
HAL Id: hal-01719208
https://hal.inria.fr/hal-01719208v2

Submitted on 1 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scaling and optimizing the Gysela code on a cluster of
many-core processors

Guillaume Latu, Yuuichi Asahi, Julien Bigot, Tamás Fehér, Virginie
Grandgirard

To cite this version:
Guillaume Latu, Yuuichi Asahi, Julien Bigot, Tamás Fehér, Virginie Grandgirard. Scaling and opti-
mizing the Gysela code on a cluster of many-core processors. SBAC-PAD 2018, WAMCA workshop,
Sep 2018, Lyon, France. �hal-01719208v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163007016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01719208v2
https://hal.archives-ouvertes.fr

Scaling and optimizing the Gysela code
on a cluster of many-core processors

Guillaume Latu
CEA, IRFM, FR-13108 St-Paul-lez-Durance

Yuuichi Asahi
QST Rokkasho Fusion Institute, Aomori, Japan

Julien Bigot
CEA, Maison de la Simulation, FR-91191 Gif-sur-Yvette

Tamas Feher
Max Planck Institute for Plasma Physics,

Garching, Germany

Virginie Grandgirard
CEA, IRFM,

FR-13108 St-Paul-lez-Durance

Abstract—The current generation of the Xeon
Phi Knights Landing (KNL) processor provides a
highly multi-threaded environment on which reg-
ular programming models such as MPI/OpenMP
can be used. Many factors impact the performance
achieved by applications on these devices: one of
the key points is the efficient exploitation of SIMD
vector units, and one another is the memory access
pattern. Works have been conducted to adapt a
plasma turbulence application, namely Gysela, for
this architecture. A set of different techniques
have been used: standard vectorization techniques,
auto-tuning of one computation kernel, switching
to high-order scheme. As a result, KNL execution
times have been reduced by up to a factor 3. This
effort has also permitted to gain a speedup of 2x
on Broadwell architecture and 3x on Skylake. Nice
scalability curves up to a few thousands cores have
been obtained on a strong scaling experiment.
Incremental work meant a large payoff without
resorting to using low-level intrinsics.

Index Terms—many-core, SIMD, vectorization
I. I

The shrinking of computer components is
still an ongoing trend and it is not yet limited
by the laws of physics. Transistor size could
be as low as 1 nm in 2033, as compared to
14 nm today1. Since 2004, another trend is a
continuous increase of the amount of cores
integrated on one chip. In the absence of a tech-
nological breakthrough, there are few options

1Processors employing a 14 nm lithography process:
Intel Skylake & Broadwell & KNL, AMD Ryzen.

available that can increase the performance of
individual cores. One of these options turns
out to be direct support for vector operations
where a single instruction is applied to mul-
tiple data (SIMD). There are a range of alter-
natives for implementing vectorization, which
vary in terms of complexity, flexibility, main-
tainability. In this paper, we will go through a
set of techniques to automatically vectorize a
large legacy code.

The rest of this paper is organized as fol-
lows: the remainder of Section I provides a
description of some of the challenges offered
by KNL hardware, our testbed, and the Gy-
sela application. Section II describes the initial
status in terms of performance on one single
node and three sets of improvements: some
code transformations, algorithmic & numerical
scheme modifications are shown together with
the impact on execution time. We show strong
scalings in Section III on three clusters hosting
different processors. Finally, we conclude in
Section IV.

A. Many-core and KNL context

One option to improve single core perfor-
mance is based on vector registers and SIMD
instructions. SIMD operations exhibit paral-
lelism proportional to the length of vector
registers. Increasing vector length thus offers

the opportunity to achieve speedups in codes
through more SIMD parallelism. Some prob-
lems do however arise as the vector size in-
creases. Branch mispredictions become expen-
sive. It becomes more difficult to regroup data
between vector registers, to achieve efficient
scatter/gather and masking operations, to deal
with complex and/or irregular memory access
patterns. This puts more pressure on com-
piler to select good optimization strategies. The
observation of some rules of thumb in the
code can however ease the compiler’s job. For
example, in the innermost loops, one should
ensure the number of iterations is larger than
the vector length, restrict oneself to the set of
available vector operations and rely on con-
tiguous memory accesses. Current vector size
in Intel KNL and Skylake is 512-bit. Amdahl’s
law limits the benefit of SIMD as there al-
ways remains a fraction of the code that can
not be vectorized. While longer vectors can
improve performance they also have a cost.
The complexity of hardware design requires
improvements in the compilers and lead to
dependencies on the register width for the op-
timization process. Also, many processors can
not execute some SIMD instructions at their
nominal frequency.

Actions have to be taken for the compiler to
generate a proper executable with respect to
vectorization. We will go through some of them
in this paper. Furthermore, using advanced
profiling and performance analysis tools is
mandatory to get confidence in the quality of
the vectorization. Most of the optimizations
targeting vectorization improve performance
both on KNL and on general-purpose multi-
core architectures.

Intel KNL is a standalone many-core proces-
sor. It has many features: a large number of
threads, large vector units, multiple memory
tiers, large memory bandwidth (MCDRAM).
The chip provides up to 72 cores grouped
in tiles, four threads per core, two levels
of cache. MCDRAM is integrated on-package
while DRAM is off-package and connected by

six DDR4 channels. An on-die mesh intercon-
nection keeps the full system coherent.

B. Testbed
We had access to three partitions of the

Marconi machine (Cineca’s Tier-0 system in
Bologna, Italy). These partitions hosted dif-

Node architecture Broadwell KNL Skylake

Nb cores 36=2x18 68 48=2x24
Vector reg. width 256-bits 512-bits 512-bits

Memory 128 GB 96 GB (DDR4)
16 GB (MCDRAM) 192 GB

Frequency 2.3Ghz 1.4Ghz 2.1Ghz
AVX Frequency 2.0Ghz 1.2Ghz 1.8Ghz (AVX2)

1.4Ghz (AVX512)
FMA units 2 2 2
Peak TFlops/s
(theory AVX freq.) 1.2 2.6 2.2

Memory BW GB/s 119 90 (DDR4)
490 (MCDRAM) 195

Power 2x145 W 230 W 2x150 W

Table I: Architectures used for the benchmarks
ferent processor architectures: Intel Broadwell,
KNL and Skylake. We have been able to mea-
sure and compare performance there. The net-
work Fabric is the same: Omnipath. Table I
gives a brief summary of the hardware used.
Intel processors adjust their frequency accord-
ing to workload. Highly threaded, vectorized
code may run in a lower frequency range.

C. Gysela setting
A key factor that determines the

performance of magnetic plasma containment
devices as potential fusion reactors is the
transport of heat, particles, and momentum.
For this purpose, we need to study turbulent
transport and to model tokamak fusion
plasmas. In this article, we focus on an
application that uses a hybrid MPI/OpenMP
paradigm [1]. The Gysela code is a non-linear
5D global gyrokinetic full-f code which
simulates turbulence driven by temperature
gradient. Concerning the coordinate system,
the three spatial dimensions are xG = (r, θ, ϕ)
where r andθ are the polar coordinates in the
poloidal cross-section of the torus, while ϕ
refers to the toroidal angle. The velocity space
has two dimensions: v‖ being the velocity
along the magnetic field lines and µ the
magnetic moment. Let ~z = (r, θ, ϕ, v‖, µ) be

a variable describing the 5D phase space.
The time evolution of the ion guiding-center
distribution function f̄ (~z) (main unknown) is
governed by the Boltzmann equation:

∂t f̄ +
1

B∗
‖s
∇~z ·

(
d~z
dt

B∗
‖s f̄

)
= Dr(f̄)+Kr(f̄)+C(f̄)+S(f̄) (1)

where Dr and Kr are respectively a diffusion
term and a Krook operator applied on a radial
buffer region, C corresponds to a collision
operator and S refers to source terms (see [3]
for more details). We solve this equation
with a Strang splitting consisting in four 1D
advections (along ϕ and v‖ directions) and
one 2D advection (r, θ directions are treated
simultaneously), that are applied at each time
step (see Algo. 1). The guiding-center motion
described by the previous transport equation
is coupled to a field solver (3D Poisson-like
solver with adiabatic response of electrons)
that computes the electric potential φ(r, θ, ϕ):

e
Te

(φ − 〈φ〉) =
1
n0

∫
J0(f̄ − f̄init) dv + ρ2

i∇
2
⊥

eφ
Ti

. (2)

Details about this last equation and the role
of gyroaverage J0 can be found in [3]. This
Poisson-like equation gives the electric
potential φ at each time step t depending on
the main distribution function f̄ .

The MPI domain decomposition is switched
between advections as shown in Algo. 1. The
4D distribution function (for a given µ value)
is transposed just before and after the 2D
advection along (r, θ). We use the following
notation: local indicates that in a given di-
mension each MPI process owns a parallel sub-
domain, conversely [*] states that each MPI
process possesses all points along a specified
direction. During the 2013-2016 period, we ob-
tained good strong scalings with this code, e.g
60% efficiency at 65k cores on a Sandy-bridge
based machine, 87% on a BlueGene/Q machine
at 32k cores. Details about the parallelization,
reducing MPI costs, can be found in [1], [4].
However, vectorization and many-core issues
have arisen since then. In the following we
present adaptations to accommodate these re-

cent architectural changes.
for time step n ≥ 0 do

Field solver, Derivative computation, Diagnostics
1D Advection in v‖ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
1D Advection in ϕ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
Transpose of f̄
2D Advection in (r, θ) (∀(µ, ϕ, v‖) = [local],∀(r, θ) = [∗])
Transpose of f̄
1D Advection in ϕ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
1D Advection in v‖ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])

Bo
lt

zm
an

n
so

lv
er

 Sources, Krook, Diffusion, Collision operators

Algorithm 1: Sketch of the global Gysela algorithm

II. I

A. Load-balance and hyperthreading

In order to better use the multiple floating-
point units available within the cores and to
better support hyperthreading, we introduced
a set of optimizations. These included enhanc-
ing the load balance of threads by means of
more dynamic scheduling (see [4] for details).
Then, we removed some OpenMP and MPI
synchronizations. Also, we removed the as-
sumption that the number of threads within
one process had to be a power of two. This
was crucial to address more systems.

B. Inlining, conditionals and loops

The first steps in adapting our code to KNL
were to ease the compiler’s work. Indeed some
algorithms and/or programming styles inhibit
vectorization. Some of the requirements to help
the vectorization process are: (i) the vectorized
loop should be the innermost loop of a nest, (ii)
there should be no I/O nor function calls (apart
from math functions) inside those loops, (iii)
loop-carried and complex data dependencies
should be avoided, (iv) the control flow should
be uniform (exceptions exist but one should
consider removing branches at first) and ar-
ray notations should be promoted instead of
pointers. A conditional branch is a control
hazard, it introduces additional instructions, it
can lead to pipeline stalls that can compromise
the efficiency of the Vector Processing Unit.

a) Inlining: Vectorization happens on the
innermost loops that consist in simple enough
code (typically a single block). It is then crucial

to inline function calls in these loops (routines
stored in different modules are not inlined
by fortran compilers). We added inline func-
tions (through the !$dir force inline direc-
tive and by moving the function declarations
in header files). We also used specific pragmas
to help the compiler auto-vectorization analy-
sis (e.g. !$omp declare simd creates vectorized
versions of a function that process vector argu-
ments using SIMD).

b) Conditionals, loops: We moved some
conditionals lower in the call stack. Instead
of having branch switches within the loops
to be vectorized, we transformed the code in
order to have them outside each innermost
loop. In some routines of the code, there were
several nested loops to provide a simple way to
express a switch (see Fig. 1, first Algo., lines 2-
5). A set of more specialized routines have been
introduced that avoids these nested loops.The
switch between these specialized routines has
been devolved to the caller.

c) Expressions and directives: The SIMD
instruction sets of processors tends to be
less general than the scalar ones. Specialized
domain-specific operations are included, many
operations are available only for some data
types, and a high-level understanding of the
computation is often required in order to take
advantage of them. In order to avoid going
to assembly, the developer has to transform
the code so that the auto-vectorization of the
compiler achieve good optimizations. Some
standard techniques we have used include:
1) precompute and store reciprocals (to avoid
divisions), 2) reformulate some mathematical
expressions and remove temporary variables
for simpler data dependencies analysis, 3) in-
troduce small vectors as local variables to-
gether with strip-mining 4) add explicit vec-
torization directives as !$dir simd (whenever
auto-vectorization is insufficient).

d) Sample code: Fig. 1, second Algo., ex-
emplifies some modifications described above.
A conditional has been moved outside inner-
most loop and three loops were avoided thanks

to the specialization of this code part (at many
places, this code block is called enforcing a
single iteration count for the ir, itheta, ivpar
variables). A precomputation of one reciprocal
is done and stored into the product variable.
The main loop does not embed any temporary
variables and the directive !$dir ivdep was
added.

� �
1 icount = 0

2 do ivpar = begin_dim4 ,end_dim4
3 do iphi = begin_dim3 ,end_dim3

4 do itheta = begin_dim2 ,end_dim2

5 do ir = begin_dim1 ,end_dim1

6 Bij = init_magnet%B_norm(ir,itheta)

7 if (asktransp .and. transp_Bstar) then

8 call precomp_transp_Bstar(ir,itheta,ivpar,Bs)

9 else

10 call precomp_Bstar(ir,itheta,ivpar,Bs)

11 end if

12 dPhidr_tmp = dPhidr_3D(ir,itheta,iphi)

13 dPhidtheta_tmp = dPhidtheta_3D(ir,itheta,iphi)

14 Br_tmp = init_magnet%Br(ir,itheta)

15 Btheta_tmp = init_magnet%Btheta(ir,itheta)

16 J_tmp = coord_sys%jacobian_space(ir,itheta)

17 PoissBrack_Phi_phi = 1._F64/(J_tmp*Bij) * &

18 (Br_tmp*dPhidtheta_tmp -Btheta_tmp*dPhidr_tmp)

19 SvExB_gradphi(icount) = PoissBrack_Phi_phi/Bs

20 icount = icount+1

21 end do

22 enddo

23 end do

24 end do� �� �
1 ! Specialized version of the code given that often

2 ! there is a single iteration in dimensions: 1,2,4

3 ir = begin_dim1

4 itheta = begin_dim2

5 ivpar = begin_dim4

6
7 ! conditional branch moved outside the main loop

8 if (asktransp .and. transp_Bstar) then

9 Bs = Bstar_PNrPNthNvpar(ir,itheta,ivpar)

10 else

11 Bs = Bstar_NrNthPNvpar(ir,itheta,ivpar)

12 end if

13 ! precomputation of a reciprocal to save compute

time

14 product = 1._F64/&

15 (coord_sys%jacobian_space(ir,itheta)*&

16 init_magnet%B_norm(ir,itheta)*Bs)

17 !DIR$ ivdep
18 do iphi = begin_dim3 , end_dim3

19 SvExB_gradphi(iphi-begin_dim3) = &

20 product * (init_magnet%Br(ir,itheta)*&

21 dPhidtheta_3D(ir,itheta,iphi) - &

22 init_magnet%Btheta(ir,itheta)*&

23 dPhidr_3D(ir,itheta,iphi))

24 end do� �
Figure 1: Sketch of a code part of E × B compute
(first algo.), versus the new version with inlining
and branch removal (second algo.)

e) Benchmark: The best configuration that
we have identified on a KNL node is 4 MPI
processes of 32 threads within a node of 68
cores (roughly two threads per core with the
hyperthreading). The memory mode on KNL
was set to cache and cluster mode to quadrant.
On Marconi Broadwell and Skylake nodes, the

hyper-threading support was unavailable, thus
we imposed one thread per core and one pro-
cess per processor (i.e. two processes per node).
Within a run, there are 8 iterations which
means measures include an average over 8
samples. Table II summarizes the gains pro-
vided by techniques described above on one
node (all cores used). The lines of the table fo-
cus on different operators of Gysela. Execution
times are shown in seconds for a small case. In
percentage, the gain over the original version
is displayed. The global execution times is
reduced by -18% up to -41% depending on the
machine. It turned out that all architectures
took advantages of the changes.

C. High-order & cache-friendly algorithm

a) Alternative interpolation: High-order
methods require more floating point opera-
tions per degree of freedom than low-order
methods. One could expect high-order to slow
down applications, but execution time is not
directly proportional to computational cost. In-
creased operation efficiency (e.g through good
vectorization) can compensate the increase of
computational cost. Furthermore, the compu-
tation intensity for data in cache is large for
high-order methods and this fits well with
the idea that “FLOPS are almost free” in the
Exascale landscape while costs associated to
data accesses should increase.

In this context, we evaluated the benefits
of 1D high-order Lagrange [2] interpolations
instead of cubic splines [3]. The Lagrange poly-
nomials of degree 5 provides close accuracy
compared to cubic splines within Gysela runs.
Tensor product was used in order to access 2D
interpolations. Practically, splines require a set
of coefficients that are computed prior to the
interpolations. This step involves additional
data moves, storage for the coefficients, but
also extra operations (i.e. small LU systems to
be solved) that the compiler have difficulties
to vectorize. With the Lagrange approach, the
compiler is able to well vectorize the simple
mathematical formulas. One should also have

Architecture
Step Broadwell KNL Skylake

advec1D in v‖ 32.6 (-44%) 46.6 (-42%) 17.9 (-61%)
advec2D (r, θ) 28.3 (-31%) 34.7 (-18%) 16.0 (-46%)

transpose 31.2 (-25%) 13.0 (-51%) 15.6 (-53%)
heat source 9.7 (-13%) 17.3 (-23%) 6.1 (-25%)

diffusion in θ 10.4 (-13%) 10.7 (0%) 5.4 (-33%)
. . .

Total 196 (-22%) 227 (-18%) 120 (-41%)

Table II: Breakdown of timing (in s) for a small
Gysela run. In parentheses, improvement brought
by Sections II-A and II-B compared to the original
version. Domain size is 256 × 128 × 64 × 64 × 1.

Mem.
Interpolation \Operation load/store × + /

1D spline 1 1 26 16 1
1D Lagrange 5th 1 1 30 25 0

2D spline 1 1 60 40 2
2D Lagrange 5th 1 1 90 74 0

Table III: Estimates of the average number of op-
erations associated to cubic spline versus Lagrange
interpolations for a single interpolation. Good spa-
tial/temporal cache localities are assumed.

a look to the computational costs. They are
given in Table III considering that one have a
series of interpolations to perform (Gysela con-
text) and the cache is able (in average) to amor-
tize the loads and stores down to one load, one
store per interpolation. One has to mention,
the divide operation, which is located in the
spline interpolation, behaves slowly compared
to other basic math operations on KNL. The
number of multiplications and additions is
larger for Lagrange than for splines, but as
the vectorization is effective with Lagrange,
the computational overhead is cleared as the
timings of Table IV establish.

b) Cache-friendly one-strided advections:
Contiguous memory access patterns fit well
with the SIMD approach. Many SIMD oper-
ations can reference aligned unit-stride vec-
tors in-memory as part of the instruction, thus
avoiding separate load/stores. In other words,
contiguous accesses permit to save extra and
possibly inefficient gather/scatter operations
or strided load/store. To access memory effi-
ciently, one has also to minimize indirect ad-
dressing, and to align data to 64-byte bound-
aries on both KNL and Skylake. Some data lay-
out transformations may help in that regard.

Fig. 2 sketches a modified algorithm of the
1D v‖ advection that diminishes long-strided
accesses along the v‖ dimension (ivpar). In-
stead of updating directly the main distribu-
tion function f over the last contiguous di-
mension (original algorithm not shown), copies
are performed in lines 6-9 and 26-30 to work
on a temporary 2D tile. During the copy we
mix the slowest varying index with the fastest
varying one in order to benefit from fast reads
from the main memory. Computations are then
performed on the 2D tile, typically in L2 cache.
Lines 13-22 copy data in ghost regions. This en-
ables us to remove costly conditional branches
related to boundary conditions along v‖ in
the main computations. This way, we have no
conditional statements in the advection kernel
(line 24). All these modifications improve the
quality of auto-vectorization and ensure cache-
friendliness (use of L2 cache is improved and
the TLB is less stressed by long-strided access).
The ϕ advection was modified in the same way.

c) Benchmark: Table IV exhibits timing
obtained after improvements brought by Sec-
tion II-C. In addition to these timings, the
reduction in percentage compared to those pre-
sented in the previous Table II is shown. Exe-
cution time of advections is greatly alleviated
on all architectures.

D. Additional vectorizing techniques

a) Vectorized LU solver: Several routines
of LAPACK can work with multiple right-
hand-sides, and dpttrs in one of them. It
solves a tridiagonal system AX = B where X
and B are general matrices and A is positive
definite real symmetric. The computations per-
formed by such routine is conceptually easy to
transform into a set of SIMD instructions as
the same steps are applied at the same time
to different right-hand-sides stored into small
vectors. This can be achieved organizing the
storage of the right-hand-sides in memory. The
developer has to carry out a data layout trans-
form that may introduce a minor overhead,
but it allows for a very efficient and vectorized

� �
1 !$OMP DO SCHEDULE(dynamic ,1) collapse(2)
2 do i p h i = 0 , Nphi−1
3 do i t h e t a = th star t , th end
4 ! Copy from distrib function to tmp2d buffer
5 ! improve perf. because of contiguous access
6 do ivpar = 1 , Nvpar−1
7 do i r = r s tar t , r end
8 tmp2d (ivpar , i r) = f (i r , i t h e t a , iphi , ivpar)
9 end do

10 end do
11 ! Boundary conditions with extra cells
12 ! avoid conditionals
13 do ivpar = −o f f s e t , 0
14 do i r = r s tar t , r end
15 tmp2d (ivpar , i r) = f (i r , i t h e t a , iphi , 0)
16 end do
17 end do
18 do ivpar = Nvpar , Nvpar+o f f s e t
19 do i r = r s tar t , r end
20 tmp2d (ivpar , i r) = f (i r , i t h e t a , iphi , Nvpar)
21 end do
22 end do
23 ! Perform advections in v//, update tmp2d(*,*)
24 . . . Useful work here / vec tor ized . . .
25 ! Copy back into distrib function
26 do ivpar = 0 , Nvpar
27 do i r = r s tar t , r end
28 f (i r , i t h e t a , iphi , ivpar) = tmp2d (ivpar , i r)
29 end do
30 end do
31 end do
32 end do� �
Figure 2: Sketch of the 1D advection along v‖ with
a copy that prevent long-strided accesses.

Architecture
Step Broadwell KNL Skylake

advec1D in v‖ 13.0 (-60%) 12.8 (-73%) 6.6 (-63%)
advec2D (r, θ) 16.5 (-42%) 26.3 (-24%) 9.4 (-41%)

transpose 31.2 13.4 15.6
heat source 9.7 17.2 6.0

diffusion in θ 10.4 10.7 5.4
. . .

Total 146 (-26%) 154 (-32%) 90 (-25%)

Table IV: Breakdown of timing (in s) for a run. In
parentheses, improvement compared to the previous
version (Table II). Domain size 256 × 128 × 64 × 64.

Architecture
Step Broadwell KNL Skylake

advec1D in v‖ 12.0 (-7%) 11.1 (-13%) 6.2 (-6%)
advec2D (r, θ) 7.2 (-46%) 6.9 (-74%) 4.1 (-56%)

transpose 30.9 13.1 15.5
heat source 4.3 (-56%) 3.6 (-79%) 2.3 (-62%)

diffusion in θ 4.1 (-60%) 3.3 (-69%) 2.6 (-52%)
. . .

Total 111 (-24%) 89 (-42%) 65 (-28%)

Table V: Breakdown of timing (in s) for a small run.
In parentheses, improvement compared to the previ-
ous version (Table IV). Domain size 256×128×64×64.

implementation of the solve in the dpttrs rou-
tine. We modified our code to benefit from a
vectorized LU solver (used into the heat source
and diffusion operators).

b) Loop Fission: Loop fission (also known
as loop distribution) consists in splitting a
single loop into more than one, generally to

remove or simplify dependencies. It attempts
to build simpler loop bodies (part of the orig-
inal one) while keeping the same index range.
This simplifies dependency analysis for the
compiler and isolates the parts of the loop
that inhibit vectorization (in addition this re-
duces the pressure on the vector registers).
This technique has been applied in several
innermost loops of the code. It has also been
combined with loop interchange in order to
move vector loops in the innermost region, and
to move loop carried dependencies or condi-
tional branches outermost. We also introduced
intermediate aligned vectors, it permitted us
to reorganize data while transferring from the
memory to the cache and to have them aligned.

c) Strip-mining, auto-tuning: We intro-
duced strip-mining technique within some Gy-
sela’s operators. We also introduced small vec-
tors declared as local variables. Their size were
set accordingly with the strip-mining segment,
it enables us to get a better SIMD-encoding
from the compiler. For the specific case of 2D
advection operator which represents a major
cost, this size was auto-tuned. We will not give
details here, but other parameters were also
taken into account for this procedure: different
compilers, languages (C/Fortran), several types
of inlining, etc. It turned out the most crucial
parameter is the vector size. Practically, we de-
termined this size through a set of tests using
the BOAST framework [6] for each hardware.

d) Contiguous: In Fortran 2008, the
contiguous keyword informs the compiler
that dummy arguments of a routine will
always be contiguous in memory thus
enabling it to generate more efficient code.

e) Benchmark: Timing measurements are
shown in Table V. The contiguous keyword
helped gain a few percents everywhere. Strip-
mining has been employed in the 2D advection
with success. Loop fission and LU vectoriza-
tion helped shorten the execution time of the
heat source and diffusion computations. Vec-
torization has been widely improved, therefore
the KNL execution time on one node is now

less than on one Broadwell node, which is a
good result (Table V). If one compares the final
timers to the original ones, the time reductions
reach -56% on Broadwell, -68% on KNL and -
68% on Skylake. Improvements have resulted
in a major performance leap. Incremental work
meant a large payoff for Gysela without resort-
ing to writing assembly code or using low-level
intrinsics. Finally, we end up with a speedup
of 7× on advection operators on all processors
and a speedup of 2× to 3× for the global
execution times of the considered test cases.

III. S

We ran a strong scaling test displayed in
Fig. 3 using a domain size 512×256×128×128×
16, which is close to a production case used
by physicists (other strong scalings in [1], [4]).
From these efficiencies, one can see the diffu-
sion and collisions parts scale almost perfectly.
They are composed of computations only, also
well balanced between MPI processes, with-
out any communication. Other parts involve
a mix of computations and communications.
As the work is well balanced thanks to a
domain decomposition that dispatches equally
the computations, the overheads come mainly
from communication costs.
We tested a few experiments at larger scale on
KNL partition (32k cores, not shown here). We
established that two components do not scale
well: field solver and derivatives computation.
They are characterized by many-to-many com-
munication patterns and large data volumes
exchanged [5]. In one test case, their cost was
about 10 % to the total cost with 1k cores, but
about 30% with 32k cores. Investigations are
underway to find a remedy. But, the continu-
ously increasing gap between CPU speed and
network bandwidth (a current trend in modern
supercomputers) will make this task difficult.
Relative efficiency of the entire application con-
sidering 128 nodes reaches 103% on Broadwell,
82% on KNL and 85% on Skylake. The super-
linear speedup is due to beneficial cache effects
that largely compensate parallel overheads (the

1024 2048 4096
Nb. of cores

0

20

40

60

80

100

120

Advections
Field solver
Derivatives computation
Sources
Collisions
Diffusion
Diagnostics
Total for one run

Relative efficiency, Broadwell - Marconi

1024 2048 4096 8192
Nb. of cores

0

20

40

60

80

100

120

Advections
Field solver
Derivatives computation
Sources
Collisions
Diffusion
Diagnostics
Total for one run

Relative efficiency, KNL - Marconi

1024 2048 4096
Nb. of cores

0

20

40

60

80

100

120

Advections
Field solver
Derivatives computation
Sources
Collisions
Diffusion
Diagnostics
Total for one run

Relative efficiency, Skylake - Marconi

Figure 3: Efficiency up to 128 nodes of a short run, considered architectures : INTEL Broadwell, KNL and Skylake

amount of L3 cache is enlarged). Execution
time on 128 nodes are quite close for Broadwell
and KNL, whereas Skylake performs much bet-
ter (in the range of [-40%:-25%]). We recorded
close communication timings across the three
architectures, though.

IV. C
A hybrid MPI/OpenMP approach was used

for the Gysela code to get enhanced perfor-
mance on many-core architectures. We man-
aged to have MPI processes that do not spread
over more than one quadrant of a KNL node,
which guaranteed uniform access to the mem-
ory and non-problematic cache and network
behaviors. Several OpenMP parts needed to be
revised to welcome a large number of threads
and hyper-threading.

In many modern processors, a large fraction
of the peak performance originates from vector
arithmetic units. One can take advantage of
these features through vectorizing compilers
or by explicitly programming them with in-
trinsics, something we choose not to inves-
tigate for portability issues. We have shown
manual transformations that can be applied to
overcome compiler limitations and that allow
for speedup through automatic vectorization.
Namely, strip-mining, loop fission, inlining,
transforming conditional branches and loops,
SIMD directives are the techniques we em-
ployed. We also designed higher level ap-
proaches to reduce costs and shorten execution
time. These include cache-friendly algorithms,
high-order interpolations, transforming data
layouts to use an efficient multiple right-hand

side vectorized solver, and auto-tuning. Apply-
ing all these transformations, we achieved a
speedup of 7× on the advection operators on
all three architectures: KNL, Broadwell, Sky-
lake. Furthermore, a speedup of 2× to 3× were
observed on the global execution times.

Strong scaling benchmarks show that
performance behaves well up to a few
thousands of cores. Relative efficiency stands
in the range of 82% up to 103% on 128 nodes
for the three testbeds we considered.

Acknowledgments We benefited greatly from many fruitful
discussions from B. Pajot (Atos/Bull) and A. Farjallah (Intel).
This work was supported by the EoCoE project, grant agreement
number 676629, funded within the EU’s H2020. We acknowledge
GENCI, PRACE for their machines. We received funding from the
Euratom research and training programme under grant agreement
No 633053. The views and opinions expressed herein do not
necessarily reflect those of the European Commission.

R
[1] J. Bigot et al. Scaling gysela code beyond 32K-cores on

bluegene/Q. In CEMRACS 2012, volume 43 of ESAIM:
Proc., pages 117–135, Luminy, France, 2013.

[2] N. Bouzat, C. Bressan, V. Grandgirard, G. Latu, and
M. Mehrenberger. Targeting realistic geometry in
Tokamak code Gysela. To be published - ESAIM: Proc.,
2018. https://hal.archives-ouvertes.fr/hal-01653022.

[3] V. Grandgirard et al. A 5D gyrokinetic full-f global
semi-Lagrangian code for flux-driven ion turbulence
simulations. Comp. Physics Comm., 207:35 – 68, 2016.

[4] G. Latu, J. Bigot, N. Bouzat, J. Giménez, and V. Grand-
girard. Benefits of SMT and of parallel transpose
algorithm for the large-scale GYSELA application. In
PASC proc., Lausanne, June 8-10, 2016.

[5] G. Latu et al. Scalable quasineutral solver for gyroki-
netic simulation. In PPAM (2), LNCS 7204, pages 221–
231. Springer, 2011.

[6] B. Videau et al. BOAST: A metaprogramming frame-
work to produce portable and efficient computing
kernels for HPC applications. IJHPCA, 32(1):28–44, 2018.

https://hal.archives-ouvertes.fr/hal-01653022

	Introduction
	Many-core and KNL context
	Testbed
	Gysela setting

	Improving performance on a single node
	Load-balance and hyperthreading
	Inlining, conditionals and loops
	High-order & cache-friendly algorithm
	Additional vectorizing techniques

	Strong scaling on clusters
	Conclusion
	References

