, pendi,2.

The flow relation is the following, for each i ∈ 1..n:

•tstart,i = {p0}, tstart,i • = {pxi,0, pyi,0, pstarti}, •tendi,1 = •tendi,2 = {pxi,`i
, pyi,hi

},
tendi,1

• = {pendi,1, pendi,2}, tendi,2
• = {p0};

•t]i,1 = {pendi,1}; t]i,1
• = ∅, •t]i,2 = {pendi,2}, t]i,2

• = ∅;
For all j ∈ 1..`i, k ∈ 1..hi, •txi,j = pxi,j−1, txi,j

• = pxi,j , •tyi,k = pyi,k−1, tyi,k
• = pyi,k.

Figure 7 shows a part of NI where the first pair of I is (x1 = aab, y1 = ab). We observe
that at any time, tokens circulate only in one of the subparts (corresponding to some i ∈ 1..n)
of the net located between place p0 and transitions tendi,2, t]i,1 and t]i,2. Transition tendi,2
represents the addition of a PCP domino that is not the last one, while tendi,1 corresponds to
the last PCP domino (since no other event can occur after firing tsharp,1 and t],2). Clearly,
processes of NI have the shape of concatenations of PCP words encoded with the templates
in the proof of Theorem 5. Thus, NI satisfies φI iff there is a solution for instance I of PCP,
and model checking HyPOL on safe Petri nets is undecidable. J

6.4 Construction of an hyperarc replacement grammar for U(N )
We show how to build a graph grammar that generates the unfolding U(N ). This allows us
to prove proposition 1.
Proposition 1. Let N be a safe labeled Petri net. Then, there exists a hyperedge replacement
grammar GN that generates U(N ).

I Definition 21. A hyperarc is a pair (l, V ), where l is a label, and V ⊆ N is an ordered set
of vertices. A hypergraph is a triple (V,E,H) where V is a set of vertices, E a set of edges,
and H a set of hyperarcs. A hyperedge replacement grammar (HRG) is defined as a pair
G = (Ax,R), where Ax is a hypergraph called the axiom of the grammar and R is a set of
rules. A grammar rule is a pair (L,R) where L, the left part of the rule is a hyperarc, and
R, the right part of the rule is a hypergraph that contains all vertices of L.

Let G = (V,E,H) be a hypergraph and h = (lh, Vh) ∈ H a hyperarc. Let r = (L,R) be a
rule where L = (l,X) is a hyperarc with label l = lh and the same number of vertices as Vh,
and R = (VR, ER, HR). The application of rule r to G simply replaces hyperarc h in G by
the right part R. More formally, application of r produces a hypergraph G′ = (V ′, E′, H ′)
with V ′ = V ] (α(VR) \X), E′ = E ] α(ER) and H ′ = H \ {h} ] α(HR), where α : N→ N
is a map that associates with the jth vertex of X the identity of the jth vertex in Vh, and
associates with vertices of VR \XR a fresh identity that does not appear in V . We denote by
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Figure 7 A safe labeled Petri net where processes encode trials of PCP solutions.
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G
r−→ G′ this rewriting step, and by Gω(G) the (possibly infinite) limit graph obtained by

application of rules of grammar G on G.
LetN = (P, T, F,M0, λ) be a safe labeled Petri net. We fix an arbitrary order<P on places.

Given a marking M , and a set of integers 1 . . . |M |, we denote by index(p,M) ∈ 1 . . . |M |
the rank of place p in the sequence of integers representing marked places in M . Similarly,
given a marking M and a list of integers representing this marking, we denote by place(i)
the place represented by index i.

We have seen in section 6.2 an algorithm to build inductively an unfolding of a safe
Petri net N . This unfolding can be infinite, but exhibits a regular structure. Furthermore,
many verification algorithms addressing reachability of coverability questions work on a
structure called a complete finite prefix. A complete finite prefix is built inductively as an
unfolding, but stops within a finite number of steps, according to some criterion, that forbids
the addition of events fulfilling some properties. A stopping criterion frequently met is the
reachability criterion: it forbids a possible extension if adding the considered event produces
a configuration that ends in a marking that was already visited in the branching process [23].
These events are called cut-off events. The principle of the HRG construction described
hereafter is to build a complete finite prefix of net N , to find the markings that can be
reached when appending cut-off events to maximal configurations of the prefix. We then use
these markings as hyperarcs, and the part of the prefix occurring after the marking as the
right part of a grammar rule.

Let us first recall some definitions borrowed from [23]. Let ON = (B,E, F ) be an
occurrence net and let S be a configuration of ON. We denote by S • the set of all
places that are maximal w.r.t. to this configuration, i.e. the set X of all places such that
∀p ∈ X,∀e ∈ S, p 6∈ •e and ∀p ∈ X,∀e ∈ E \ S, p 6∈ e •. Let µ be a homomorphism from ON
to N . The final state of a configuration F(S) is the marking µ(S •). The local configuration
of an event e is the set ↓ e.

Let BR be a branching process. A possible extension e is a cut-off event (w.r.t. the
reachability criterion) iff there exists another event e′ such that F(↓ e •) = F(↓ e′ •), and
|e′ •| < |e •|.

Now, the algorithm to compute a complete finite prefix is the following:

0) Start from the initial branching process BR0
1) find the set PE of possible extensions of BRi, i.e. the fresh pairs (X, t) such that X is a

co-set of BR and µi(X) = •t;
2) Compute NE = {pe ∈ PE | pe is not a cut-off event}
3) while NE is not empty,
4) choose a particular event e = (X, t) in NE
5) Ei+1 = Ei ∪ {e}

Bi+1 = Bi ∪X ′ with X ′ = {(e, p) | p ∈ t •}
Fi+1 = Fi ∪ (X × {e}) ∪ ({e} ×X ′)
µi+1 extends µi by µi+1(e) = t and for any b = (e, p) ∈ X ′, µi+1(b) = p.
λi+1 extends λi by λi+1(e) = λ(t).

6) compute the set PE of possible extensions of BRi+1;
7) Compute NE = {pe ∈ PE | pe is not a cut-off event}
8) endwhile

It is well known (see for instance [23]) that:

the construction of a complete finite prefix w.r.t. the reachability criterion terminates,
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all cuts of the prefix (and in fact even all those of the unfolding) correspond via µ to a
reachable marking, and
conversely, all reachable markings of an unfolded net are represented by at least one cut
in the prefix.

Let us call CFP(N ) the complete finite prefix thus built; then for every reachable marking
M of N , there exists a configuration S of CFP(N ) such that F(S •) = M .

We can now detail the construction of a HRG that generates the unfolding of N . We
first build CFP(N ) using the algorithm above. Then, we compute the set PE of possible
extensions in CFP(N ), and add these possible extensions to CFP(N ). Let BRCFP,PE be
the branching process obtained by adding these events, and let S1, . . . Sk be the maximal
configurations of BRCFP,PE. For every Si there exists at least one configuration S′i of
CFP(N ) such that F(Si •) = F(S′i •). Note that for the reachability cut-off criterion, there
can be more than one configuration of this form. We can choose arbitrarily one of them, for
instance the configuration with the minimal number of events. For such a configuration S′i
we denote by ↑BRCFP,PE S

′
i the restriction of BRCFP,PE to events and conditions that are

descendants of S′i •.
We build the grammar GN = (Ax,R) as follows. We set Ax = (N0, H0) where N0 =

BRCFP,PE and H0 = {(li, Xi) | Si is a maximal configuration of BRCFP,PE} where each Xi

is an ordered set of vertices containing all conditions in Si • (we can order vertices according
to <P and according to the place µ(b) represented by each condition b in Xi).

Then, for every maximal configuration Si in BRCFP,PE, we create a rule ri = (Li, Ri)
where Li is a hyperarc Li = (li, 1 . . . |Si •|), and Ri = (Vi, Ei, Hi), where (Vi, Ei) is a copy
of ↑BRCFP,PE S

′
i, in which conditions in S′i are numbered 1 . . . |S′i •|. Last, Hi is the set of

hyperarcs of the form h = (li, Xi), where Xi is a set of conditions contained in Ei∩BRCFP,PE.
One can notice that GN may have up to 2|P | rules. We can show that GωN (Ax) = U(N ).

6.5 Proof of Proposition 2
Proposition 2. There exist labeled safe Petri nets and observation functions whose execution
graphs are not of bounded treewidth, and cannot be represented by a hyperedge replacement
grammar.

Proof. This proposition is proved by exhibiting a simple example, whose execution graph
contains grid minors of arbitrary sizes.

A grid of size m×m is a graph which vertices are words from {0, 1}n with n ∈ 0..m and
such that for any such word w, there is an edge from w to w.1 and from w to w.0. A minor
of a graph G = (V,E) is a graph G′ obtained by either removing vertices, removing edges, or
collapsing vertices that are connected. A famous theorem by Robertson and Seymour [26]
says that a family of graphs FG has bounded treewidth if and only if there exists a constant
m such that no graph G ∈ FG has a minor isomorphic to the m×m grid. It is also known
that Hyperedge Replacement Grammars can only generate graphs of bounded treewidth (see
for instance [11]).

Let us consider the example net N of Figure 8, labeled by λ(e) = λ(f) = a, λ(u1) =
λ(u2) = b and an observation function Oe,f that projects processes of this net on events
labeled by a. Notice that all processes generated by these nets provide a total ordering on
events (the execution graph of N is hence a tree). Within this tree, all events labeled a

located at the same depth are equivalent w.r.t. Oe,f .
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Figure 8 A simple labeled safe Petri net

Clearly, the execution graph of N has the graph of Figure 9 below as minor (it suffices
to collapse conditions with their predecessors, and to keep only nodes corresponding to
transitions u1 and e if they are successors of an occurrence of e. Last, ordering vertices
according to lexicographical order e < u1 < f < u2 we keep only equivalence edges that go
from right to left.

One can clearly see from this picture that a grid of arbitrary size n can be created by
first removing all events at depth ≤ 2 · n, then collapsing every occurrence of u1, u2 with
its predecessor, and then removing the leftmost part of the grid to have only red chains of
at most n event. As a consequence, the execution graph of N has all grids of size n× n as
minors. Following the results of Robertson & Seymour, it is then not of bounded treewidth.
It is well known that context-free hyperedge replacement grammars and equational graphs
are alternative definitions for families of graphs [11]. So, an HRG can only generate graphs
of bounded treewidth. Hence, there is no context free HRG generating the execution graph
for the example considered in Figure 8. J

6.6 Proof of Proposition 4
Proposition 4. Let φ be a HyPOL formula. Then there exists an MSO formula ψ such that
N |= φ iff GU(N ) |= ψ

Proof. Without leaving MSO, we can define a particular labeling to differentiate events and
conditions in GU(N ): We write Cond(x) for the predicate that holds for every condition and
Event(x) for the predicate that holds on all events.

We first define some basic formulas, holding at some node of GU(N ):

true holds for every element of GU(N );
Lab(x) ∩D 6= ∅ is equivalent to the formula

∨
d∈D

labd(x) ;

Event(x) holds under any interpretation that assigns an event of GU(N ) to x;
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⊥
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Figure 9 A part of minor of the execution graph for the net of Figure 8 with observation function
Oe,f that projects processes on events labeled by a.

Cond(x) holds under any interpretation that assigns a condition of GU(N ) to x;
edge(x, y) holds under an interpretation that assigns a condition b to x and an event e to
y, and such that b ∈ •e, or an event e to x and a condition b to y such that b ∈ e •;
edgei(x, y) holds under any interpretation I that assigns events I(x) and I(y) of GU(N )

to x and y and such that I(x) i−→ I(y).

From these building blocks, we can define more advanced expressions.

succ(x, y) is a formula that holds under an interpretation I such that e = I(x) is an
event, f = I(y) is an event, and the pair of events e, f is in immediate successor relation
in GU(N ). Formally, this is written as:
succ(x, y) ::= ∃z, Event(x) ∧ Event(y) ∧ Cond(z) ∧ edge(x, z) ∧ edge(z, y).
isMinimal(x,X) is a formula that holds under an interpretation that maps variable x to
an event, X to a set of nodes of GU(N ), and such that I(x) is minimal in X with respect
to the causal ordering of GU(N ). Formally, we write:
isMinimal(x,X) ::= x ∈ X ∧ Event(x) ∧ @y ∈ X, succ(y, x).
isMaximal(x,X) is similar to the previous formula, and requires I(x) to be maximal in
X. It is defined as: isMaximal(x,X) ::= x ∈ X ∧ Event(x) ∧ @y ∈ X, succ(x, y)
isAChain(x,X) is a formula that holds for any interpretation I in which X is a chain
(a totally ordered sequence of events w.r.t. the successor relation) starting from x. It is
formulated as follows:

isAChain(x,X) ::=
isMinimal(x,X) ∧ ∀y ∈ X,
(isMinimal(y,X) =⇒ x = y)∧
(∃z ∈ X, succ(y, z)) =⇒ (@z′ ∈ X, z 6= z′ ∧ succ(y, z′))

x ≤ y can be defined as the formula:

x ≤ y ::=
Event(x) ∧ Event(y) ∧ ∃X,x ∈ X ∧ y ∈ X
∧∀z ∈ X, succ(z, z′) =⇒ z′ ∈ X
∧∀u ∈ X,@u′, succ(u′, u) =⇒ u = x
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More intuitively, this formula says that I(X) is the set of all successors of I(x) in
GU(N ), and it contains I(y). This is a standard formula frequently used when addressing
properties of partially ordered sets.
x < y (covering) is defined by x < y ::= x ≤ y ∧ @z, z 6= x, z 6= y, x ≤ z ∧ z ≤ y.
Let O be a particular observation erasing events that do not carry a label from a particular
subset D, and restrict covering of the obtained order to pairs of events carrying specific
pairs of labels in R ⊆ Σ× Σ. Then one can define x <O y as the formula stating that
the labels attached to x and y are contained in D, that (lab(x), lab(y)) ∈ R, that there
exists a path from x to y such that every intermediate event visited between x and y
carries a label that does not belong to D. This type of construction applies for all kind
of labeling-based projection and order restriction.
More formally :

x <O y ::=

Event(x) ∧ Event(y) ∧ Lab(x) ∩D 6= ∅ ∧ Lab(y) ∩D 6= ∅
∧ x ≤ y
∧ ∀z, x < z ∧ z < y =⇒ Lab(z) ∩D = ∅
∧

∨
(a,b)∈R

laba(x) ∧ labb(y)

We are now ready to transform HyPOL formulas into MSO formulas. For every hypol
formula φ we will build inductively an MSO formula ψ. The inductive construction will
use fresh first order variables x, y, ... and second order variables X,Y, ... at every induction
step. Further, as HyPOL formulas should hold at a particular event, we will design ψ with
a particular free variable x depicting the event at which ψ must hold. For every HyPOL
formula φ, letting ψ be the MSO formula obtained by translation of φ into MSO, for every
order O in Ord(PR(N )) and every event e ∈ EO, O, e |= φ if and only if ψ holds in GU(N )
under an interpretation that assigns e to x. We hence define ψ = MSO(φ, x, C) where C
is a context listing variable names already used, x is a free variable in ψ, that appears in
C, and ψ is an MSO formula over x and fresh variable names not used in C. For a given
HyPOL formula φ, we build inductively ψ = MSO(φ, x, C) as follows:

if φ = true then MSO(φ, x, C) = true for any variable x and context C;
if φ = ¬φ′ then MSO(φ, x, C) = ¬(MSO(φ′, x, C));
if φ = φ1 ∧ φ2 then MSO(φ, x, C) = MSO(φ1, x, C) ∧MSO(φ2, x, C);
if φ = EXD,O φ

′ then MSO(φ, x, C) = ∃y, x ≤O y ∧MSO(φ, y, C ′) where y is a fresh
variable name (w.r.t. C and to the set Cx≤Oy of variables used to encode subformula
x ≤O y ) and C ′ = C ∪ {y} ∪ Cx≤Oy;
if φ = match(O, T, f) where T = (E,<T , λT ), with E = {f} ∪ {e1, e|E|−1} then
MSO(φ, x, C) = ∃x1, . . . x|E|−1,

∧
(f,ei)∈<T

x <O xi

∧
∧

(ei,ej)∈<T

xj <O xi

∧
∧

i∈1..|E|−1
Lab(xi) ⊇ λT (xi)

where x1, . . . x|E|−1 are fresh variable names (w.r.t. C);
if φ = EX≡,Oi

φ′ then
MSO(φ,X,C)) = ∃y, edgei(x, y) ∧MSO(φ′, y, C ′)
where y is a fresh variable name (w.r.t. C) and C ′ = C ∪ {y};
if φ = φ1 EUD,O φ2 then
MSO(φ, x, C) = ∃X, isAChain(x,X)

∧∀y ∈ X,∃y′, y <O y′ =⇒MSO(φ1, y, C
′)

∧@y′, y <O y′ =⇒MSO(φ2, y, C
′)
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where y, y′, X are fresh variable names (w.r.t. C and to the sets Cy,y′ and Cchain
of variables used to encode respectively formulas y <O y′ and isAChain(x,X) ) and
C ′ = C ∪ {y} ∪ Cy,y′ ∪ Cchain;
if φ = EGD,O φ

′ then MSO(φ, x, C) = ∃y,Event(y) ∧ x <O y ∧MSO(φ′, y, C ′) where y
is a fresh variable name (w.r.t. C) and C ′ = C ∪ {y}.

We have assumed that the unfolding of N has a unique starting event denoted by ⊥ and
carrying label ⊥. We can prove by induction on the length of HyPOL formulas that N |= φ

iff GU(N |= ∃s, x, lab⊥(s) ∧ succ(s, x) ∧MSO(φ, x, {s, x}). J

6.7 Proof of proposition 3
Proposition 3. Let N be a K−layered safe Petri net. Then, one can effectively compute a
hyperedge replacement grammar GK,N that recognizes the execution graph GU(N ).

Proof. We reuse the construction of the graph grammar GN in the proof of Proposition 1.
Recall that each rule of this grammar is of the form r = (h,HG) where h = (l, p1 . . . pk) is a
hyperarc, given as a list p1 . . . pk of vertices representing conditions, with a label l depicting
a marking and the names of places attached to vertices. Also recall that places are ordered
according to an arbitrary ordering <P . Moreover, HG is a a hypergraph containing vertices
of h, a set of vertices representing new events and conditions generated by the rule, edges
between these vertices representing the flow relation in the unfolding, and a list of hyperarcs
representing cuts that will be obtained after the firing of events in configurations of HG.

Grammar GN is sufficient to build U(N ), i.e. it generates events, conditions, and the flow
relation in U(N ). Now, to be able to draw edges in relation i−→ between events that have
isomorphic pasts w.r.t. observation Oi, hyperarcs need to memorize events that may belong
to the K-Ball of any event that will appear in future rewritings in addition to conditions in
cuts reached after a rewriting step. Hyperarcs will hence represent a set of conditions, a set
of events, but also information on the relation and distance among memorized events.
Preliminary notations. Slightly overloading the definition of hyperarc proposed for the con-
struction of GN , we will now consider that a hyperarc is of the form (l, p1.p2 . . . pn.e1.e2 . . . en′),
i.e. a hyperarc is still a list of vertices, but they represent ordered lists of conditions and
events. Note that the number of places and events in the hyperarc is known, as well as their
types (the place occurrence and the transition occurrence they represent) so the partition
between conditions and events in the vertices list is clear. This information can be encoded
in label l.

Let HG be a hypergraph, that contains hyperarcs of the form (l, p1, . . . pn.e1 . . . en′),
such that the grammar for the unfolding contains a rule to expand unfolding from marking
p1, . . . pn. Let us assume that an event e = (X, t) is appended to the unfolding by this rule.
To decide whether an equivalence edge for observation Oi must be written between e and an
event ei ∈ {e1 . . . en′}, additional information will be memorized in the label l: First, the
relation among events appearing in the hyperarc. Second, their distance (up to a certain
bound), and last, the shape of their common past (again up to a bounded distance).

For each pair of event ei, ej in a hyperarc, one can easily memorize whether ei, ej
are causally related, conflicting, or concurrent. We define a function rel : E × E →
{cr, cf, con, none}, with the convention that rel(ei, ej) = cr if ei ≤ ej in U(N ), rel(ei, ej) =
cf if ei and ej are conflicting events, rel(ei, ej) = con if ei and ej are concurrent events, and
rel(ei, ej) = none otherwise.

We assume K fixed, and for each pair of events (e, f) in a hyperarc, we define dist≤K(e, f)
as dist≤K(e, f) = dist(e, f) if dist(e, f) ≤ K and dist≤K(e, f) =∞ otherwise.
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Process graphs. To give a representation of common pasts of events, we define process
graphs as graphs of the form G = (V,−→, α) representing processes of a Petri net, where
V = {1 . . . n} is a finite set of integers, −→⊆ V × V , and α : V × P ∪ T associates a place
or transition name to each vertex in V . We denote by PG(P, T ) the set of all such process
graphs. We will use process graphs to memorize a canonical representation of the (bounded)
past of a set of events.

Now, we can define a partial function diff(ei, ej ,K) : E × E × N→ PG(P, T ), such that
diff(ei, ej ,K) is defined only for pairs of events such that dK(ei, ej) <∞. The process graph
diff(ei, ej ,K) is isomorphic to the part of the unfolding defined by (•(Past(ei) \ Past(ej))) •.
One can notice that with the implicit flow relation due to events construction ((b, e) ∈ F if
e = (X, t) and b ∈ X and (e, b) ∈ F ) if b = (e, p), every vertex in an unfolding has a finite
set of predecessors, and diff(ei, ej ,K) is always a finite graph. Given an occurrence net ON,
a sequence of events e1, . . . en, and a pair of events ei, ej at distance at most K, we can
compute PK(ei, ej) the set of conditions and events that appear in the past of ei and not in
the past of ej at distance smaller than K. Let PK(e1 . . . en) denote the union of all PK(ei, ej)
for all pairs of events ei, ej in e1, . . . , en. Note that this is not yet a canonical representation.
However, one can easily attach a canonical identity (an integer) to each event or condition
in PK(e1 . . . en). Considering an arbitrary ordering on places, transitions, events e1, . . . en
and pairs of events, one can define a backward DFS exploration starting from an event ei in
PK(ei, ej), and associate as canonical identity to a condition or event in PK(e1 . . . en) the
integer indicating the order of discovery during the exploration. Let can(vi) be the function
associating to a condition or event its canonical number. Then, diff(ei, ej ,K) = (V −→, α) is
the process graph obtained by first computing PK(ei, ej) = (B,E, F,Cut0), and then defining
V = can(B) ∪ can(E), (n, n′) ∈−→ iff ∃(b, e) in F such that can(b) = n and can(e) = n′ or
∃(e, b) in F such that can(e) = n and can(b) = n′. Last, we define α(n) = p if can(b) = n

for some condition b = (e, p) and α(n) = t if can(e) = n for some event e = (X, t). As we
define diff(ei, ej ,K) for events that are at distance at most K, this process is always finite.
Notice that we are not interested in processes themselves, but in their general shape (that
will be sufficient to decide isomorphism in unfoldings of layered nets).
Rule construction. We are now ready to define the construction of a rule from the grammar
that generates U(N ). The principle is as follows. Consider a hyperarc h = (l, p1...pk.e1..en)
of our new grammar. We assume that this hyperarc was correctly built, i.e. the label l
attached to the hyperarc is such that p1 . . . pk can be distingushed from e1 . . . en, it associates
a place name with each pi (i.e. one can recover the marking Mi associated to cut p1 . . . pk),
a transition name to each ei, and functions rel and diff.

We use the rule ri = (Li, Ri) of grammar GN with hyperarc Li = (li, p1...pk) such that
the marking described by Li is the same as the marking described by h. This rule is unique,
and as our new rule only adds events to cuts already used in GN , it exists. As the execution
graph does not add new events nor conditions to the unfolding of N we can safely use the
right part Ri of rule ri to add events, conditions, and the flow relation to an already built part
of GU (N ) containing hyperarc h. Let VRi

denote the set of events appended by application
of rewriting rule ri, BRi the set of conditions and ERi the set of edges. For every pair of
events e, f in the set of events VRi

∪ {e1..en} we can decide whether e i−→ f as follows:
Suppose e, f ∈ e1 . . . en: then, every equivalence arc that needed to be appended is

already drawn, and no additional edge needs to be appended between e and f . Suppose
e ∈ e1 . . . en and f ∈ VRi

. Let Pf = {e1 . . . en}∩ ↓ f . Then, one can compute an occurrence
net ONi = (Bi, Xi, Fi) where Xi is the set of events appearing in

⋃
x∈Pf

diff(x, e)∪
⋃

x∈Pf

diff(e, x),

Bi = •(Xi) ∪ (Xi) •. Then, for every x in Xi, one can decide if the distance between x and
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f is greater than K, and if it is smaller compute it: if dist(x, f) > K for every x ∈ Pf then
dist(e, f) > K. As N is K−layered there is no edge of the form i−→ between e and f . If
dist(x, e) ≤ K, then dist(e, f) can also be computed. Assume that there exists x ∈ Pf such
that e ∈↓ x. Then Past(e) ∩ Past(f) = Past(e) and dist(e, f) = max

x∈Pf

(dist(e, x) + dist(x, f)).

As the two values dist(x, e) and dist(x, f) are known, one can easily check whether dist(e, f) ≤
K and if this is the case, compute the frontier H as the set of predecessors of the maximal
places in (↓ e) •, compute F̂e,f and asN isK−layered check that Oi(↓ e\F̂e,f ) ≡ Oi(↓ f\F̂e,f )
(in ONi).

Now, assume that for every x ∈ Pf , e 6∈↓ x. Then, for every x ∈ Pf , e is either in
conflict or concurrent with x. For every node vn in PastK(x), the past of x at distance
at most K either the distance dist(vn, e) between vn and e is already greater than K, or
we know precisely the distance dist(vn, e) ≤ K. The distance between e and f is hence
dist(e, f) = max

x∈Pf ,vn∈PastK(x)
(dist(vn, f)+dist(vn, e)). Like for the case e ≤ x we can compute

H, F̂e,f from ONi, and check Oi(↓ e \ F̂e,f ) ≡ Oi(↓ f \ F̂e,f )
We do not detail the case where e, f are newly generated events, that is similar to the

former situation where e ∈ e1ėn and f ∈ VRi , with the slight differences that distances have
to consider predecessors of both e and f . Hence, starting from an set of conditions l1, . . . pk
and a set of events in an hyperarc, one can generate the occurrence net ON that contains
conditions p1, . . . pk in hyperarc, plus additional events and conditions that are obtained by
application of a rewriting of the form (L,R) defined in the construction of grammar GN , and
augment it with equivalence edges.
Generating new hyperarcs. Let us now explain how new hyperarcs are generated. Recall
that a hyperarc rewriting by a rule of grammar GK,N is a rewriting of a left part of the
form Li = (li, p1 . . . pk.e1 . . . en) into a right part HGi = (Gi, Hi), where Gi is a graph
containing an occurrence net ONi = (Vi, Ei) generated by unfolding from marking p1 . . . pk
using a rule of grammar GN for unfolding (see the grammar construction in section 6.4),
and augmented with equivalence edges, and Hi is a set of newly generated hyperarcs. Let
us first detail the contents of the hypergraph HGi. The added conditions and events are
conditions and events added by some rewriting rule r = (L,R) of GN with L = (l, B) and
R = (ON, H) and such that B = b1 . . . bk represents the same marking as p1 . . . pk, and ONi
(i.e. Gi without equivalence edges) is equal to ON. Note that L is not the full hyperarc
Li, as events and additional information attached to their distance and common past is
missing. However, places p1 . . . pk suffice to write the needed events and conditions in ONi,
as this additional information is only used to detect whether a pair of events is connected
by an equivalence edge. We use a slight shortcut, and call h1, . . . hq the hyperarcs obtained
by application of rule r = (L,R) from GN to a hypergraph that contains a hyperarc of the
form Li = (li, p1 . . . pk.e1 . . . en). These hyperarcs represent the maximal places in maximal
configurations obtained by unfolding a complete prefix once more. We will use them as a
base to design hyperarcs of the form Lj = (lj , p1 . . . pkj .e1 . . . enj ) and hence complete the
construction of rules for GK,N . As seen before, a hyperarc only needs the information about
events at distance ≤ K from events produced in the future (and the finite list of considered
events to be able to build equivalence edges). That is, for each hyperarc hj ∈ {h1, . . . hq}
obtained by application of rule r from p1 . . . pk, we need to compute:

F≤K,hj the set of events that can be at distance ≤ K from events appended in the future
when rewriting hi,
li, the label that associates with places and events enough information to know the type
of each node, the relations among them, and the differences since their common causal
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past.

Let Gi be the graph generated by rewriting, hj be a set of maximal conditions in Gi.
Let Place(hj) denote the list of places appearing in hj , and let t be a transition such that
•t ⊆ Place(hj). Then, a rewriting of a hyperarc with conditions hj will append to Gi all
events of the form e = (X, t) where X is a subset of hj . Note furthermore that for every
event f in Gi, if the distance dist(x, f) between f and all predecessors x of a condition in hj
is already greater than K then dist(e, f) ≥ K. Conversely, if the minimal distance between
a predecessor x of a condition in hj and f is equal to m ≤ K, then the distance between
e and f is m + 2 (one needs to cross two additional edges to go from f to e via x). If we
repeat this operation for every event e that can be an immediate successor of conditions in
hj , then we can build F≤K,hj

the set of events that can be at distance ≤ K form events that
will appear in the future. Then, the causal/conflict/concurrency relation among events in
F≤K,hj

is built from the causal dependences in ONi and from the existing information in the
original rewritten hyperarc Li = (li, p1 . . . pk.e1 . . . en). As in the construction of diff(e, f,K)
we can find a unique way to number conditions and events in Gi, compute diff(e, f,K) for
every pair of events at distance at most K in F≤K,hj , and integrate this information as a
part of a label lj designed for this hyperarc. We hence have a hyperarc Lj = (lj , hj .F≤K,hj

).
We repeat this operation for every hyperarc in {h1, . . . hq}. To summarize, we have produced
a rule of the form (Li, Ri) where Li = (li, p1 . . . pk.e1 . . . en), and Ri is a hypergraph of the
form (Gi, Hi) where Gi is the graph mentioned above obtained by unfolding and decoration
with equivalences, and Hi = {Lj | ∃hj ∈ GN (Li)} is the set of hyperarcs obtained by
adding events and information to hyperarcs of GN that rewrite p1 . . . pk and are of the form
Lj = (lj , hj .F≤K,hj ). One can notice that for a given hyperarc of GN , i.e. for a given marking
M = p1 . . . pk, there is only a bounded number of events that can fire from M . So the K-Ball
of this set of events is finite, and the set of K predecessors of this union of balls is finite too.

For every newly produced hyperarc, we can reproduce this unfolding and decoration
operation to produce new hyperarcs. We compute an axiom as for GN : we compute a
complete finite prefix, decorate it with equivalence edges, and take as hyperarcs the maximal
cuts with additional events. We then proceed inductively from each produced hyperarc to
build a grammar that generates GU(N ). As the set of hyperarcs in GN is finite, as the K-Ball
of events is finite, and as the set of diff(e, f,K) that can appear for events at distance at
most K is also finite, the inductive construction stops.

J

6.8 Proofs of corollaries 16, 17 and 18
Corollary 16 It is undecidable whether the execution graph of a net N satisfies an MSO
formula.

Proof. Assume that MSO is decidable. Then, for each instance I of a PCP, one can build
the net NI and the formula φI describing solutions of instance I of the PCP, as proposed in
the proof of Theorem 11. As every HyPOL formula can be translated into an MSO formula,
checking whether NI |= φI is equivalent to checking whether the MSO formula MSO(φI)
is satisfied by the execution graph GU(NI). As the PCP is undecidable, this question is
undecidable too. J

Corollary 17 Model checking equivalence-free HyPOL properties on labeled safe Petri nets
is decidable.
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Proof. Model checking an equivalence-free HyPOL property φ of a net N amounts to model
checking individually property φ on every process. One can express in MSO that a pair
of events is not in conflict, so φ can be verified as MSO property MSO(φ) on the graph
grammar GN that generates U(N ). J

Corollary 18 HyPOL model checking is decidable for K−layered safe Petri nets.

Proof. MSO is decidable for Hyperedge Replacement Grammars [12, 19]. From proposition 4,
we know that we can transform an HyPOL formula φ on processes of N into an MSO formula
MSO(φ), and that N |= φ iff GU(N ) |= MSO(φ). Similarly, if N is K−layered for some K,
then one can compute a graph grammar GK,N that recognizes GU(N ). J

6.9 Proofs for observable nets
Proposition 5: Let N = (P, T, F,M0, λ) be a safe labeled observable Petri net for observa-
tions O1, . . . ,Ok. Then N is K−layered, for some K ≤ max(2.kc, 3.|T |).

Proof. Let N be an observable net, with set of transition T and set of places. One can
first notice that in a process of N , if a pair of events e, f is connected by a causal chain of
length greater than |T | event f can always be differentiated from event e (and vice versa).
Indeed, let e < x1 < . . . xk < f with k > |T |, where x1, . . . xk are events. We obviously have
↓ e ⊆↓ f . Furthermore, as k > |T |, ↑ e∩ ↓ f contains a cyclic behavior, and in particular,
as N is observable, for every observation Oi, Oi(e < x1 < . . . xk < f) contains at least one
observable event. Hence we have that Oi(↓ e) 6= Oi(↓ f). So, an event f in U(N ) is never
equivalent to an event e that is located in its causal past at a distance greater that 2.|T |.

Now, let us consider a pair of events e, f such that e and f are in conflict. Then, there
exists a pair of executions ρ1, ρ2 that end respectively with e and f , and such that ρ1 = ρ.ρ′1
and ρ2 = ρ.ρ′2, i.e. ρ1 and ρ2 share a common prefix ρ. We have that Oρ ⊆ Oρ1 ∩Oρ2 . Let
us assume that ρ′1 > kc and ρ′2 > kc. Then, as N is observable, for every observation Oi,
Oi(Oρ1) 6= Oi(Oρ2). For a pair of conflicting events, there exists a set of conditions b1, . . . bk
that are maximal (w.r.t. to the flow relation) in ↓ e∩ ↓ f , and such that H(e) is the maximal
length of a path of U(N ):

1) from B0 to e that does not pass through ↓ e∩ ↓ f and hence through b1, . . . , bk,
2) from B0 to e that passes through ↓ e∩ ↓ f and hence through b1, . . . , bk,

the length of a path of type 1 is at most 2.(|ρ| + |ρ1|). One can notice that a part of the
events listed in ρ are either in ↓ e and hence must also appear in ↓ f , or are concurrent with
e and must also be concurrent with f . So the length of path of type 1 leading from B0 to e
and from B0 to f differ by at most 2.kc. Now let us consider paths of type 2. These paths
contain events that belong to ↓ e∩ ↓ f and also appear in ρ, events that belong to ↓ e∩ ↓ f
and appear in ρ′1 (as ρ1 and ρ2 are sequential behaviors, on may still find events in ↓ e∩ ↓ f
that belong both to ρ1 and ρ2). Again, the length of such paths is at most 2.(|ρ| + |ρ1|).
Hence, e and f are at a distance at most 2.kc in U(N ). So, an event f in U(N ) is never
equivalent to another event e located at conflict distance greater than 2.kc in U(N ).

Last, consider a pair of concurrent events e = (Xe, t1), f = (Xf , t2). Clearly, e and f
are occurrences of events that belong to independent sets of transitions Te, Tf . As N is
observable, for every observation Oi, if a cycle ρ containing transitions of Te and Tf exists,
then there is also a pair of transitions te, tf appearing in ρ such that Oi(te) 6= Oi(tf ). Let
Tρ denote the set of transitions appearing in such cycle ρ. If the distance between e and
f is greater than 2.|T |, then there exists a cyclic behavior of the net. This cyclic behavior
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may contain only occurrences of transitions in Te, only occurrences of transitions in Tf or
occurrences of both. Let us assume that the cycle ρ contains occurrences of Te and Tf .
Then as N is observable, there exists an event xe ∈↓ e and an event xf ∈↓ f such that
Oi(xe) 6= Oi(xf ), and hence e and f cannot be considered as equivalent by Oi. Assume
that the cycle contains only occurrences of transitions from Te. Then, as N is observable
w.r.t. each observation Oi, this cycle contains at least one occurrence of a transition that is
observable by Oi. Hence, after two occurrences of cycle ρ, the next occurrence of transition
t1 has a causal past that cannot be equivalent to the causal past of f . Considering cycles
that contain only occurrences of transitions in Tf is symmetric. Hence, for every observation
Oi, if an event f that is at a concurrency distance greater that 3.|T | from an event e, then
Oi(↓ e) 6= Oi(↓ f).

It is straightforward that for every e ∈ U(N ) and for every K, BallK(e) is of bounded
size, as every event has at most |P | predecessors and |P | successors, and every condition has
only one predecessor ans at most |T | successors.

It now remains to prove existence of a frontier H and of a bound K such that H is
contained in the K-causal past of e and f , and such that e ≡i f iff ↓ e \ F̂e,f ≡i↓ f \Fe,f \H.

First, let us assume that e and f are not equivalent. Then, it is sufficient to remember at
most |T | events in their causal past if e and f are causally related to be able to differentiate
them, and to take as frontier the minimal event in this bounded set. Similarly, if e and f are
conflicting events, it is sufficient to remember kc events in their causal past to differentiate
the observation of their past. Last, if e and f are concurrent events, considering 3.|T | events
in their past suffices to notice that they are not equivalent.

Conversely, assume that a pair of events e, f is equivalent w.r.t observation Oi. Then,
these events are at a distance d smaller than max(2.kc, 3.|T |). If e, f are causally related, and
e ≤ f then it suffices to remember the maximal events of ↓ e as frontier (this frontier is finite).
Then, checking that ↓ e ≡i↓ f amounts to checking that (↓ f ∩ Balld(f)) \ (↓ e ∩ Balld(f))
is an empty observation. Now, assume that e and f are conflicting events. As e and f are
at distance at most 2.kc, they share a common past, whose events are located at distance
at most kc. It is then sufficient to take as frontier the maximal event in ↓e∩↓f , which are
contained in the 2.kc -Ball of e and f and then check that ↓ e \ F̂e,f ≡i↓ f \ Fe,f \ H. A
similar reasoning holds for concurrent events. Hence, It suffices to set K = max(2.kc, 3.|T |)
and to consider the nature of pairs of events to find an appropriate frontier allowing to check
equivalence of any pair of events located at distance smaller than K.

J

Corollary 20: HyPOL is decidable for observable safe Petri nets.

Proof. The proof directly follows from corollary 18 and Proposition 5: as an observable
net N is K−layered, for K = max(2.kc, 3.|T |), it suffices to build the grammar GK,N that
generates the execution graph GU (N ) for a K = 3.|T |. Then, for every HyPOL formula,
one can compute an equivalent MSO formula, and verify that this property is satisfied on
GK,N . J
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