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Abstract: The local asymptotic approach is promising for vibration-based fault diagnosis when
associated to a subspace-based residual function and efficient hypothesis testing tools. It has the
ability of detecting small changes in some chosen system parameters. In the residual function,
the left null space of the observability matrix associated to a reference model is confronted to
the Hankel matrix of output covariances estimated from test data. When this left null space
is not perfectly known from a model, it should be replaced by an estimate from data to avoid
model errors in the residual computation. In this paper, the asymptotic distribution of the
resulting data-driven residual is analyzed and its covariance is estimated, which includes also
the covariance related to the reference null space estimate. The importance of including the
covariance of the reference null space estimate is shown in a numerical study.

Keywords: Fault detection, uncertainty in reference, residual evaluation, statistical tests,
vibration measurement

1. INTRODUCTION

Vibration-based structural health monitoring (SHM) of
civil or mechanical structures is based on the fact that
the dynamical behavior of a structure is affected by
damages (Farrar and Worden, 2007). The detection of
such damages is a fundamental task in this context.
Damages can be modeled as changes in the parameters of
the underlying mechanical system, inducing small changes
in the eigenstructure (eigenvalues and eigenvectors) of a
linear system. A particular difficulty for SHM is caused by
the absence of known system inputs, since the structural
excitation is usually only ambient and not measurable,
leading to an output-only monitoring problem.

Among the many model-based or data-driven methods for
damage detection (Carden and Fanning, 2004; Fan and
Qiao, 2011), methods based on direct model-data match-
ing are particularly appealing for an automated damage
diagnosis, where current measurement data are directly
confronted to a reference. For instance, such methods
include non-parametric change detection based on novelty
detection (Worden et al., 2000) or whiteness tests on
Kalman filter innovations (Bernal, 2013). Another method
within this category, the local asymptotic approach to
change detection (Benveniste et al., 1987), has the ability
of focusing the detection of small changes in some cho-
sen system parameters. Associated to a subspace-based
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residual function (Basseville et al., 2000) and efficient
hypothesis testing tools, this method has led to successful
applications in the field of vibration monitoring, e.g. in
(Jhinaoui et al., 2012; Döhler and Mevel, 2013b; Döhler
et al., 2014a), including fault isolation and estimation
(Döhler et al., 2016; Bhuyan et al., 2017). Note that the
considered changes in the system parameters affect the
observed linear system in a non-additive way. The present
method particularly deals with these non-additive faults.

In this framework, the subspace-based residual function
is built on the estimated Hankel matrix of output covari-
ances, which is computed on current measurement data,
and the left null space of the Hankel matrix associated
to the nominal reference model. Currently, the statistical
evaluation of the residual takes into account the covariance
related to the Hankel matrix estimate, while the left null
space associated to the nominal model is assumed to be
perfectly known. However, in practice, this left null space
is often estimated, namely from measurement data in the
nominal state. The conception of such a data-driven resid-
ual avoids bias due to model errors in a nominal model.
Note that this residual is then tested for changes in deter-
ministic system parameters, such as stiffness parameters
from a finite element model.

In this paper, this more realistic case is considered where
the residual is built using the null space estimate from data
in the nominal state. Uncertainty in data-driven residuals
was treated e.g. in (Dong et al., 2012) in the context of
null space-based additive fault detection, where nominal
parameter estimates and the resulting residual depend



linearly on the noise contained in the measurement data.
In our work, non-additive faults are considered, and the
noise properties of the residual are related less directly
to the noise in the measurement data. Instead, they are
analyzed asymptotically through a central limit theorem.
We analyze the impact of the uncertainty related to the
null space estimate in the nominal state on the statistical
distribution of the residual. The developed test then takes
into account the uncertainties related to measurements of
both the nominal state (for the residual setup) and to
the current state (for the residual evaluation), while the
former has not been considered in previous works. Since
in practice the nominal state is never perfectly known,
the developed test closes a theoretical gap for real-world
applications. The resulting test performance is evaluated
with a numerical example.

This paper is organized as follows. In Section 2, the
background of the change detection approach is recalled.
In Section 3, the data-driven residual is introduced and its
asymptotic distribution is analyzed for the computation of
a respective test statistic. Finally, a numerical example is
given in Section 4.

2. BACKGROUND

2.1 Vibration modelling

The vibration behavior of a mechanical structure can be
described by a linear time-invariant dynamical system

Mz̈(t) + Cż(t) + Kz(t) = ν(t), (1)

where t denotes continuous time, M, C and K ∈ Rm×m
are the mass, damping and stiffness matrices. Vector z(t) ∈
Rm contains the displacements of the m degrees of freedom
of the structure. ν(t) is an external force, which is usually
unknown for civil structures and modeled as white noise.

Observed at r sensor positions (e.g. by displacement, ve-
locity or acceleration sensors) at discrete time instants
t = kτ (with sampling rate 1/τ) and allowing measure-
ment noise, system (1) can be transformed to the discrete-
time stochastic state space system model (Juang, 1994){

xk+1 = Axk + wk
yk = Cxk + vk,

(2)

with the state vector xk =
[
z(kτ)T ż(kτ)T

]T ∈ Rn, the
measured outputs yk ∈ Rr, the state transition matrix

A = exp

([
0 I

−M−1K −M−1C

]
τ

)
∈ Rn×n (3)

and the observation matrix

C =
[
Ld − LaM−1K Lv − LaM−1C

]
∈ Rr×n, (4)

where n = 2m is the model order and Ld, Lv, Lc ∈
{0, 1}r×m are selection matrices indicating the positions
of displacement, velocity or acceleration sensors at the
degrees of freedom of the structure, respectively. The
state noise vk and output noise wk are unmeasured, and
assumed to be stationary, centered and having finite fourth
moments. System (2) is assumed to be stable.

2.2 Change detection methodology

Let the monitored system (1), and respectively (2), be
characterized by a (deterministic) parameter vector θ,

whose nominal value is θ0. This parameter is chosen for
the particular monitoring problem at hand, and it consists
e.g. of the vibration modes, or stiffness or mass parameters
of the different structural elements.

A subspace-based residual function was introduced in
(Basseville et al., 2000) for the detection of changes from
θ0 using a set of measurements YN = {y1, y2 . . . , yN} of
the current system, as follows. Let G = E(xk+1y

T
k ) be

the cross-covariance between the states and outputs, let
Ri = E(yk+iy

T
k ) = CAi−1G be the output covariances

(Van Overschee and De Moor, 1996) and

H def
=


R1 R2 . . . Rq
R2 R3 . . . Rq+1

...
...

. . .
...

Rp+1 Rp+2 . . . Rp+q

 def
= Hank(Ri) ∈ R(p+1)r×qr

is the block Hankel matrix of output covariances, where
min{pr, qr} > n with usually p + 1 = q. This matrix
has the well-known factorization property H = OC into
observability and controllability matrix (of rank n). Let
O(θ0) be the observability matrix in the nominal state,
corresponding to some system parameter θ0, and let S(θ0)
be its left null space matrix. Then, assuming that parame-
ter θ0 correctly represents the system in the nominal state,
the characteristic property of the a system in the nominal
state writes as

S(θ0)TH = 0.
From the current measurements YN , a consistent estimate

Ĥ = Hank(R̂i), R̂i =
1

N

N∑
k=1

yk+iy
T
k (5)

is obtained from the estimated output covariances R̂i, and
the respective residual vector is defined as

ζ(θ0,YN )
def
=
√
N vec(S(θ0)T Ĥ). (6)

It has the property

Eθ(ζ(θ0,YN )) = 0 iff θ = θ0, (7)

where Eθ denotes the expectation when YN is measured
when the system parameter is θ.

The residual is evaluated with the local asymptotic ap-
proach to change detection (Benveniste et al., 1987), as-
suming the close hypotheses

H0 : θ = θ0 (nominal reference system),

H1 : θ = θ0 + δ/
√
N (faulty system),

(8)

where vector δ is unknown but fixed. Then, the residual
(6) satisfies the central limit theorem (CLT), ensuring that

ζ(θ0,YN )
d−→
{
N (0,Σ) under H0

N (J δ,Σ) under H1
(9)

for N → ∞, where J is the asymptotic sensitivity
with respect to parameter θ (evaluated at θ0), Σ is the
covariance of the residual, and “d” denotes convergence
in distribution. It is assumed that J has full column
rank and Σ is positive definite. Following (9), our change
detection problem corresponds to detecting changes in the
mean of an asymptotic Gaussian variable. The generalized
likelihood ratio test leads to the test statistic (Basseville,
1997)

t = ζTΣ−1J
(
J TΣ−1J

)−1 J TΣ−1ζ, (10)

which follows asymptotically a χ2 distribution with dim(θ)
degrees of freedom and the non-centrality parameter



δTFδ, where F = J TΣ−1J is the Fisher information
matrix. To decide between H0 and H1, the test variable
t is compared to a threshold, which is set up such that
the probability of false alarms is below some chosen level.
In theory this choice can be made according to the χ2

distribution of t from the reference system.

3. FAULT DETECTION WITH DATA-DRIVEN
RESIDUAL

3.1 Motivation and residual definition

For real SHM problems, the matrices M, C and K in
model (1) are often either unknown, or, if they are known
from finite element modelling, they are only approxima-
tions of the monitored structure. Then, matrix S(θ0) in the
residual definition (6) would either be unknown or possibly
inaccurate when based on the model, leading to bias in
(7) in the latter case and consequently to a non-centrality
parameter of the test statistic (10) even in the reference
state. While such an analytical model maybe unknown
or too inaccurate for the residual definition, model (2)
can represent the structural vibration behavior accurately
when using estimates of A and C from measurement data.
Note that matrices M, C and K in model (1) cannot be
estimated from output-only measurements.

This motivates the replacement of S(θ0) by the left null
space matrix S0 of H(0) in the reference state, so that (7)
can indeed be fulfilled in the reference state, independently
of the definition of θ0. Since in practice only an estimate

Ŝ0 is available, this leads us to the definition of the data-
driven residual function as

ζ̃(Ŝ0,YN )
def
=
√
N vec(ŜT0 Ĥ), (11)

where Ŝ0 is estimated from measurements, e.g. using

the singular value decomposition (SVD) of Ĥ(0) in the
reference state,

Ĥ(0) = [U1 U2]

[
D1 0
0 D2

] [
V T1
V T2

]
(12)

with Ŝ0 = U2 ∈ Rt×s and U1 ∈ Rt×n, where t = (p + 1)r
and s = (p + 1)r − n. Assume that output data of length

N has been used for the estimate Ĥ(0) and thus for Ŝ0.

Note that with the definition of the data-driven residual,
the residual computation becomes independent of the cho-
sen system parametrization θ. In this case, the reference
property analogous to (7) holds when the reference state is

described by Ŝ0, even if the value of reference parameter θ0
is imprecise. Then, the parameter θ0 only intervenes in the
residual evaluation through sensitivity J . Hence, errors in
J only impact the non-centrality parameter of the test
statistic in the faulty system, but not in the reference

system when Ŝ0 is accurate, while errors in S(θ0) could
already lead to a non-centrality parameter even in the
reference system and hence to false alarms.

While the previous residual (6) depends only on one ran-

dom variable, namely Ĥ, the data-driven residual is con-

sidered as a function of both random variables Ŝ0 and Ĥ in
the appropriate joint probability space. This has clearly an
impact on the asymptotic distribution of the data-driven

residual, and in particular modifies the asymptotic residual
covariance compared to (9). The analysis of its distribution
and the computation of the respective test statistic is the
main problem in the remainder of this paper. In the fol-
lowing it is shown that the asymptotic distribution is also
Gaussian, and the asymptotic covariance is evaluated in
detail. Then the respective test statistic can be developed

for ζ̃(Ŝ0,YN ) analogously to (10).

3.2 Asymptotic normality of data-driven residual

The asymptotic distribution of ζ̃(Ŝ0,YN ) relies on the

asymptotic normality of Ĥ(0) and Ĥ.

Proposition 1. Let the estimates Ĥ(0) in the reference

state (corresponding to θ0) and Ĥ in the current state
(corresponding to θ) be computed on N data samples, as
in (5). Then the CLTs
√
Nvec(Ĥ(0) −H(0))

d−→ N (0,ΣH),
√
Nvec(Ĥ − H(0))

d−→
{
N (0,ΣH) under H0

N (JH δ,ΣH) under H1

hold, where δ is defined in (8), JH is the asymptotic sen-
sitivity of vec(H) with respect to parameter θ (evaluated
at θ0), and ΣH is the asymptotic covariance in both cases.

Proof. The asymptotic normality follows directly from
the asymptotic normality of the output covariance esti-

mates R̂i (Hannan, 1970). The asymptotic mean follows
from the close hypotheses (8) in the local approach, and
the asymptotic covariances are the same in the reference
and current states in the local approach, as shown analo-
gously in (Benveniste et al., 1987). �

This result is used to show asymptotic normality of the

data-driven residual ζ̃(Ŝ0,YN ).

Theorem 2. It holds

ζ̃(Ŝ0,YN )
d−→
{
N (0, Σ̃) under H0

N (J δ, Σ̃) under H1
(13)

where δ is defined in (8), J is the sensitivity analogous as
in (9) when replacing S(θ0) by S0 in its computation, and

Σ̃ is the asymptotic covariance of the data-driven residual
that will be detailed later on.

Proof. Since Ĥ(0) and Ĥ are computed on different
datasets in the reference and in the current states, respec-
tively, they can be considered as (asymptotically) inde-
pendent, since the linear system is stable. Thus they are
asymptotically jointly normal distributed with
√
N

([
vec(Ĥ(0))

vec(Ĥ)

]
−
[
vec(H(0))

vec(H(0))

])
d−→ N

([
0
JHδ

]
,

[
ΣH 0
0 ΣH

])
.

(14)

Since vec(ŜT0 Ĥ) in the data-driven residual ζ̃(Ŝ0,YN ) can
be written as a function of

ĥN
def
=

[
vec(Ĥ(0))

vec(Ĥ)

]
,

the delta method (Casella and Berger, 2002) can be
applied, and from (14) the CLT (13) follows, where

Σ̃ = J̃
[
ΣH 0
0 ΣH

]
J̃ T , J̃ =

∂vec(ST0 H)

∂h
, h =

[
vec(H(0))
vec(H)

]
.

(15)



The asymptotic sensitivity yields

J̃
[

0
JH

]
=
∂vec(ST0 H)

∂vec(H)

∂vec(H)

∂vec(θ)
,

which is analogous to J in (9) when replacing S(θ0) by S0.

The asymptotic covariance Σ̃ is the same in both reference
and faulty states due to the close hypotheses definition, as
in (9). �

3.3 Asymptotic covariance

The sensitivity matrix J̃ needs to be obtained for the eval-
uation of the asymptotic covariance Σ̃ of the data-driven
residual. The required sensitivity is obtained through first-
order perturbations ∆(·) of the data-driven residual, which
is convenient for asymptotical Gaussian variables, as e.g.
in (Mellinger et al., 2016). For vector-valued functions

Ŷ = f(X̂) of some estimate X̂ of X, a first-order Taylor

approximation yields f(X̂) ≈ f(X) + JY,X(X̂ − X), or
simply ∆Y ≈ JY,X∆X, where JY,X is the derivative of f ,

and ∆X = X̂ −X for X̂ close to X.

Hence, the goal of this section is to determine J̃ through
the relationship

vec(∆(ST0 H)) = J̃
[
vec(∆H(0))
vec(∆H)

]
. (16)

Using the relation vec(AXB) = (BT ⊗ A)vec(X), where
⊗ is the Kronecker product, it holds

vec(∆(ST0 H)) = vec(∆ST0 H) + vec(ST0 ∆H)

= Jζ̃,S0
vec(∆S0) + Jζ̃,Hvec(∆H), (17)

with Jζ̃,S0
= (HT ⊗ Is)Pt,s, Jζ̃,H = Iqr ⊗ ST0 and Pa,b is

a permutation matrix such that vec(XT ) = Pa,bvec(X)
for a matrix X ∈ Ra×b (Döhler and Mevel, 2013a).
Furthermore, a perturbation of S0 yields the relation
vec(∆S0) = JS,H(0)vec(∆H(0)) as follows. First, ∆H(0) is
propagated to the column space U1 in SVD (12) by (Liu
et al., 2008)

∆U1 = U1R+ U2U
T
2 ∆H(0) V1D

−1
1 ,

where R is a matrix that will be canceled in the following,
and the expected values of all singular values in D1 are
distinct from zero. In the vectorized form it follows

vec(∆U1) = (In ⊗ U1) vec(R)

+ (D−11 V T1 ⊗ U2U
T
2 ) vec(∆H(0)). (18)

This perturbation is now propagated to the left null space
S0 = U2. From UT1 U2 = 0 it follows ∆UT1 U2+UT1 ∆U2 = 0,

(Is ⊗ UT1 ) vec(∆U2) = −(UT2 ⊗ In) Pt,n vec(∆U1). (19)

Considering UT2 U2 = I and thus ∆(UT2 U2) = 0, it follows
∆UT2 U2 + UT2 ∆U2 = 0 and

Ps,s(Is ⊗ UT2 ) vec(∆U2) + (Is ⊗ UT2 ) vec(∆U2) = 0. (20)

From (19) and (20), a particular solution for vec(∆U2)
follows as

vec(∆U2) = −(Is ⊗ U1)(UT2 ⊗ In) Pt,n vec(∆U1)

= −Ps,t(U1 ⊗ UT2 ) vec(∆U1), (21)

using properties of the permutation matrix P (Döhler and
Mevel, 2013a). Since S0 = U2, and substituting (18) into
(21) finally leads to

vec(∆S0) = JS0,H(0)vec(∆H(0))

where JS0,H(0) = −Ps,t(U1D
−1
1 V T1 ⊗ST0 ). Then, in (17) it

holds Jζ̃,S0
vec(∆S0) = Jζ̃,H(0)vec(∆H(0)), where

Jζ̃,H(0) = Jζ̃,S0
JS0,H(0)

= (HT ⊗ Is) Pt,s(−Ps,t)(U1D
−1
1 V T1 ⊗ ST0 )

= −HTU1D
−1
1 V T1 ⊗ ST0

= −V1V T1 ⊗ ST0
since the asymptotic covariance can be evaluated in the
reference state at H = H(0). Then it follows from (17) the

desired sensitivity J̃ in (16)

J̃ =
[
Jζ̃,H(0) Jζ̃,H

]
=
[
−V1V T1 ⊗ ST0 Iqr ⊗ ST0

]
,

and finally the asymptotic covariance of the data-driven
residual from (15)

Σ̃ = Σ1 + Σ2, (22)

where Σ1 = Jζ̃,H(0)ΣHJ Tζ̃,H(0)
, Σ2 = Jζ̃,HΣHJ Tζ̃,H. Note

that Σ1 is related to the uncertainty in Ŝ0, and Σ2 to the
current test data.

3.4 Covariance estimation

A consistent estimate of the asymptotic covariance Σ̃ in

(22) can be obtained by computing Σ̂H as the sample
covariance over several datasets in the reference state
(see e.g. (Döhler et al., 2014b)), and by using consistent

estimates Ŝ0 and V1 computed from Ĥ(0) in (12). However,
note that this assumes the same number of samples N for

the estimate Ĥ(0) (and Ŝ0) in the reference state and for

Ĥ in the current state in (14).

In general, the residual covariance Σ̃ ≈ cov(
√
Nvec(ŜT0 Ĥ))

satisfies analogously to (14) and (22)

cov(
√
Nvec(ŜT0 Ĥ)) ≈ Jζ̃,H(0)cov(

√
Nvec(Ĥ(0)))J T

ζ̃,H(0)

+ Jζ̃,Hcov(
√
Nvec(Ĥ))J T

ζ̃,H (23)

When the number of samples used in the reference state

for the estimates Ĥ(0) and Ŝ0 is not the same as the
number of samples in the current state for Ĥ, the asymp-
totic covariance expressions need be renormalized with
respect to the number of samples. Let N be the number

of samples for estimate Ĥ and M the number of sam-

ples for Ĥ(0), and assume that N
M is a constant in the

asymptotic analysis. Thanks to (14), we can approximate

cov(
√
Nvec(Ĥ)) ≈ ΣH and cov(

√
Mvec(Ĥ(0))) ≈ ΣH,

thus cov(
√
Nvec(Ĥ(0))) ≈ N

MΣH. Then, it follows from
(23) for the respective covariance estimateŝ̃Σ ≈ N

M Σ̂1 + Σ̂2. (24)

Hence, when the number of samples M to compute the

reference matrix Ŝ0 is large with respect to the number of

samples N for computing Ĥ from the current test data, the

residual covariance depends more strongly on Ĥ (related
to Σ2), which is the more uncertain part in the residual
computation in this case. Thus, the covariance contribu-
tion Σ1 related to the reference matrix gets weaker, which
is reflected in (24) where N

M is small in this case.



On the other side, when M is small compared to N , the
contribution to the residual covariance of the uncertainty

related to the reference matrix Ŝ0 is large compared to the

uncertainty of Ĥ computed from the test data. Then, N
M

is large and indeed the contribution of Σ1 in (24) is larger.

3.5 Computation of test statistic

In the previous sections, the asymptotic distribution of

the data-driven residual ζ̃(Ŝ0,YN ) has been characterized,
with the CLT in (13) and the estimation of the respective

covariance Σ̃ in Section 3.4. The residual sensitivity J has
been detailed in previous works, e.g. in (Balmès et al.,
2008; Döhler et al., 2014b), and is estimated analogously

when replacing S(θ0) by Ŝ0. Finally, the GLR test for
hypotheses (8) based on (13) writes

t̃ = ζ̃T Σ̃−1J
(
J T Σ̃−1J

)−1
J T Σ̃−1ζ̃ (25)

analogously to (10), and is consistently computed when

replacing J and Σ̃ by their respective estimates.

4. NUMERICAL APPLICATION

The developed method is applied to an eight mass-spring-
damper system with masses m1 = m3 = m5 = m7 =
1,m2 = m4 = m6 = m8 = 2 and stiffnesses k1 = k3 =
k5 = k7 = 200, k2 = k4 = k6 = k8 = 100 (Fig. 1). Classical
damping is defined such that all modes have a damping
ratio of 2%. A fault is simulated by decreasing stiffness
of spring 3 by 1.5%. The considered system parameter θ
is chosen as the stiffnesses of the 8 springs. Thus the χ2-
distributed test statistic has 8 degrees of freedom, and an
expected value of 8 in the reference state.

Acceleration data are simulated from random white noise
excitation at four sensor positions sampled at 20 Hz,
with added white measurement noise having 5% standard
deviation of the signals. The null space Ŝ0 and the residual
sensitivity and covariance are computed in the reference
state.

m1 
k1 

m2 
k2 

m3 
k3 

m8 
k8 

m7 
k7 k4 

… 

Fig. 1. Mass-spring chain with four sensors.

In a first example, the problems of the model-based
residual are illustrated under model errors. In this case,
S(θ0) is computed as the null space of the observability
matrix O(θ0) that is computed from the matrices A and C
in (3)–(4) from the model of the structure. A model error is
introduced by changing the stiffness parameters arbitrarily
between 0.2 and 5%. Note that in practice, the parameters
of a finite element model may have quite significant errors,
while it is still desired to detect small changes in the
system. 100 datasets are generated in both reference and
faulty states of length N = 100,000, and the histograms
of the respective test statistics are shown without and
with model error in the computation of S(θ0) in Figure 2.
The distribution of the test statistic in the reference state
is well centered around the theoretical value when the
model is perfect, and the distribution in the faulty state is
well separated (left). However, under the considered model

errors, the distributions in the reference state is far away
from the theoretical mean, and the distributions of the
reference and faulty states are inverted (right), so the fault
cannot be detected anymore.

test value
0 100 200 300

d
en

si
ty

reference state
faulty state
exp. reference value

test value
0 1000 2000 3000

d
en

si
ty

reference state
faulty state
exp. reference value

Fig. 2. Histograms of model-based test statistic without
(left) and with (right) model error.

This motivates the use of the data-driven residual to
reduce the effect of model errors. In this case, S(θ0) is

replaced by the estimated Ŝ0. First, this replacement is
made in the conventional test (10), where the new data-
driven residual (11) is used, but the covariance computa-
tion from the conventional test is used, not taking into

account the uncertainty related to Ŝ0 (i.e. Σ1 = 0 in
(24)). Finally, the covariance of the data-driven residual
is correctly evaluated and the new test (25) is computed
to demonstrate the influence of the new covariance com-
putation when the reference null space is estimated. Fig. 3
shows the respective histograms of the test statistic for
N = M = 100, 000 in the reference and faulty states. As it
can be seen, the distributions of the test statistics using the
data-driven residual are clearly separated for the reference
and faulty states. When not considering the uncertainty

related to the null space estimate Ŝ0 in Fig. 3 (left) in
the conventional test, the mean of the test statistic in the
reference state deviates significantly from its theoretical
value of 8. This is due to the fact that the reference null
space estimate has not converged yet. With the new test
computation, the uncertainty of the reference null space
estimate is taken into account, and the distribution of
the test statistic in the reference state is close to the
theoretical one.
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Fig. 3. Histograms of test statistics with data-driven resid-
ual. Test with conventional covariance computation
(Σ1 = 0, left) and new test (right).

In Fig. 4 (top) the mean of the test statistic is shown
similarly evaluating the data-driven residual with the con-
ventional test (not taking into account the uncertainties re-

lated to Ŝ0) and the new test, where different data lengths

M for the computation of Ŝ0 are considered while the data
length N of the test data is kept fixed at N = 100,000.
It can be seen that the mean of the new test statistic is
around the theoretical value of 8 already for quite short
datasets of M = 50,000, while the mean of the conven-
tional test deviates significantly from 8. The conventional
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Fig. 4. Mean of test statistic (top) and test performance
(bottom) for data-driven residual with conventional
(Σ1 = 0) and new covariance computation in depen-
dence of data length in reference state.

test approaches this value as M increases, which leads to

better estimates Ŝ0 and thus less contribution of the re-
spective covariance in (24). To illustrate both algorithms’
performance in the faulty state, the ratios of test statistic
means between the faulty and the reference state is shown
in Fig. 4 (bottom) in the same setting. The ratio measures
how far the mean of the test shifts in the faulty state. The
new test performs better than the conventional test, in
particular when few data is used in the reference state.

5. CONCLUSION

In this paper, a data-driven version of an established
subspace-based residual function was analyzed within the
asymptotic local approach to change detection, having
applications in particular for vibration monitoring. The
data-driven residual is convenient for realistic applications
where a reference model may have errors or is unknown,
and instead estimates from data in a reference state are
used. It was shown that considering the uncertainty related
to the estimation of the reference null space in the residual
evaluation increases the performance of the associated
fault detection tests.
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Döhler, M. and Mevel, L. (2013b). Subspace-based fault
detection robust to changes in the noise covariances.
Automatica, 49(9), 2734–2743.
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