
HAL Id: hal-01885874
https://hal.inria.fr/hal-01885874

Preprint submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability and performance guarantees in networks with
cyclic dependencies

Anne Bouillard

To cite this version:
Anne Bouillard. Stability and performance guarantees in networks with cyclic dependencies. 2018.
�hal-01885874�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163005881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01885874
https://hal.archives-ouvertes.fr

Stability and performance guarantees in networks with cyclic

dependencies

Anne Bouillard
Nokia Bell Labs France

Email: Anne.Bouillard@nokia-bell-labs.com

October 5, 2018

Abstract

With the development of real-time networks such as reactive embedded systems, there is a
need to compute deterministic performance bounds. This paper focuses on the performance
guarantees and stability conditions in networks with cyclic dependencies in the network
calculus framework. We first propose an algorithm that computes tight backlog bounds in
tree networks for any set of flows crossing a server. Then, we show how this algorithm can
be applied to improve bounds from the literature fir any topology, including cyclic networks.
In particular, we show that the ring is stable in the network calculus framework.

1 Introduction

With the development of critical embedded systems, it becomes a necessity to compute worst-
case performance guarantees. Network calculus is a (min,plus)-based theory that computes
global performance bounds from a local description of the network. These performances are
the maximum backlog at a server of end-to-end delay of a flow. Examples of applications
are switched network [15], Video-on-Demand [19]... More recently, it has been very useful for
analysis large embedded networks such as AFDX (Avionics Full Duplex) [12].

In most applications, such as AFDX, only feed-forward topologies are used. One reason
is the difficulty of deriving good deterministic performance bounds in networks with cyclic
dependencies. However, allowing cycles in networks would result in a better bandwidth usage
and more flexible communications [2]. As a consequence, there is a strong need to design efficient
methods for computing precise deterministic bounds.

Recent works ([10, 11, 7]) have focused on computing tight performance bounds in feed-
forward networks, but the stability of a network is still an open problem in network calculus.

The most classical method for computing performance guarantees in cyclic networks is to use
the fix-point or stopped-time method. It has first been presented in [14]. A sufficient condition
for stability is obtained as the existence of a fix point in an equation derived from the network
description.

The theoretical aspects of the stability in deterministic queueing networks have also been
studied in the slightly different model named adversarial queueing network (see [8] for a precise
presentation). An injection rate per server (the rate at which data crossing this server is sent
into the network) is given instead of one arrival rate per flow. Stability is stated in function of
the topology as a minor-exclusion conditions in [1], in function of a service policy in [5] or of
the injection rate in [18].

Fewer works concern the stability in Network calculus. The most classical result is the
stability of the ring, which is proved in [23] for work-conserving links and generalized in [17].

1

Instability results are provided in [4, 3]. In [4], the authors even show that the FIFO policy
can be unstable at arbitrary small utilization rates. Some works, such as [21], have focused on
finding sufficient condition for the stability in FIFO networks.

Another direction of research has consisted in breaking the cyclic dependencies in order to
ensure the stability. Removing arcs could disconnect the network, but forbidding some paths of
length 2, as in the turn-prohibition method, [22, 20], can ensure both stability and connectivity.

Contributions In this paper, we study the problem of stability in networks with cyclic de-
pendencies in the network calculus formalism, using recent the developments in [11] for tandem
networks. Our main contributions are the following:

• we generalize the recent algorithm of [11], that computes exact worst-case delays in a
tandem network. We adapt it to compute the worst-case backlog of a server for any
subset of flows crossing that server in tree networks. As a matter of fact, the algorithm
in [11] can be deduced from this new algorithm, while the reverse is not true. As a
by-product, we improve the results of [6] about sink-tree networks;

• this new algorithm is used to compute new stability sufficient conditions in networks as
mathematical programs. In particular, we demonstrate the stability of the ring in the
network calculus framework. A weaker result had already been proved in [17] and [23],
but our weaker assumption close a long-standing conjecture.

The rest of the paper is organized as follows: in Section 2, we recall the network calculus
basics. Then in Section 3, we present generic mathematical programming methods to compute
sufficient condition for the stability of networks. Next in Section 4, we give our algorithm
that computes exact worst-case backlog in tree networks. We finally combine these results
to compute new stability sufficient conditions in Section 5, and we compare them through
numerical experiments in Section 6.

2 Network calculus framework and model

We denote by N the set of non-negative integers {0, 1, . . .} and for all n ∈ N, we set Nn =
{1, . . . , n}. For x ∈ R, we set (x)+ = max(x, 0). We write R+ for the set of non-negative reals.

While our model is in line with the standard definitions of networks calculus, we present
only the material that is needed in this paper. A more complete presentation of the network
calculus framework can be found in the reference books [17, 13].

2.1 Flow and server model

Data flows Flows of data are represented by non-decreasing and left-continuous functions
that model the cumulative processes. More precisely, if A represents a flow at a certain point in
the network, A(t) is the amount of data of this flow that crossed this point in the time interval
[0, t), with the convention A(0) = 0. More formally, let

F = {f : R+ → R | f(0) = 0, f non-decreasing and left-continuous}.

A system S is a non-deterministic relation between input and output flows, where the number
of inputs is the same as the number of outputs: S ⊆ Fm×Fm and there is a one-to-one relation
between the inputs and the outputs of the system, such that to each input flow corresponds

2

one and only one output flow that is causal – no data is created or lost inside the system –
meaning that for ((Ai)

m
i=1, (Bi)

m
i=1) ∈ S, ∀i ∈ Nm, Ai ≥ Bi. The vector ((Ai)

m
i=1, (Bi)

m
i=1) is an

(admissible) trajectory of S if ((Ai)
m
i=1, (Bi)

m
i=1) ∈ S. If m = 1, i.e., the system has exactly one

incoming and one outgoing flow, then we will also refer to it as a server.

Arrival curves The notion of arrival curve is quite simple: The amount of data that arrived
during an interval of time is a function of the length of this interval. More formally, let α ∈ F .
A flow is constrained by the arrival curve α, or is α-constrained if

∀s, t ∈ R+ with s ≤ t : A(t)−A(s) ≤ α(t− s).

A typical example of such arrival curve are the pseudo-linear token-bucket functions: αb,r :
0 7→ 0; t 7→ b + rt, if t > 0. The burstiness parameter b can be interpreted as the maximal
amount of data that can arrive simultaneously and the rate r as a maximal long-term arrival
rate.

Service curves The role of a service curve is to constrain the relation between the input of a
server and its output. Let A be an cumulative arrival process to a server and B be its cumulative
departure process. Several types of service curves have been defined in the literature, and the
main types are the simple and strict service curves, which we now define.

We say that β is a simple service curve for a server S if

∀(A,B) ∈ S : A ≥ B ≥ A ∗ β,

with the convolution A ∗ β(t) = inf0≤s≤tA(s) + β(t− s).
An interval I is a backlogged period for (A,B) ∈ F × F if ∀u ∈ I, A(u) > B(u). The start

of the backlogged period of an instant t ∈ R+ is start(t) = sup{u ≤ t | A(u) = B(u)}. As
both A and B are left-continuous, we have A(start(t)) = B(start(t)), and (start(t), t] is always
a backlogged period.

We say that β is a strict service curve for server S if

∀(A,B) ∈ S : A ≥ B and

∀ backlogged periods (s, t] : B(t)−B(s) ≥ β(t− s).
(1)

We define S(β) as the set of functions (A,B) satisfying Equation (1). The name strict service
curves implies a difference to simple service curves. Works on the comparisons between the
different types of service curves can be found in [17, 9]. In this article, we will mainly deal with
strict service curves, but will make use of the convolution A ∗ β used to define simple service
curves.

A typical example of a service curve are the rate-latency functions: βR,T : t 7→ R · (t− T)+,
where T is the latency until the server has to become active and R is its minimal service rate
after this latency.

Note that a server S may not be deterministic, as the function β only corresponds to a
guarantee on the service offered. Among this non-determinism, we will focus on two modes of
operation:

• Exact service mode: During a backlogged period (s, t], the service is exact if for all
u ∈ (s, t] we have B(u) = A(start(t)) + β(u− start(t)). (In this case, start(u) = start(t).)

• Infinite service mode: During an interval of time (s, t], the service is infinite if ∀u ∈
(s, t] : B(u) = A(u), i.e., the server serves all data instantaneously.

3

For a system S ∈ Fm×Fm with m inputs and outputs, we say that S offers a strict service
curve β if the aggregate system is, that is, if

∀ ((Ai)i∈Nm , (Bi)i∈Nm) ∈ S,

(∑
i∈Nm

Ai,
∑
i∈Nm

Bi

)
∈ S(β).

We assume no knowledge about the service policy in this system (except that it is FIFO per
flow).

2.2 Performance guarantees

Backlog In this article, we focus on the worst-case backlog of a flow or a set of flow at a given
server of a network. Let (A,B) ∈ F2 be an admissible trajectory of a server. The backlog of
the server at time t is b(t) = A(t) − B(t)}. The worst-case backlog is then bmax = supt≥0 b(t).
Graphically this is the maximal vertical distance between A and B.

We denote `(t) = t − start(t), the length of the backlogged period upt to t and `max =
maxt `(t), the maximum length of a backlogged period.

We denote bmax(α, β) (resp. `max(α, β)) the maximum backlog (resp. the maximum length
of a backlogged period) that can be obtained for a flow that is α-constrained crossing S(β). For
example, we have

• bmax(γb,r, βR,T) = b+ rT if r ≤ R, = +∞ otherwise;

• `max(γb,r, βR,T) = b+RT
R−r) if r < R, = +∞ otherwise.

For a system with m inputs and outputs, it is also possible to compute the maximal backlog
for a set of flows crossing this server. If I ⊂ Nm, the backlog of flows in I at time t is

bI(t) =
∑

i∈I F
(in)
i (t)−

∑
i∈I F

(out)
i (t). If the system offers a strict service curve β and flow i is

αi-constrained, then

bI(t) ≤ bI,max = (
∑
i∈I

αi)� (β −
∑
j /∈I

αj)+(0),

where f � g(t) = supu≥0 f(t + u) − g(u) is the (min,plus)-deconvolution. In the case of leaky-
bucket arrival curves and rate latency service curve,

bI,max = bI +
rI

R− rI
(bI + rIT) + rIT, (2)

with rI =
∑

i∈I ri, and similarly for rI , bI and bI .

Stability We will also be interested in the stability of a network. Let us first define the
stability for server:

Definition 1 (Server stability). Consider a server offering a strict service curve β and a flow
crossing it, with arrival curve α.

• This server is said unstable if its worst-case backlog is unbounded;

• This server is said critical if its worst-case backlog is bounded, but the lengths of its back-
logged periods are not bounded;

• This server is said stable if the length of its backlogged periods is bounded.

If the service curve is rate-latency βR,T and the arrival curve token-bucket γb,r, then a server
is unstable if R < r, critical is R = r and stable if R > r.

Note that this definition only involves r and R. The stability is insensitive to b and T , that
only influence the size of the backlog and backlogged period.

4

2.3 Network model

Consider a network composed of n servers numbered from 1 to n and crossed by m flows named
f1, . . . , fm, such that

• each server j guarantees a rate-latency strict service curve β(j) = βRj ,Tj ;

• each flow crosses the network along a path π = 〈πi(1), . . . , πi(`i)〉, where `i ≥ 1 is the
length of the path. Each flow is constrained by the arrival curve αi = γbi,ri .

For a server j, we define Fl(j) = {i | ∃`, π(`) = j} the set of flows crossing server j.
We denote by N this network. Its induced graph is the directed graph whose vertices are

the servers and the set of arcs is

A = {(πi(k), πi(k + 1)) | i ∈ Nm, k ∈ N`i−1}.

We assume, without loss of generality, as we will focus on the performances in one server,
that the network is connected has a unique final strictly connected component. Moreover, we
assume that for all j ∈ Nn−1, there exists j′ > j such that (j, j′) ∈ A (up to renumbering the
servers, this is also without loss of generality).

Classes of networks:

• if A = {(j, j + 1) | j ∈ Nn−1}, then the network is called an tandem networks;

• if the output degree of each vertex except node n is 1, then the network is called a tree
network;

• if the graph network has no cycle, the network is called feed-forward;

• otherwise, it has cyclic dependencies.

Network stability

Definition 2 (Local stability). Consider a network N . It is said locally stable if all its servers
are stable using the initial arrival curves: ∀j ∈ Nn,

`max(
∑
i3j

αi, β
(j)) <∞.

Definition 3 (Global stability). A network is globally stable if for all its servers, the length of
the maximal backlogged period is bounded.

We call the linear model when arrival curves are leaky-bucket and the service curve rate-
latency. Our aim is to give sufficient properties for the global stability for networks with cyclic
dependencies (the underlying graph has cycles).

Lemma 1. If a network is globally stable, then it is locally stable.

Proof. We prove this by contra-position: suppose that the network is not locally stable. Then,
there exists a server j that is not stable considering the original arrival process. Consider the
following trajectory: every server acts as an infinite server except server j. Then the arrival
processes into server j are exactly those that are injected into the network, and server j is not
stable: the length of its backlogged period cannot be bounded. But they cannot either in this
behavior of the network. So the network is not globally stable.

5

3 Sufficient conditions of network stability

When the network is feed-forward, it is possible to compute the performance of the network by

1. applying Equation (2) at every server and for I = {i} for each flow fi crossing that server
and

2. propagating the constraints in the topological order of the servers.

This is not possible when there are cyclic dependencies, because of the inter-dependencies
between the backlogs computed when applying Equation (2).

The fix-point method is a generic method to compute performance guarantees in networks
with cyclic dependencies. The main idea is to compute, for each server and each flow crossing
it, an output arrival curve that depends on the input arrival curves at that server. A system
of equations is then obtained and the solution, if it exists, gives output arrival curves for each
flow after each server it crosses. This approach has been described for leaky bucket arrival
curves and rate-latency service curves in [17]. The method for proving this approach is the
stopped-time method.

In this section, we generalize the stopped-time method described in [17] in four directions:

• it can be applied to any arrival and service curve;

• it can be applied to any feed-forward decomposition of the network rather than a for each
server individually;

• it can be applied to any group of flows rather than considering each flow individually;

• it can handle different combinations of the two cases above.

Instead of computing a fix-point, we rather present our results as the solution of an op-
timization problem, that enables us to include the computation of the network performance
(worst-case backlog for example) in problem. In the linear model, we obtain a linear program.

With the three first points of generalization, it is also possible to solve a fix-point problem in
order to obtain stability sufficient conditions. But the fourth point has no natural formalization
into a fix-point problem.

We first describe the transformation of the network and flow grouping before and computing
performance bounds as an optimization problem.

3.1 Network transformation

3.1.1 Feed-forward decomposition

Let N be a network and GN be its induced graph. This graph can be transformed into an
acyclic graph by removing a set of arc Ar ⊆ A.

Example 1. The toy network of Fig. 1 can be transformed into an acyclic network by removing
arc (4, 2). In the next section, we will see that [erformance bounds can be efficiently computed
in tree topologies. Such a decomposition can be obtained with Ar = {(4, 2), (2, 1)}. With Ar = A,
all arcs are removed, and we obtain a graph with isolated nodes only.

Note that this transformation is not unique, and finding the minimum set of edges to remove
is a NP-complete problem (it is the Minimum feed-back arc set problem in [16]). The most
classical solution in the literature is to remove every arc – each server is analyzed in isolation –

6

1

3

2

4

f3
f4

f2f1

Figure 1: Toy network of Example 1.

but it might be a better choice to remove fewer arcs, and obtain a tree for example, we will see
later that these topologies can be easily analyzed.

We now modify the flows in accordance to the arcs that have been removed: each flow fi is
split into several flows fi,1, fi,2, ..., fi,mi of respective paths in (Nn,A−Ar), πi,1 = 〈πi(1), ..., πi(k1)〉,
πi,2 = 〈πi(k1 + 1), ..., πi(k2)〉,..., πi,mi = 〈πi(kmi + 1), ..., πi(`i)〉, where (πi(kj + 1), πi(kj)) ∈ Ar.
We denote `i,k the length of πi,k, and call NFF the feed-forward network that is obtained.

Example 2. In the toy example of Fig. 1, if Ar = {(4, 2), (2, 1)}, flow f1 is split into f1,1 and
f1,2 with respective paths 〈3, 4〉 and 〈2〉, flow f2 is split into f2,1 and f2,2, with respective paths
〈4〉 and 〈2, 3〉 and flow f3 is split into f3,1 and f3,2, with respective paths 〈2〉 and 〈1, 3〉. Flow
f4 remains unchanged (f4,1 = f4). The result of this decomposition is depicted Fig. 2.

1

3

42

f3

f2

f3,2

f1,2
f2,2
f4

f1

Figure 2: Feed-forward transformation of the toy network.

3.1.2 Flow grouping

The second step is to group flows. Instead of dealing with flows fi,k individually, we use a
partition. Let S = {(i, k) | i ∈ Nm, k ∈ Nmi} be the set of flows that have been created with
the feed-forward transformation and S1, . . . , SL ⊆ S with S1 t S2 t · · · t SL = S (the symbol t
denotes the disjoint union).

Our goal is to compute (α`)`∈NL
where α` is an arrival curves of the aggregation of the flows

(fs)s∈S`
in S`. We denote f ` the aggregated flow.

This formulation might at first seem quite strange, but it takes several interesting cases into
account.

Example 3. Consider again the toy example with the decomposition of Fig. 2. There is a priori
no use to group flows fi,1, as their arrival curve is already known. For the other flows, there
are two natural groupings. The first is to group individually: for all `, S` is a singleton. The
second one is to group according to the removed arcs, and have the grouping {(1, 2), (2, 2)} and
{(3, 2)}. Indeed, the arrival curve of f1,2 + f2,2 can be less than the sum of the arrival curves of
each individual flow, so hopefully, better performances can be computed with this decomposition.

3.2 Stability and performances as an optimization problem

If N is stable, then there exists an arrival curve α` for the aggregated flow f `.

7

We make the following assumptions:

(A1) For all ` ∈ NL, there exists a non-decreasing function H` : FL → F that computes an
arrival curve in NFF for the aggregation of flows (fi,k−1)(i,k)∈S`

at the end of their respec-

tive path πi,k−1 in function of α1, . . . , αL, the respective arrival curves of all aggregated
flows f `.

(A2) There exists a non-decreasing function G : FL → R+ that computes a performance P in
N as a function of (α`)L`=1, arrival curves for the aggregate flows f `.

(A3) (H`)
L
`=1 and G implicitly depend on the arrival curves (αi)

m
i=1 and on the service curves

(βj)
n
j=1. These functions are assumed to be non-decreasing with αi, i ∈ Nm and non-

increasing with βj , j ∈ Nn.

Assumptions (A1) and (A2) are ensured when NFF is feed-forward. It corresponds to choosing
a method for computing performances in feed-forward networks. Assumption (A3) and the fact
that H` and G are non decreasing are made without loss of generality since with greater arrival
curves and smaller service curves induce more admissible trajectories, hence larger worst-case
performances.

Since the minimum of two arrival curves for a flow is also an arrival curve for that flow,
when N is stable, we can consider that α` is the minimum arrival curves for f `. Then it holds
∀` ∈ NL, α` ≤ H`(α), where (α`)L`=1 = α. We can write this latter inequality as a vector
expression:

α ≤ H(α), (3)

where H = (H`)
L
`=1. The next theorem shows the reverse: if the solutions of Equation (3) are

bounded, then the system is stable.

Theorem 1. Set C = {α | α ≤ H(α)} be the set of solutions of Equation (3), and α0 =
sup{α | α ∈ C}. If α0 is finite, then N is globally stable and for all ` ∈ NL, α`0 is an arrival
curve for the aggregation of flows fi at the input of server πi,k(1) for (i, k) ∈ S`.

The proof of this theorems follows exactly the same lines as the stopped-time method de-
scribed in [17] or [13].

Proof. First, α0 exists, as C contains a maximum element: if α1 and α2 are two elements in
C, then for all ` ∈ NL, α`1 ≤ H`(α1) ≤ H`(α1 ∨ α2) and similarly, α`2 ≤ H`(α1 ∨ α2), so
α`1 ∨ α`2 ≤ H`(α1 ∨α2), and α1 ∨α2 ∈ C.

We use the stopped-time method. Consider that the arrivals to the network stop at time
τ > 0: for each flow fi, an arrival curve is then ατi : t 7→ αi(t ∧ τ). The total amount of data
for each flow fi is also bounded by αi(τ), so the network is globally stable.

Let ατ = (ατ,`)`∈NL
be the family of the minimal arrival curve of the aggregated flows fi at

server πi,k(1) for (i, k) ∈ S` then

ατ ≤ Hτ (ατ) ≤ H(ατ),

where Hτ is obtained the same way as H, but replacing αi by ατi . The first inequality comes
from the stability of N for the stopped process, and the second from Assumption (A3).

For all τ > 0, ατ ∈ C, so α0 ≥ ατ , and α0 is a family of arrival curves that is valid for
all τ > 0. Then it is valid for the whole unstopped process, and the system is stable if α0 is
finite.

8

3.2.1 One-stage optimization problem

We are now ready to give a mathematical programming problem that computes worst-case
performances upper bounds for arbitrary networks:

Maximize G(α) such that α ≤ H(α). (4)

Theorem 2. Under Assumptions (A1), (A2) and (A3), the solution of the optimization problem
of Equation (4) is an upper bound of the performance P of the network.

Proof. As H` and G are non-decreasing, α0 maximizes G among all the elements such that
α ≤ H(α).

This formulation is in fact equivalent to the fix-point method that can be found in the
literature, and that can be deduced from Theorem 1. Indeed, the proof of that theorem ensures
the existence of a greatest fix-point. As α0 is that fix-point, then the performances can be
directly computed as G(α0).

This result is often used when there exists a unique fix-point to the equation α = H(α),
which is also the largest solution of α ≤ H(α). Our formulation enables to apply the fix-point
method in cases the uniqueness is not ensured.

3.2.2 Two-stage optimization problem

The formulation as an optimization problem can be generalized, by making advantage of two
decompositions. For example, one could have a feed-forward transformation of the network so
that NFF is a tree. Following example 3, there are two natural ways to group flows. First
considering singletons only, which defines functions G and H1; second grouping flows according
to the arc that has been removed, which define functions H2.

So the following mathematical program is obtained:

Maximize G(α)
such that α ≤ α1, α ≤ α2

αs1 ≤ α`2 ≤
∑

u∈S`
αu1 , ∀s ∈ S`

α1 ≤ H1(α1), α2 ≤ H2(α2)

(5)

Theorem 3. Under Assumptions (A1), (A2) and (A3), the solution of the optimization problem
of Equation (5) is an upper bound of the performance P of the network.

Proof. Let α1 be the vector of the smallest arrival curves for the individual flows, and α2 for the
aggregated flows. If s ∈ S`, then αs ≤ α`, as flow fs is part of the aggregated flow f `, and α` is
less than the sum of the arrival curves of all the aggregated flows. Hence, αs1 ≤ α`2 ≤

∑
u∈S`

αu1
is satisfied.

The problem of Eq (5) has no natural equivalent as a fix-point equation, and can be di-
rectly generalized for more than two stage, and different decompositions. We will see that this
optimization problem is slightly improved in the linear model.

4 Worst-case backlog in tree networks

In this section, we focus on tree networks and give an algorithm to compute exact worst-case
backlog in the linear model. The algorithm is a generalization of the one given in [11] with the
following differences:

9

1. our algorithm computes a worst-case backlog at a server;

2. it can be applied to compute the worst-case backlog at a server for any set of flows crossing
this server;

3. it is valid for any tree topology.

The two algorithms and their proof are based on the same ideas, so we skip the detailed proof
here. The complete proof is in Appendix A.

Let us first give some additional notations used in the algorithm to describe a tree network.
First, its induced graph is a tree directed to vertex n, whose output degree 0. Each other vertex
j has output degree 1. We denote by j• its successor and assume that j < j• and set n• = n+1
by convention. The set of predecessor of a vertex is •j = {k | k• = j}. There exists at most one
path between two vertices j and k, denoted j k. Finally, if there exists a path from j to k,
•jk is the predecessor of k of this path.

Suppose that we are interested in computing the worst-case backlog at server n for some
flows crossing it. We denote by I ⊆ Nm those flows of interest.

• rkj =
∑

i∈Fl(j)\I,πi(`i)=k ri is the arrival rate at server j for all flows ending at server k and
crossing server j that are not of interest;

• r∗j =
∑

i∈I∩Fl(j) ri is the arrival rate of the flows of interests that cross server j.

Algorithm 1: Worst-case backlog algorithm

1 begin
2 ξnn ← r∗n/Rn − rnn;
3 Q = queue(•n);
4 while Q 6= ∅ do
5 j = Q[0];
6 k ← n;

7 while ξkj•>(r∗j +
∑

`∈k• nξ
`
j•r

`
j)/(Rj −

∑
`∈j k r

`
j) do

8 ξkj ← ξkj• ;

9 k ← •jk;

10 for ` from j to k do

11 ξ`j ← (r∗j +
∑

`′∈k• n ξ
`′
j•r

`′
j)/(Rj −

∑
`∈j k r

`′
j);

12 Q← enqueue(dequeue(Q, j), •j);

13 for j from 1 to n do ρj ← r∗j +
∑

`∈j n ξ
`
jr
`
j ;

14 for i from 1 to m do
15 if i ∈ I then ϕi ← 1 ;

16 else ϕi ← ξ
πi(`i)
πi(1)

;

Theorem 4. Consider a tree network with n servers offering rate-latency strict service curves
βRj ,Tj , and m flows with leaky-bucket arrival curves γbi,ri. Let I be a subset of flows crossing
server n. Then there exists (ρj)j∈Nn and (ϕi)i∈Nn such that the worst-case backlog at server n
for flows in I is

B =

n∑
j=1

ρjTj +

m∑
i=1

ϕibi, (6)

10

where the coefficients ρj and ϕi depend only on ri and Rj and are computed by Algorithm 1.
This algorithm runs in time O(n2 +m).

If there is only one flow for each possible source/destination pair, then m ≤ n2/2 and the
algorithm runs is O(n2).

Sketch of the proof. The proof of the theorem is based on the construction of an admissible
trajectory (i.e. cumulative functions for each flow, at the input/output of each server in the
path of this flow, that respect the input and output constraints given by the arrival and service
curves) whose backlog at server n is maximal for the flows in I (we call it a worst-case trajectory).

Similar to the proof in [11], the proof is in two steps. First, we show that there exists a
worst-case trajectory that satisfy some properties. The second step is to construct a worst-case
trajectory among the trajectories having those properties.

Properties of a worst-case trajectory: suppose that the worst case backlog is obtained at
time tn+1 = tn• . There exists a worst-case trajectory that satisfy the following properties.

1. The service policy is SDF (shortest-to-destination-first).

2. For each server j, there is a unique backlogged period [tj , tj•], where the service offered is
as small as possible.

3. The arrival function of flow fi entering the system at server j is maximal from tj , the
start of the backlogged period of server j for all t > tj and 0 otherwise.

4. Data from the flows of interest in I crossing server j are instantaneously served at time
tj• and are all in server n at time tn+1.

These properties are straightforward generalizations from [11] to trees.

Worst-case trajectory with the properties: Once the set of trajectories has been restricted
to the one satisfying the four properties above, the only optimization remaining is choosing
the dates tj . Indeed, if dates tj are fixed, the four properties above exactly determines the
trajectory. Intuitively, the larger the backlog transmitted to the next server, the larger the
backlog at server n. The maximization of the transmitted backlogs is done by a backward
induction, from the root of the tree (server n) to the leaves that is detailed in Appendix A.
This optimization is then translated into Algorithm 1.

Worst-case delay The worst-case delay of a flow can be deduce from the worst-case backlog
when I is reduced to this flow.

Corollary 1. Suppose that flow 1 crosses server n. Then the worst-case delay of flow 1 starting
at server j and ending at server n is

∆ =
B − b1
r1

+
ξnj b1

r1
,

where B and ξnj are the worst-case backlog and coefficient obtained from Algorithm 1 when
I = {1}.

Proof. Suppose the flow of interest is f1, with starting at server π1(1) = j and ending at server
π1(`1) = n. We are interested in computing the worst-case delay of this flow. From [11], the
worst case delay is obtained for the bit of data b1. We can then do the following modification:
assume there are m + 1 flows. Flows f2 to fm remain unchanged, flow f1 has arrival curve

11

t 7→ b1 and flow f0 has arrival curve t 7→ r1t. The flow on interest is now flow f0. The worst-
case backlog is obtained at time tn+1, and is r1(tn+1− tj). It is maximal when tn+1− tj is, and
then is the worst-case delay for the first bit is data of flow f0, which is equivalent to bit of data
b1 of the original network.

Let B be the worst-case backlog obtained with Algorithm 1 with the original network. With
the modified network, the backlogs becomes B′ = B − b1 + ξnj b1, as the new flow f1 is not of
interest (in the transformation, ϕ1 changes from 1 to ξnj), then the worst-case delay is B′/r1,
which corresponds to the desired result.

Application to sink-trees Sink-trees are tree topologies where the destination of every flow
is the root (node n). In this special case, each iteration of the external loop (lines 5-13) can
be performed in constant time (there is only one test to perform). Moreover, the number of
flows is at most the number of servers. As a consequence, the algorithm can be performed in
O(n). This type of topology has been studied in the context of Sensor Network Calculus. In [6],
the authors give a close-form formula for the maximum backlog at the root and the end-to-end
delay of a flow of interest.

Concerning the maximum backlog, this corresponds in our algorithm to the case where every
flow is a flow of interest, so φi = 1 for each flow i and ρj = r∗j . It is easy to see that the formula
is the same as in [6, Theorem 14].

γb,r

β2R,TβR,T

γb,r

Figure 3: Example of sink-tree.

Concerning the end-to-end delay of a flow, we show on a simple example that our approach
leads to tighter delays. Consider the toy example with two servers in tandem described in
Figure 3. The worst-case delay bound from [6, Theorems 18 and 15] is

D1 = 2T +
2b+ rT

R
.

With our algorithm, we compute ξ22 = r
2R−r and ξ21 = r

R , so the worst-case delay is, from
Corollary 1,

D2 = 2T +
b

R
+
b+ rT

2R− r
.

As R > r, D2 < D1. This is quite intuitive, as the cross-traffic arrives at server 2, and then is
served at rate 2R.

Arrival curve for the departure processes

Corollary 2. With the same notations as in Theorem 4, the arrival curve of the departure
functions from server n for flows in I is γB,

∑
i∈I ri

.

This is a direct consequence of Theorem 4 and of Lemma 2.

Lemma 2. Consider a system and flows crossing that system being globally constrained by the
arrival curve γb,r. If the maximal backlog of these flows in this system is less than B, then the
arrival curve for the departure process of these flows is constrained by γB,r.

12

Proof. Let F (in) be the sum of the arrival processes of the flows of interest and F (out) the sum
of departure processes. Fix s < t, and transform F (in) from time s: for each flow of interest,
the arrival process becomes maximal: a burst arrives at time s, and then data arrival at rate r.
Call F ′ this process. We have F ′(s)− F (out)(s) ≤ B, by hypothesis, and F (out)(t) ≤ F (in)(t) ≤
F ′(s) + r(t− s). So F (out)(t)− F (out)(s) ≤ F ′(s) + r(t− s)− F (out)(s) ≤ B + r(t− s).

5 Stability and performance bounds in cyclic networks

In this section, we combine the results of the two previous sections. We first restrict to the
linear model, and in the last paragraph, we show how those results could be extended to more
general cases.

5.1 One-stage optimization problem

We first investigate the one-stage optimization problem of Equation (4). Given a network,
several transformations are possible, and we give here three of them. Due to the linear model,
the optimization problem boils down to a linear program: there exist a non-negative matrix
M ∈ RL,L, a non-negative column-vector N ∈ RL, a non-negative line-vector Q ∈ RL and a
non-negative constant C such that performance P can be compute as

Maximize Qb + C such that b ≤Mb +N. (7)

A stability condition is given by the following theorem:

Theorem 5. If the spectral radius of M is strictly less than 1, then N is stable.

As a consequence, depending on the decomposition we will obtain different stability condi-
tions. In the following, we only explicit the construction of M and N . Vector Q and constant
C can be computed by similar methods.

5.1.1 Server decomposition

In the literature, the most usual decomposition is into elementary servers (Ar = A) and el-
ementary flows (no grouping). With our notation, S = {(i, k) | i ∈ Nm, 1 ≤ k ≤ `i} and
πi,k = 〈πi(k)〉, and L = |S| =

∑
i∈Nn

`i. The decomposition of S is into singletons, and if

S` = {(i, k)}, we simply denote by αi,k the smallest arrival curve of fi,k.
From classical results (see [17, Sec. 6.3.2] for example), for all k < `i,

αi,k+1 ≤ αi,k � (βj −
∑

s∈Sj\{(i,k)}

αs)+, (8)

and αi,1 = αi, which gives for leaky-bucket and rate-latency curves, and under stability assump-
tion, that αi,k = γbi,k,ri and from Equation (8),

bi,k+1 ≤ bi,k +
ri

Rj −
∑

p∈Fl(j)\{i} rp
(

∑
s∈Sj\{(i,k)}

bs +RjTj).

Parameters Tj , Rj and ri are fixed and bs are variables, this equation gives the coefficients
of M and N , that we denote MSD and NSD in the following.

13

5.1.2 Tree decomposition

In this paragraph, we use the decomposition into a tree instead of decomposing the network
into elementary servers.

Suppose that arcs Ar have been removed such that the remaining network is a tree networks.
In this case, as a tree has exactly n− 1 arcs, so L = |S| ≤

∑
i∈Nn

`i − n+ 1.
Consider a = (j1, j2) ∈ Ar and fi,k a flow such that j1 = πi,k(`i,k) and j2 = πi,k+1(1). An

arrival curve for flow fi,k+1 can be computed from the others: from Lemma 2, an arrival curve
for flow fi,k+1 is γbi,k+1,ri where bi,k+1 is the maximum backlog for flow i at server j1 computed

with Algorithm 1. As bi,k+1 is linear in the bursts of the other flows, there exists (ϕi,k+1
s)s∈S

and (ρi,k+1
j)nj=1 such that

bi,k+1 ≤
∑
s∈S

ϕi,k+1
s bs +

∑
{j|j j1}

ρi,k+1
j Tj ,

where the exponent i, k+1 emphasizes the fact that the backlog computed is the burst parameter
of αi,k+1.

As a consequence, with MTD and NTD playing the role of M and N above, we have
(MTD)s,s′ = ϕss′ and (NTD)s =

∑
{j|j j1} ρ

s
jTj .

Example 4. Consider the tree decomposition of Figure 2 is obtained.
To find the other equations, we apply Algorithm 1 and with the notations above,

b1,2 = b1,1 + ϕ1,2
2,1b2,1 + ϕ1,2

1,2b1,2 + Cst1
b2,2 = b2,1 + ϕ2,2

1,1b1,1 + ϕ1,2
1,2b1,2 + Cst2

b3,2 = b3,2 + ϕ3,2
1,2(b1,2 + b2,2 + b4,1) + ρ3,22 T2.

(9)

Note that the expression of b3,2 only depends on the behavior of server 2. Indeed, Algorithm 1
only explores a server and its descendants, but server 2 has none. Also, note that from Algo-
rithm 1, two flows following the same path have the same linearity coefficient: ϕ3,2

1,2 = ϕ3,2
2,2 = ϕ3,2

4,1.

As the backlog bounds computed with Algorithm 1 are tight, the stability condition with
matrix MTD is better than that with matrix MSD.

5.1.3 Arc grouping

Despite the fact that Algorithm 1 computes the worst-case backlog bound for each flow, MTD

having spectral radius less than one is only a sufficient condition for the network stability.
Indeed, the linear system is obtained by running Algorithm 1 independently |S| times, but worst-
case bounds for flows s and s′ ending at the same server do not happen at the same time. Indeed,
consider two flows with respective arrival curve γb1,r1 and γb2,r2 crossing a server offering a strict
service curve βR,T . Then the worst-case delay for flow 1 is B1 = b1 + r1

R−r2 (b2 +RT), for flow 2
is B2 = b2 + r2

R−r1 (b1 +RT) and the worst-case backlog in the server is B = b1 + b2 + (r1 + r2)T .
Obviously, B < B1 +B2.

In this paragraph, our strategy is to group flows according to the removed arcs.
Suppose that the network is stable and denote by Ba the worst-case backlog at arc a =

(j1, j2) ∈ Ar, that is the maximal backlog at server j1 of flows having 〈j1, j2〉 as a sub-path. We
denote Sa = {(i, k) ∈ S | πi,k(`i,k) = j1 and πi,k+1(1) = j2} and S′a = {(i, k+1) ∈ S | πi,k(`i,k) =
j1 and πi,k+1(1) = j2}.

With Algorithm 1, one can compute an upper of bound Ba for each a ∈ Ar: ∃ϕas and ρaj
such that

Ba ≤
∑
s∈S

ϕasbs +
∑

{j|j j1}

ρajTj .

14

The next step is to refine this equation so that (Ba)a∈Ar appear in the right-hand term instead
of (bs)s∈S . We know from the proof of Theorem 4 that the worst-case backlog is maximized
when the cross-traffic is maximal. Consider arc a′ = (j′1, j

′
2) ∈ Ar. For all s ∈ S′a′ , the arrivals

of fs will all be maximized from time tj′2 . At this time, the backlog in server j′1 is at most Ba′

and the backlog of each flow transmitted to server j′2 is xs with
∑

s∈S′
a′
xs ≤ Ba′ . From time

tj′2 on, data of flow fs necessarily arrives at rate rs: if it could arrive faster, the backlog would
not have been maximized.

As a consequence, for all a′ = (j′1, j
′
2) ∈ Ar, if Ba′ is the worst-case backlog at server j′s, for

flows fs, s ∈ S′a′ , there exists (xs)s∈S′a such that
∑

s∈S′
a′
xs ≤ Ba′ and

Ba ≤
∑
s∈S

ϕasxs +
∑

{j|j j1}

ρajTj

≤
∑
a′∈A′

[(
max
s∈S′

a′
ϕas

)(∑
s∈S′a

xs

)]
+

m∑
i=1

ϕa(i,1)bi +
∑

{j|j j1}

ρajTj

≤
∑
a′∈A′

(
max
s∈S′

a′
ϕas

)
Ba′ +

m∑
i=1

ϕa(i,1)bi +
∑

{j|j j1}

ρajTj .

As a consequence, with MAG and NAG playing the role of M and N above, we have (MAG)a,a′ =
maxs∈Sa′ ϕ

a
s and (NAG)a =

∑m
i=1 ϕ

a
(i,1)bi +

∑
{j|j j1} ρ

a
jTj .

Example 5. We compute backlog bounds for arcs a1 = (4, 2) and a2 = (2, 1) and obtain.{
Ba1 ≤ Na1

AG + (ϕa11,2 ∨ ϕ
a1
2,2)Ba1 + ϕ3,2Ba2

Ba2 ≤ Na2
AG + ϕa21,2Ba1 .

A sufficient condition for the stability is then given by (ϕa11,2 ∨ ϕ
a1
2,2) + ϕ3,2ϕ

a2
1,2 < 1.

It is not possible to compare the stability bound with MAG with MTD or MSD: there are
examples where the stability bound will be better, for the unidirectional ring for example, and
some examples where it will be worse, like for the bidirectional ring. In the next section, we
present those two examples that illustrate the advantages and limits of this latter approach.

5.2 Examples

5.2.1 Stability of the unidirectional ring

Consider a ring with n nodes. Its induced graph is G with A = {(i, i+ 1), i ≤ n− 1} ∪ {(n, 1)}.
The transformation into a tree gives a tandem networks by removing arc (n, 1). Flows are
decomposed in either one flow or two flows. Grouping flows that cross this arc enables to show
the stability of the unidirectional ring.

Theorem 6. The unidirectional ring is stable under local stability condition.

Proof. We consider matrix MAG and take Ar = {(n, 1)}. With I the set of flows that circulate
through arc (n, 1), S(n,1) = {(i, 2) |i ∈ I}. When computing the worst-case backlog at arc a,
the flows of interests are flows f(i,1) for i ∈ I and

Ba ≤ max
s∈Sa

ϕasBa + C,

where C is a constant there is no need to explicit in this proof. So it remains to show that for all

s ∈ Sa, ϕas < 1. As (i, 2) ∈ Sa is not a flow of interest, ϕ(i,2) = ξ
πi(`i)
1 . Observe from Algorithm 1

15

how ξ`j are computed: because of the local stability, Rn > rnn + r∗n, so ξnn < 1. Now assume that

ξkj• < 1 (lines 7-11). Either ξkj = ξkj• < 1, or ξ`j = (r∗j +
∑

`′∈k• n ξ
`′
j•r

`′
j)/(Rj −

∑
`∈j k r

`′
j) ≤

(r∗j +
∑

`′∈k• n r
`′
j)/(Rj −

∑
`∈j k r

`′
j) < 1, as from local stability condition. As a consequence,

for all j and `, ξ`j < 1 and maxs∈Sa ϕ
a
s < 1, and Ba ≤ C(1 − maxs∈Sa ϕ

a
s)
−1, ensuring the

stability of the network.

This result has already been proved under stronger assumptions: in [23] when servers are
constant-rate servers and in [17] when servers have a maximal service rate. Our method is not
specific to the ring topology, so we can hope to improve the stability conditions for more general
topologies.

5.2.2 The bi-directional ring

An example where grouping according to the arcs is not be efficient is the bi-directional ring
with n servers. Suppose the network is crossed by 2n flows of length n: π1 = 〈1, 2, . . . , n〉,
πn+1 = 〈n, n− 1, . . . , 1〉, πi = 〈i, i+ 1, . . . , n, 1 . . . , i− 1〉 and πn+i = 〈i, i− 1, . . . , 1, n . . . , i+ 1〉
for i = 2, . . . , n. The tree decomposition is obtained by keeping arcs {(i, i+ 1), i ≤ n− 1} and
the path obtained after the decomposition are the one obtained for the unidirectional ring for
f1, . . . , fn, and flows of length 1 for the other paths.

With this decomposition, we can never ensure stability: let us look at the coefficient ϕaa′
that are computed. Consider arc a = (2, 1) for example. Among the flows of interest are the
flows fa(i,k) of path 〈2〉, with k 6= 1, so ϕa(i,k) = 1. This means that (MAG)(2,1),(3,2) = 1, and the

similarly, (MAG)(j,j−1),(j+1,j) = 1 and (MAG)(1,n),(2,1) = 1. There is a cycle of coefficients 1 in
the matrix: the spectral radius of MAG is at least 1.

More generally, grouping according to the arcs will never ensure the stability if in matrix
MAG it is possible to find a cycle with weights one on all its arcs. As a consequence, interme-
diate solution between no grouping of flows and grouping among the arcs might lead to better
solutions. For example, in the case of the bi-directional ring, a better solution would be to
group flows for the removed arc (n, 1) only, and not group the other flows.

5.3 Two-stage optimization problem

We have seen in through the examples of the previous paragraph that different stability con-
ditions and performance bounds can be found, depending on how the network is decomposed.
Following the approach of Equation (5), it is possible to combine the optimization problems:

Maximize Qb′ + C
such that b′ ≤ b,

∑
s∈Sa

b′s ≤ Ba
b ≤MTDb +NTD, B ≤MAGB +NAG.

This formulation slightly differs from the one in Equation (5): constraint ‘b′s ≤ Ba ∀s ∈ Sa” has
been replaced by “

∑
s∈Sa

b′s ≤ Ba”. Indeed, by a reasoning similar to that of Paragraph 5.1.3,
we can fix a = (i, j) ∈ Ar. If the worst-case backlog at server i for flows crossing a is Ba this
means that when this worst-case happens, there is no data of these flows in the rest of the
network (which would deny the maximality of Ba). Consider a flow fs, s ∈ Sa. Its amount of
data in arc a is xs, and its arrival rate rs. Data cannot arrive faster than rs, so from the time
of worst-case backlog, flow fs is γxs,rs-constrained.

16

5.4 General arrival and service curves

Beyond the linear model, it should be possible to obtain tighter bounds by using more general
arrival and service curves. For example, stair-case functions, or piece-wise linear arrival curves
and service curves.

A first remark is that the stability conditions given here only depend on the arrival and
service rates, then, in the case it is possible to refine these results to more general curves (as
it is for the SD method), no better stability condition can be inferred. Indeed, a general curve
can usually be lower and upper-bounded by two token-bucket curves, inducing a lower and an
upper-bound of the network by two linear models with the same stability condition.

The second remark is that it would still be possible to improve the performance bounds. To
our knowledge, there is no evidence in the literature that the equation α = H(α) has a unique
fix-point in the general case. One safe solution is to compute the greatest fix-point by iterations
methods. The first step of this approach is to find an upper bound of that greatest fix-point.
This can be done by computing the fix point of that equation in the linear model (by bounding
the arrival and service curves by linear curves), and the second step is to iterate from that point
for refining the performance bounds. At each iteration, the performance bound obtained is an
upper bound of the performance of the network.

6 Comparison and numerical experiments

The different approaches have been implemented in Python and run on a basic laptop. We
will not comment on the computational time as all those algorithms are polynomial, and the
number of constraints of our linear programs are linear in the size of the networks.

We call SD the server decomposition method, TD the tree decomposition method, AG the
arc grouping method and 2S 2-stage method.

We compare those methods on three examples: the unidirectional ring, the bidirectional
ring and a 3-ring network.

In the experiments we assume that the utilization rate of the network is U = minnj=1 Uj .
flows have uniform parameters: bi = 1kb, ri = 1kb.s−1 for all i ∈ Nm, and Tj = 10ms for all
j ∈ Nn. Only the service rate will vary in function of an utilization rate: the utilization rate of

server j is Uj =
∑

i∈Fl(j) ri
Rj

, and

6.1 The unidirectional ring

We now consider the example of the unidirectional ring described in Section 5.2.1 with n = 10.
Figure 4 shows the backlog guarantee at server n of flow 1 for uniform traffic: servers all

have the same service rate R = 10/Ukbs−1. The stability conditions are U < 0.18 for SD and
U < 0.62 for SD, so our methods greatly improves the stability region. We notice that AG is
better than TD, so AG and 2S compute the same bounds.

Fig. 5 (left) shows the ratio between the stability bounds with SD and with TD as the
number of servers increases on the ring. The ratio grows linearly.

Fig 6 shows the backlog guarantee of flow 1 at server n when the servers have different
service rates: every service rate is R = 20/Ukbs−1, except R9 = R10 = 10/Ukbs−1.

In this case, TD is better than AG for U < 0.68, and around the stability limit given by
TD, we observe 2S increases faster as the backlog computed with TD grows to infinity. Then
2S and AG compute of course the same bound.

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

Utilization rate

B
ac

k
lo

g
u

p
p

er
b

ou
n

d
SD
TD
AG

Figure 4: Backlog bound for the unidirectional ring and uniform servers.

10 20 30

2

4

6

8

10

Number of servers

R
a
ti

o
o
f

st
ab

il
it

y
b

ou
n

d
s

10 20 30
1

1.1

1.2

1.3

1.4

1.5

Number of servers

Figure 5: Ratio of stability bounds on the ring with the number of servers grows. Left: unidi-
rectional ring; right: bidirectional ring.

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

Utilization rate

B
ac

k
lo

g
u

p
p

er
b

ou
n

d

SD
TD
AG
2S

Figure 6: Backlog bound for the unidirectional ring with heterogeneous servers.

6.2 The bidirectional ring

We now consider the example of the bidirectional ring with n = 10 as described in Para-
graph 5.2.2.

0 2 · 10−24 · 10−26 · 10−28 · 10−20.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
100

101

102

103

Utilization rate

B
ac

k
lo

g
u

p
p

er
b

ou
n

d

SD
TD

Figure 7: Backlog bounds for the bidirectional ring.

Figure 7 shows the worst-case backlog bound of flow 1 at server n computed by the ele-
mentary decomposition and tree transformation. As expected, the stability condition with TD
(U < 0.24) is improved from SD (U < 0.19). The improvement is approximately 25%. Fig. 5
(right) shows the improvement ratio when the number of servers grows. In this case, the im-
provement seems logarithmic, and for n = 30, it is approximately 33%. TD method suffers
from having half the flows decomposed in flows of length 1.

6.3 A three-ring example

The bidirectional cycle is not realistic, as in many network are full-duplexed, but there might
be several cycles in network. Fig. 8 shows an example of a network composed of three cycles,

19

and flows circulate along one of the three cycles. Three servers (those depicted) are common to
two cycles.

Fig. 9 shows the backlog of a flow when each cycle is made of 10 servers, and flows have
length 10, except for one cycle, where we use shorter flows to avoid the problem presented
in Paragraph 5.2.2. We can observe that the stability region more than doubles from the
SD (U < 0.34) to the TD method (U < 0.73). The improvement using grouping is smaller
(U < 0.77), but still sensible.

7 Conclusion

In this article, the recent results from feed-forwards networks can be adapted to improve the
performance guarantees and stability conditions of networks with general topology.

Many problems remain open and directions to investigate: finding the transformation of the
network that would lead to better guarantees, adapt recent results for example [7] that can be
applied for general arrival and service curves. Future works will also include the adaptation to
service policies, like the FIFO of static priority policies.

More generally, the stability problem remains open.

References

[1] Carme Àlvarez, Maria J. Blesa, and Maria J. Serna. A characterization of universal stability
in the adversarial queuing model. SIAM J. Comput., 34(1):41–66, 2004.

[2] A. Amari, Ahlem Mifdaoui, Fabrice Frances, Jérome Lacan, David Rambaud, and Loic
Urbain. AeroRing: Avionics Full Duplex Ethernet Ring with High Availability and QoS
Management. In ERTS, 2016.

[3] M. Andrews. Instability of fifo in session-oriented networks. In Proceedings of SODA’00,
2000.

[4] M. Andrews. Instability of FIFO in the permanent sessions model at arbitrarily small
network loads. In Proceedings of SODA’07, 2007.

[5] Matthew Andrews, Baruch Awerbuch, Antonio Fernández, Frank Thomson Leighton, Zhiy-
ong Liu, and Jon M. Kleinberg. Universal-stability results and performance bounds for
greedy contention-resolution protocols. J. ACM, 48(1):39–69, 2001.

[6] Steffen Bondorf and Jens B. Schmitt. Boosting sensor network calculus by thoroughly
bounding cross-traffic. In Proceedings of INFOCOM 2015, 2015.

[7] Steffen Bondorf and Jens B. Schmitt. Improving cross-traffic bounds in feed-forward net-
works - there is a job for everyone. In MMB & DFT, pages 9–24, 2016.

[8] Allan Borodin, Jon M. Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P.
Williamson. Adversarial queuing theory. J. ACM, 48(1):13–38, 2001.

[9] A. Bouillard, L. Jouhet, and É. Thierry. Comparison of different classes of service curves
in network calculus. In WODES, pages 316–321, 2010.

[10] A. Bouillard, L. Jouhet, and É. Thierry. Tight Performance Bounds in the Worst Case
Analysis of Feed Forward Networks. In INFOCOM’10, 2010.

20

0.01 1.04843018865 1.03003970439 1.03157491266 1.03003956473

0.015 1.05803963769 1.03516270593 1.03748103313

1.03516241589

0.02 1.06792652515 1.04035641182 1.04346858223 1.04035624789

0.025 1.07810254997 1.04562232682 1.04953926172

1.04562207545

0.030000000000000002 1.08858010879 1.05096199835 1.05569487794

1.05096160991

0.035 1.09937235137 1.05637701805 1.06193739419

1.05637638807

0.04 1.11049324151 1.06186902327 1.06826866547 1.06186813863

0.045 1.12195762415 1.06743969883 1.07469068152

1.0674387523

0.049999999999999996 1.13378129941 1.07309077863 1.08120549712

1.07308990444

0.05499999999999999 1.14598110437 1.07882404752 1.08781521923

1.07882272777

0.05999999999999999 1.15857500368 1.08464134315 1.09452201991

1.08463969874

0.06499999999999999 1.17158218999 1.09054455789 1.10132813883

1.09054244568

0.06999999999999999 1.18502319562 1.09653564095 1.10823584836

1.09653285715

0.075 1.19892001688 1.10261660044 1.1152476146

1.10261317395

0.08 1.21329625282 1.10878950563 1.12236579679 1.10878542261

0.085 1.22817726043 1.11505648932 1.1295929672

1.11505155562

0.09000000000000001 1.24359032848 1.12141975021 1.13693173532

1.12141367639

0.09500000000000001 1.25956487298 1.12788155553 1.14438479765

1.12787435193

0.10000000000000002 1.27613265718 1.13444424366 1.15195493842

1.13443550677

0.10500000000000002 1.29332804 1.14111022696 1.15964503295

1.14109974331

0.11000000000000003 1.31118825722 1.14788199468 1.16745805138

1.14786968398

0.11500000000000003 1.32975374069 1.15476211608 1.17539705992

1.15474802568

0.12000000000000004 1.34906848162 1.16175324359 1.18346523043

1.16173672284

0.12500000000000003 1.36918044535 1.16885811626 1.19166584179

1.16883885349

0.13000000000000003 1.39014204638 1.17607956324 1.20000228337

1.17605722353

0.13500000000000004 1.41201069407 1.18342050755 1.20847806057

1.18339469766

0.14000000000000004 1.43484942177 1.19088396997 1.21709679967

1.19085420287

0.14500000000000005 1.45872761466 1.19847307315 1.22586225209

1.19843930476

0.15000000000000005 1.48372185491 1.20619104591 1.23477830239

1.20615250589

0.15500000000000005 1.50991690695 1.21404122779 1.24384897182

1.21399734712

0.16000000000000006 1.53740687086 1.22202707381 1.25307842494

1.22197728291

Figure 8: Network composed of three rings.

21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
100

101

102

103

Utilization rate

B
ac

k
lo

g
u

p
p

er
b

ou
n

d

SD
TD
AG
2S

Figure 9: Backlog bound for the three-ring example.

[11] Anne Bouillard and Thomas Nowak. Fast symbolic computation of the worst-case delay in
tandem networks and applications. Perform. Eval., 91:270–285, 2015.

[12] M. Boyer, N. Navet, X. Olive, and É. Thierry. The PEGASE project: precise and scal-
able temporal analysis for aerospace communication systems with network calculus. In
ISOLA’10, 2010.

[13] C.-S. Chang. Performance Guarantees in Communication Networks. TNCS, Springer-
Verlag, 2000.

[14] R.L. Cruz. A calculus for network delay, part II: Network analysis. IEEE Transactions on
Information Theory, 37(1):132–141, 1991.

[15] R.L. Cruz. Quality of service guarantees in virtual circuit switched networks. IEEE Journal
on selected areas in communication, 13:1048–1056, 1995.

[16] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[17] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet, volume LNCS 2050. Springer-Verlag, 2001. revised version 4,
May 10, 2004.

[18] Zvi Lotker, Boaz Patt-Shamir, and Adi Rosén. New stability results for adversarial queuing.
SIAM J. Comput., 33(2):286–303, 2004.

[19] J. M. McManus and K. W. Ross. Video-on-demand over ATM: Constant-rate transmission
and transport. IEEE J.Sel. A. Commun., 14(6):1087–1098, September 2006.

[20] Francesco De Pellegrini, David Starobinski, Mark G. Karpovsky, and Lev B. Levitin. Scal-
able cycle-breaking algorithms for gigabit ethernet backbones. In Proceedings IEEE IN-
FOCOM, 2004.

[21] G. Rizzo and J.-Y. Le Boudec. Stability and delay bounds in heterogeneous networks of
aggregate schedulers. In Proceedings of INFOCOM’2008, 2008.

22

[22] David Starobinski, Mark G. Karpovsky, and Lev Zakrevski. Application of network calculus
to general topologies using turn-prohibition. In Proceedings IEEE INFOCOM, 2002.

[23] Leandros Tassiulas and Leonidas Georgiadis. Any work-conserving policy stabilizes the
ring with spatial re-use. IEEE/ACM Trans. Netw., 4(2):205–208, 1996.

A Proof of Theorem 4

To avoid introducing too many notations, we first prove the result for tandem networks (A =
{(i, i+ 1) | i ∈ Nn−1}). We then explain how to adapt it to sink-trees.

We prove the theorem by a backward induction on the servers. Let us denote byBj(xj , . . . , xn, x
∗)

the backlog at time tn+1 in server n when the backlog transmitted at time tj by server j − 1 to
server j is xk for the flows served by server j − 1 and that end at server k (k ≥ j) and x∗ for
the flows of interest crossing server j − 1.

We will use the additional notations

• bkj =
∑
{i/∈I, πi=j k} bi is the size of the burst arriving at server j at time tj belonging to

flows starting at server j and ending at server k;

• b∗j =
∑
{i∈I| πi(1)=j} bi is the burst of the flows of interests starting at server j.

If we are able to compute Bj for all j, the worst-case backlog is B = B1(0, . . . , 0). We will
show by induction that:

(A) Bj is linear in the xk, Tk, b
k
` , b
∗
` , k ≥ ` ≥ j and in x∗. More precisely we can write

Bj((xk)k�j , x
∗) = Cj + x∗ +

n∑
k=j

ξkj xk,

where ξkj only depends on the Rk’s and r
(∗)
i ’s, and Cj is a polynomial of degree 1 in Tk,

bk` , b
∗
` , k ≥ ` ≥ j (with coefficients depending on the Rk’s and r

(∗)
i ’s only).

(B) ξkj ≤ ξ
k+1
j .

This inequality (B) is quite intuitive: the coefficient ξkj roughly corresponds to quantity of
data produced by a flow starting at j and ending at k the rate grows when the length of the
path grows, as there is more chance to meet a slower server.

A.1 Initialization - computation of Bn

Bn only depends on the burst that is transmitted at time tn+1, which we note xnn for the flows
that are not of interest and x∗ for the flows of interest. The worst-case backlog for the flows of
interests is obtained when all data from the other flows have been served and none of the flows
of interests:

Bn(xnn, x
∗) =b∗n + x∗ + r∗n(Tn +

xnn + bnn + rnnTn
Rn − rnn

)

=b∗n + x∗ + r∗nTn + ξnnQ
n
n

=Cn + x∗ + ξnnQ
n
n,

with Qnn = xnn + bnn + rnnTn, ξnn = r∗n
Rn−rnn

and Cn = b∗n + r∗nTn.

23

A.2 Inductive step - computation of Bj from Bj+1

Suppose that Bj+1(xj+1, . . . , xn, x
∗) = Cj+1 + x∗ +

∑n
k=j ξ

k
j xk.

Bk
j (xjj , . . . , x

n
j , x
∗) is computed the following way: it takes time δ to serve flows ending at

servers j, . . . , k, and data from any other flow is instantaneously transmitted to server j + 1.
This quantity of data is x`j+1 = b`j + x`j + r`jδ for ` > k where δ satisfies

k∑
`=j

(x`j + b`j + r`jδ) = Rj(δ − Tj)+,

i.e., δ = Tj +
∑k

`=j Q
`
j/
(
Rj −

∑k
`=j r

`
j

)
with Qkj = bkj + xkj + rkj Tj . For ` > k, the amount of

data transmitted to server j + 1 by flows (not of interest) ending at server k ≤ j is

x`j+1 = Q`j + r`j

∑k
`=j Q

`
j

Rj −
∑k

`=j r
`
j

.

Then the backlog at server n can be expressed from Bj+1:

Bk
j (xjj , . . . , x

n
j , x
∗) =Bj+1(0 . . . , 0, x

k+1
j+1 , . . . , x

n
j+1, b

∗
j + x∗ + r∗j δ).

=Cj+1 + b∗j + x∗ + r∗j

(
Tj +

∑k
`=j Q

`
j

Rj −
∑k

`=j r
`
j

)
+
∑
`>k

ξ`j+1

(
Q`j + r`j

∑k
`=j Q

`
j

Rj −
∑k

`=j r
`
j

)

=Cj + x∗ + r∗j

∑k
`=j Q

`
j

Rj −
∑k

`=j r
`
j

+
∑
`>k

ξ`j+1

(
Q`j + r`j

∑k
`=j Q

`
j

Rj −
∑k

`=j r
`
j

)

=Cj + x∗ +
k∑
`=j

(
r∗j +

∑
`>k ξ

`
j+1r

`
j

Rj −
∑k

`=j r
`
j

)
Q`j +

∑
`>k

ξ`j+1Q
`
j

with Cj = Cj+1 + b∗j + r∗jTj .
Note the other scenarios should have been taken into account, when part of the flows ending

at server k is served and another part is transmitted to server j+1. It can be easily proved that
these “mixed” scenarios cannot lead to strictly larger worst-case backlog (see Lemma 4 in [11]
for a proof).

Lemma 3. There exists k such that Bj = Bk
j (that is, for all xj , . . . , xn, x

∗, we have Bj(xj , . . . , xn, x
∗) =

Bk
j (xj , . . . , xn, x

∗)) and for all k, ξkj ≥ ξ
k+1
j .

Proof. The proof is also by induction. We prove that ∀j, we have the equivalence

Bj = Bk
j ⇔ ∀k′ > k ξk

′
j+1 >

∑
i≤j r

∗
i +

∑
`>k′ ξ

`
j+1r

`
j

Rj −
∑k′

`=j r
`
j

and ξkj+1 ≤
∑

i≤j r
∗
i +

∑
`>k ξ

`
j+1r

`
j

Rj −
∑k

`=j r
`
j

.

Assertion (B) is proved at the same time: assuming that (B) is satisfied for server j + 1,
we will prove it for server j.

The equivalence above also state that if for all k′ > k Bj 6= Bk′
j , then Bn

j ≤ B
n−1
j ≤ · · · ≤ Bk

j .

Indeed, we have the equivalence Bj 6= Bn
j ⇔ ξnj+1 >

r∗j
Rj−

∑n
`=j r

`
j

⇔ r∗j
Rj−

∑n
`=j r

`
j

<
r∗j+ξ

n
j+1r

n
j

Rj−
∑n−1

`=j r
`
j

24

But

Bn
j = Cj + x∗ +

∑
`≤n

∑
i≤j r

∗
i

Rj −
∑n

`=j r
`
j

Q`j

and

Bn−1
j = Cj + x∗ +

∑
`≤n−1

∑
i≤j r

∗
i + ξnj+1r

`
j

Rj −
∑n−1

`=j r
`
j

Q`j + ξnj+1Q
n
j .

So Bn
j ≤ B

n−1
j . The next steps can be shown similarly.

Let us assume that Bn
j ≤ B

n−1
j ≤ · · · ≤ Bk

j .

The coefficient of Q`j in Bk′
j for all k′ ≤ k and ` > k is ξ`j+1 and that of Qkj is

• either
r∗j+

∑
`>k ξ

`
j+1r

`
j

Rj−
∑k

`=j r
`
j

(for Bk
j)

• or ξkj+1 (for B`
j , ` < k).

Suppose that
r∗j +

∑
`>k ξ

`
j+1r

`
j

Rj −
∑k

`=j r
`
j

≥ ξkj+1. (10)

For ` ≤ k′ < k, the coefficient of Q`j in Bk′
j is

r∗j +
∑

`>k′ ξ
`
j+1r

`
j

Rj −
∑k′

`=j r
`
j

≤
r∗j +

∑n
`′=k+1 r

`′
j ξ

`′
j+1 +

∑k
`′=k′+1 r

`′
j ξ

k
j+1

Rj −
∑k′

`′=j r
`′
j

≤
r∗j +

∑n
`′=k+1 r

`′
j ξ

`′
j+1 +

∑k
`′=k′+1 r

`′
j

r∗j+
∑

`>k ξ
`
j+1r

`
j

Rj−
∑k

`=j r
`
j

Rj −
∑k′

`′=j r
`′
j

=
r∗j +

∑n
`′=k+1 r

`′
j ξ

`′
j+1

Rj −
∑k′

`′=j r
`′
j

(
1 +

∑k
`′=k′+1 r

`′
j

Rj −
∑k

`=j r
`
j

)

=
r∗j +

∑n
`′=k+1 r

`′
j ξ

`′
j+1

Rj −
∑k

`=j r
`
j

which is the coefficient of Q`j in Bk
j . The first inequality uses (B) for server j + 1 and the

second uses Inequality (10).
Moreover, for k′ < ` < k, the coefficient of Q`j in Bk′

j is

ξk
′
j+1 ≤ ξkj+1 ≤

r∗j +
∑

`>k ξ
`
j+1r

`
j

Rj −
∑k

`=j r
`
j

,

so Bk
j ≥ Bk′

j and Bj = Bk
j .

The same kind of computations lead to Bk−1
j > Bk

j if ξkj+1 >
r∗j+

∑
`>k ξ

`
j+1r

`
j

Rj−
∑k

`=j r
`
j

.

Set ξkj according to the Bj that is computed (that is Bk
j for some k). Then we still have

ξ`j ≥ ξ
`+1
j and (B) is true for server j.

Finally, we have

B =
∑
j≤n

(r∗jTj +
∑
k≥j

ξkj r
k
j Tj) +

∑
i≤n

b∗i +
∑
j≤k≤n

ξkj b
k
j .

25

A.3 Adaptation to trees

Consider now a sink-tree, the above analysis is still valid, and each branch of the tree can be
analysed independently: if a server has several predecessors, then the optimization will be for
each of the on disjoint sets of servers and flows.

The algorithm still runs in polynomial time.

26

