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Abstract—This paper investigates the joint subcarrier and
power allocation problem for the downlink of a multi-carrier
non-orthogonal multiple access (MC-NOMA) system. A novel
three-step resource allocation framework is designed to deal with
the sum rate maximization problem. In Step 1, we relax the
problem by assuming each of the users can use all subcarriers
simultaneously. With this assumption, we prove the convexity
of the resultant power control problem and solve it via convex
programming tools to get a power vector for each user; In Step 2,
we allocate subcarriers to users by a heuristic greedy manner
with the obtained power vectors in Step 1; In Step 3, the proposed
power control schemes used in Step 1 are applied once more to
further improve the system performance with the obtained sub-
carrier assignment of Step 2. To solve the maximization problem
with fixed subcarrier assignments in both Step 1 and Step 3, a
centralized power allocation method based on projected gradient
descent algorithm and two distributed power control strategies
based respectively on pseudo-gradient algorithm and iterative
waterfilling algorithm are investigated. Numerical results show
that our proposed three-step resource allocation algorithm could
achieve comparable sum rate performance to the existing near-
optimal solution with much lower computational complexity and
outperforms power controlled OMA scheme. Besides, a tradeoff
between user fairness and sum rate performance can be achieved
via applying different user power constraint strategies in the
proposed algorithm.

Index Terms—Multi-carrier non-orthogonal multiple access
(MC-NOMA), successive interference cancellation (SIC), game
theory, Nash equilibrium, gradient and pseudo-gradient descent,
synchronous iterative waterfilling algorithm (SIWA).

I. INTRODUCTION

In the third generation partnership project Long Term
Evolution (3GPP-LTE) and LTE-Advanced (LTE-A) cellu-
lar networks, orthogonal frequency division multiple access
(OFDMA) has been widely applied, in which the whole system
bandwidth is divided into multiple orthogonal subcarriers and
each subcarrier is exclusively utilized by at most one user
during each time slot at each base station (BS). Therefore,
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OFDMA can avoid intra-cell interference by performing user
transmission scheduling at the BS. Moreover, it can be imple-
mented with low-complexity receivers. However, the spectral
efficiency is in general under-utilized due to the requirement
of channel access orthogonality.

The mobile data traffic for cellular systems is expected to
increase by 1000 folds by 2020, seeking efficient multiple
access technologies becomes very important, as it is the key for
meeting the dramatically increasing bandwidth demand. Non-
orthogonal multiple access (NOMA) has recently received
significant attention and has been regarded as a promising
candidate for the fifth generation (5G) cellular systems. In
contrast to orthogonal multiple access (OMA), NOMA allows
the multiplexing of multiple users with different power levels
on the same frequency resource block, which provides a higher
system spectral efficiency [2], [3].

Since several users are multiplexed on the same subcarrier
simultaneously, successive interference cancellation (SIC) is
adopted at the receiver side to mitigate the resulting co-channel
interference. Therefore, power must be allocated properly
among the multiplexed users on each subcarrier such that
interfering signals can be correctly decoded and subtracted
from the received signal of some users. Fractional transmit
power control (FTPC) is a sub-optimal but commonly used
power control strategy for users sum rate maximization prob-
lems, which allocates power according to the individual link
condition of each user [2], [4]. In [5], power allocation in
single-cell NOMA system is performed in a fixed manner.
In [6] and [7], distributed power allocation algorithms are
proposed to minimize total power consumption subject to user
data rate constraints for the downlink and uplink multi-cell
NOMA systems, respectively. In addition, there exists some
other works that investigate the power control for NOMA
in heterogeneous networks [8], cooperative systems [9], [10]
and multi-antenna scenarios [11], [12]. Except power control,
fairness is also an important feature of NOMA. In [13],
the resource allocation fairness between NOMA and OMA
schemes is compared, based on which a hybrid NOMA-OMA
scheme is proposed to further enhance the users fairness.
Recent works [14], [15] investigate NOMA with two sets
of orthogonal signal waveforms, in which power imbalance
between different users’ signals is not needed. Moreover, deep
learning has been applied in NOMA to estimate the channel
state information by learning the environment automatically
via offline learning [16].

For multicarrier NOMA (MC-NOMA) systems, subcarrier
assignment and power control for multiplexed users are two
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interacted factors for achieving high system performance.
The work in [17] demonstrates that in practical LTE cellular
systems, MC-NOMA has better system-level downlink per-
formance in terms of user throughput than that of OFDMA
networks by realistic computer simulation. In [18], a mono-
tonic optimization method is proposed to achieve the optimal
subcarrier and power allocation for MC-NOMA system. How-
ever, it is assumed that each subcarrier can accommodate at
most two users, which restricts the application of the designed
algorithm. The authors of [19] propose a low-complexity algo-
rithm of jointly optimizing subcarrier assignment and power
allocation to minimize the total transmit power of OFDM-
based NOMA network. In addition, the energy-efficient re-
source allocation problems for MC-NOMA systems with
perfect channel state information (CSI) and imperfect CSI
are investigated in [20] and [21], respectively. An iterative
algorithm is provided in [22] to solve the sub-channel and
power allocation problem in MC-NOMA network. The de-
signed resource allocation strategy is not so efficient as swap-
matching is adopted to do the subcarrier assignment during
each iteration, especially when the number of user is large.
In [23], a greedy user selection and sub-optimal power alloca-
tion scheme based on difference-of-convex (DC) programming
is presented to maximize the weighted throughput in a two-
user NOMA system. It is observable that the scheme has
high computational complexity due to the DC programming
in optimizing the power allocation among different subcarriers
and different users. In [24], various user pairing algorithms for
multi-input and single-output (MISO) MC-NOMA system are
proposed. However, the performance gain of [24] is limited
due to the use of naive power control schemes such as fixed
power allocation (FPA) and FTPC among multiplexed users.
Besides, a joint power and channel allocation problem for sum
rate maximization of MC-NOMA system is formulated in [25],
which is shown NP-hard and solved by Lagrangian duality and
dynamic programming (LDDP). To gauge the performance of
LDDP, the authors investigate the optimality bound on the
global optimum and show that LDDP could achieve a close-
to-upper-bound performance.

Motivated by the aforementioned observations and the
much lower latency requirement of 5G, we propose a time-
efficient joint subcarrier and power allocation algorithm for
MC-NOMA, which could achieve comparable performance to
LDDP. Our main contributions are summarized as follows:

1) A resource allocation framework is designed, which con-
sists of the following three steps:
Step 1: Assume each user can use all subcarriers. By this

assumption, the problem becomes convex and
can be solved efficiently. A centralized or some
distributed algorithms for the resultant power
control subproblem are designed.

Step 2: Based on the power allocation solution obtained,
the subcarrier assignment problem is solved, tak-
ing into account practical system constraints.

Step 3: Given the above subcarrier allocation, Step 3
solves a convex problem, i.e., the power allo-
cation is further adjusted to optimize the final

system performance.
The above 3-step methodology allows us to solve the
problem efficiently. This is how we handle the problem,
why we do 3 steps. And then, we show its near optimal
performance by comprehensive simulation results.

2) In Steps 1 and 3, the subcarrier assignment is fixed. We
prove that the resultant subproblem is convex, which can
be optimally solved in a centralized manner via gradient
descent algorithm. Alternatively, it can be solved more
efficiently in a distributed manner. To do this, we model
the problem as a multi-player concave game, and prove
the existence and uniqueness of its Nash equilibrium.
Two distributed algorithms, namely, pseudo-gradient de-
scent and iterative waterfilling, are investigated, and their
convergence properties are established. Furthermore, we
analyze the asymptotic computational complexity of the
proposed power control schemes. Except for the above-
mentioned, in Step 2, a heuristic method, which makes
use of the result obtained in Step 1, is proposed for
subcarrier assignment.

3) Under our framework, different allocation algorithms can
be applied to solve each subproblem in the three steps.
Numerical results show that the algorithms constructed
under this framework, could generally achieve compara-
ble performance to LDDP with much fewer computation
steps and outperform standard power-controlled OMA
scheme in terms of sum rate performance. Different
tradeoffs can be achieved by using different algorithms in
the three steps. Furthermore, a balancing between sum-
rate performance and user fairness can also be obtained
by adopting different user power budget strategies.

The rest of this paper is organized as follows. In Section
II, we present the system model and formulate the sum
rate maximization problem mathematically. In Section III, the
proposed three-step resource allocation framework is intro-
duced. The centralized gradient descent algorithm and some
distributed power control methods are analyzed in Section
IV and Section V, respectively. In Section VI, we evaluate
the performance of our proposed three-step subcarrier and
power allocation algorithms and some other existing resource
allocation schemes through computer simulations. Finally, the
pros and cons of the designed resource allocation schemes and
the future work are presented in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

This section describes the system model and the problem
to be solved in this paper. The downlink of a multi-user
MC-NOMA system with one base station (BS) serving K
users is considered. Denote the set of all users’ indices by
K , {1, 2, . . . ,K}. The overall system bandwidth W is
divided into N subcarriers. We denote the index set of these
N subcarriers by N , {1, 2, . . . , N}. For n ∈ N , let Wn

be the bandwidth of subcarrier n, where
∑

n∈N Wn = W .
Assume there is no interference among different subcarriers
because of the orthogonal frequency division.
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For k ∈ K and n ∈ N , let gnk be the link gain of user k
on subcarrier n. We assume a frequency-flat block fading
channel for each subcarrier. Let pnk ≥ 0 be the allocated
transmit power to user k on subcarrier n. User k is said to
be multiplexed on subcarrier n if pnk > 0. Additionally, we
assume the BS has a total power budget, which is denoted
by Ptotal. Moreover, we set maximum power allocation for
each user, i.e.,

∑N
n=1 p

n
k ≤ p̄k, where p̄k > 0 and k ∈ K, to

ensure the effort fairness among users [25]–[27]. Note that the
maximum power budget for each user can be set arbitrarily for
resource allocation fairness or any preference, subject to the
constraint

∑K
k=1 p̄k ≤ Ptotal. Furthermore, denote by ηnk the

received noise power of user k on subcarrier n. For notation
simplicity, we normalize the noise power as η̃nk , ηnk /g

n
k .

We consider the scenario in which BS allocates subcarriers
to its attached users and multiplexes them on a given subcarrier
using superposition coding. For n ∈ N , let Un be the set
of users to whom subcarrier n is assigned. Therefore, each
subcarrier can be modeled as a multi-user Gaussian broadcast
channel and SIC is applied at the receiver side when it is
possible to eliminate the intra-band interference.

Since SIC is applied, we need to consider the decoding
order of users on the same subcarrier. For n ∈ N , let Πn be
the set of all possible permutations of Un. For example, if users
u, v ∈ K are multiplexed on subcarrier n, i.e., Un = {u, v},
then

Πn =
{
(u, v), (v, u)

}
.

Let πn ∈ Πn be the decoding order of the users on subcarrier
n. Let πn(i), where i ∈ {1, 2, . . . , |Un|}, be its i-th compo-
nent, which means that user πn(i) first decodes the signals of
πn(1) to πn(i − 1), then subtracts these signals, and finally
decodes its intended message by treating the signals of the
remaining users on subcarrier n as noise. Note that πn can
be seen as a vector function of the normalized noise power of
each multiplexed user on subcarrier n, i.e., η̃nk where k ∈ Un

[28, Section 6.2] and is defined as follows:

πn , (πn(1), πn(2), . . . , πn(|Un|)),

such that the following two criteria are satisfied:

1) The normalized noise power of multiplexed users on
subcarrier n are arranged in descending order:
η̃nπn(1)

≥ η̃nπn(2)
≥ · · · ≥ η̃nπn(|Un|);

2) When there is a tie, we arrange those users in ascending
order of their indices, i.e.,
if η̃nπn(i)

= η̃nπn(j)
and i < j, then πn(i) < πn(j).

We use Shannon capacity formula to model the capacity
of a communication link. For k ∈ K, and n ∈ N , let Rn

k

be the achievable data rate of user k on subcarrier n. Once
the decoding order is determined according to the normalized
receiver noise power, Rn

k can be obtained as

Rn
k , Wn log2(1 +

pnk∑|Un|
j=π−1

n (k)+1
pnπn(j)

+ η̃nk
), (1)

where π−1
n (k) represents the decoding order of user k in πn.

More precisely, π−1
n (k) = i if πn(i) = k.

The sum rate of the downlink MC-NOMA system is given

by

Rsum ,
K∑

k=1

N∑
n=1

Rn
k . (2)

B. Problem Formulation

The objective of this work is to maximize the sum of
data rates subject to power constraints and a given maximum
allowable number of multiplexed users per subcarrier. Mathe-
matically, the problem can be formulated as follows:

maximize Rsum, (3)

subject to

C1 :
N∑

n=1

pnk ≤ p̄k, k ∈ K,

C2 : pnk ≥ 0, k ∈ K, n ∈ N ,

C3 : |Un| ≤ M, Un ⊆ K, n ∈ N ,

C4 : pnk = 0, k ̸∈ Un, n ∈ N ,

(4)

where C1 represents the maximum power allocation for user
k. Such a constraint is imposed to guarantee the effort fairness
among users as mentioned in Section II-A. C2 indicates the
non-negativity of the allocated power for each user on each
subcarrier. C3 restricts that the number of multiplexed users on
each subcarrier is no more than M . When M = 1, the system
reduces to orthogonal multiple access (OMA). In NOMA, we
consider M ≥ 2. Note that Un is a set variable to be optimized,
which represents the subset of users to whom subcarrier n is
assigned. Besides, C4 represents the power constraint of user
k on its unallocated subcarriers.

Note that the above maximization problem (3) is a coupled
mixed integer non-convex problem and is known NP-hard [25],
which is in general difficult to solve. For this reason, a close-
to-upper-bound solution based on LDDP has been proposed
in [25]. In the following, we will design another subcarrier
and power allocation optimization method, which is more
time efficient at the cost of slight degradation in sum rate
performance.

III. THE THREE-STEP OPTIMIZATION FRAMEWORK FOR
MC-NOMA

The sum-rate performance of a scheme in MC-NOMA sys-
tem is principally affected by two interacted factors, namely,
subcarrier allocation and power control for multiplexed users.
To solve the above MC-NOMA subcarrier allocation and
power control problem efficiently, a three-step optimization
methodology is proposed. We use the first two steps to
complete subcarrier allocation. Specifically, Step 1 is applied
to calculate the achievable data rate of each user on each
subcarrier, which will be used to determine the final subcarrier
assignment in Step 2 with the consideration of constraint C3.
Then, based on the subcarrier assignment obtained we allocate
power for the multiplexed users in the third step.

For k ∈ K, let Nk ⊆ N be the set of subcarriers allocated
to user k. Note that with a given subcarrier assignment, the
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above optimization problem (3) can be relaxed to the following
power control sub-problem:

maximize Rsum, (5)

subject to

C1′ :
∑
n∈Nk

pnk ≤ p̄k, k ∈ K,

C2 : pnk ≥ 0, k ∈ K, n ∈ N ,

C3′ : pnk = 0, k ∈ K, n /∈ Nk.

(6)

We detail the three-step methodology below:
Step 1: To begin with, we relax constraints C3 and C4 such

that all users can use all N subcarriers simultaneously,
i.e., Nk = N for all k ∈ K. We then solve the relaxed
problem (5), which is a sub-problem of (3). We will
prove in Section IV that this optimization problem is
convex and can be optimally solved using a central-
ized gradient descent algorithm or some distributed
power control methods. The detailed analysis about
the centralized and distributed power control strategies
are given in Section IV and Section V, respectively.

Step 2: We assign subcarriers to users based on the power
allocation solution obtained in Step 1. For n ∈ N ,

• If M or more users have positive power on
subcarrier n, allocate subcarrier n to the M users
who have the top-M highest individual data rates
on subcarrier n, with ties broken arbitrarily;

• If less than M (but not equal to 0) users have
positive power on subcarrier n, allocate subcarrier
n only to these users;

• If no one has positive power on subcarrier n,
allocate subcarrier n to user k∗, where k∗ ,
argmink∈K η̃nk , with ties broken arbitrarily.

After Step 2, Un is determined and satisfies |Un| ≤ M
for all n ∈ N .

Step 3: Using the subcarrier assignment obtained in Step 2,
we revisit the optimization problem (5) to optimize
and compute the final power allocation.

Note that in our case and problem, when Step 3 is con-
ducted, the system performance cannot be further improved
by adopting another Step 2. The reason is that after Step 3 is
conducted, the set of users who are allowed to use subcarrier n,
denoted by Un, has been determined for all n. It is a legitimate
assignment in that |Un| ≤ M where n ∈ N . Moreover, this
subcarrier assignment will be different from that after Step 2
only if there are inactive subcarriers which were originally
active after Step 1. We suspect that such a scenario will
never occur, and even if it could occur, the probability would
be extremely low. That is also why we have the three-step
methodology.

IV. CENTRALIZED POWER ALLOCATION WITH FIXED
SUBCARRIER ASSIGNMENT

The power allocation problem (5) is central to the proposed
three-step optimization scheme. We find that it is convex. The
result is detailed below.

Let
pk , (pnk )n∈Nk

. (7)

Therefore, the set of all feasible powers for user k can be
given by

Pk , {pk :
∑
n∈Nk

pnk ≤ p̄k and pnk ≥ 0, n ∈ Nk}. (8)

Define P as the set of feasible powers for the system, which
can be expressed by the Cartesian product of all users’ feasible
sets and is given by

P ,
∏
k∈K

Pk. (9)

Let p , (p1,p2, . . . ,pK). The convexity of problem (5) is
proved below.

Theorem 1. The maximization problem (5) is convex.

Proof: The basic idea is to check that the feasible power
region is non-empty and convex, and the objective function
is concave. The feasible power region is non-empty because
the zero vector satisfies constraints (6). Its convexity follows
directly from (7), (8) and (9).

It remains to show that Rsum is a concave function of p. To
prove this, we rewrite (2) as follows:

Rsum =

N∑
n=1

Wn

K∑
k=1

log2

1 +
pnk∑|Un|

j=π−1
n (k)+1

pnπn(j)
+ η̃nk


=

N∑
n=1

Wn

|Un|∑
i=1

log2

1 +
pnπn(i)∑|Un|

j=i+1 p
n
πn(j)

+ η̃nπn(i)


=

N∑
n=1

Wn

|Un|∑
i=1

log2

 ∑|Un|
j=i p

n
πn(j)

+ η̃nπn(i)∑|Un|
j=i+1 p

n
πn(j)

+ η̃nπn(i)


=

N∑
n=1

Wn log2

∑|Un|
j=1 p

n
πn(j)

+ η̃nπn(1)∑|Un|
j=2 p

n
πn(j)

+ η̃nπn(1)

×
∑|Un|

j=2 p
n
πn(j)

+ η̃nπn(2)∑|Un|
j=3 p

n
πn(j)

+ η̃nπn(2)

× · · · ×
pnπn(|Un|) + η̃nπn(|Un|)

η̃nπn(|Un|)


=

N∑
n=1

Wn log2

(∑|Un|
j=1 p

n
πn(j)

+ η̃nπn(1)

η̃nπn(|Un|)

×
∑|Un|

j=2 p
n
πn(j)

+ η̃nπn(2)∑|Un|
j=2 p

n
πn(j)

+ η̃nπn(1)

× · · · ×
pnπn(|Un|) + η̃nπn(|Un|)

pnπn(|Un|) + η̃nπn(|Un|−1)


=

N∑
n=1

Wn

|Un|−1∑
i=1

log2

∑|Un|
j=i+1 p

n
πn(j)

+ η̃nπn(i+1)∑|Un|
j=i+1 p

n
πn(j)

+ η̃nπn(i)


+

N∑
n=1

Wn log2

(∑|Un|
j=1 p

n
πn(j)

+ η̃nπn(1)

η̃nπn(|Un|)

)
.

(10)

For n ∈ N and i ∈ Un, let αn
i (p) ,

∑|Un|
j=i+1 pn

πn(j)+η̃n
πn(i+1)∑|Un|

j=i+1 pn
πn(j)

+η̃n
πn(i)
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and βn(p) ,
∑|Un|

j=1 pn
πn(j)+η̃n

πn(1)

η̃n
πn(|Un|)

, respectively. Thus, (10) can
be re-written as

Rsum =

N∑
n=1

Wn

|Un|−1∑
i=1

log2(α
n
i (p)) + log2(β

n(p))

 .

(11)
It can be shown that αn

i = 1 +
η̃n
πn(i+1)−η̃n

πn(i)∑|Un|
j=i+1 pn

πn(j)
+η̃n

πn(i)

is a

concave function of p [29] and βn is linear to p. Hence, both
αn
i and βn are concave functions of p. Moreover, αn

i ≥ 1 as
η̃nπn(i+1) ≥ η̃nπn(i)

. Thus, log2(α
n
i ) and log2(β

n) are concave
functions because the logarithmic operation in our scenario
is concave and non-decreasing. Since finite summation of
concave functions is still concave [29], we deduce that Rsum
is concave. This completes the proof.

According to Theorem 1, the optimization problem (5) is
convex. Therefore, it can be optimally solved through classical
convex programming methods [30]. Since (5) is a linearly
constrained convex problem, we choose the projected gradient
descent method [31] to solve it. The pseudo-code of the
projected gradient descent algorithm for solving (5) is given
in Algorithm 1.

Algorithm 1 Projected gradient descent algorithm
1: Given a starting point p′ = (0, . . . , 0)
2: repeat
3: Save the previous power vector p = p′

4: Determine a search direction ∆ , ∇Rsum (p′)
5: Exact line search: choose a step size α ,

argmaxα̂≥0 Rsum (p′ + α̂∆)

6: Update p′ , ΨP (p′ + α∆)
7: until ||p′ − p||22 < ϵ
8: return p′

In Algorithm 1, the operator ∇ represents the gradient
with respect to power vector p. ΨP : RD → P denotes
the Euclidean projection on the feasible set P , where D ,∑K

k=1 |Nk| and RΩ is the set of Ω-dimensional real vectors.
ϵ is a small constant. Note that the projection ΨP(p) can be
obtained by solving the following problem:

minimize ||p− x||22
subject to x ∈ P,

(12)

where || · ||2 represents the l2-norm of a vector. P is the
Cartesian product of Pk, which is given by (9).

Note that the detailed definitions of the projection ΨP and
the convergence analysis of Algorithm 1 can be found in [32]
and [31], respectively.

V. DISTRIBUTED POWER ALLOCATION WITH FIXED
SUBCARRIER ASSIGNMENT

In Section IV, we solve the maximization problem (5)
through a standard convex programming method, which is
however a centralized algorithm. In this section, we provide
two distributed power allocation strategies by transforming the
power control problem into a multi-player concave game. The
distributed power control methods are more time efficient than

the centralized scheme, which can balance the sum-rate per-
formance and computational cost when considering practical
applications. In addition, the techniques can be extended to
solve similar problems. Specifically, one of the two distributed
methods is based on pseudo-gradient algorithm and the other
one on iterative waterfilling algorithm. The existence and
uniqueness of Nash equilibrium of this game is demonstrated
and pseudo-gradient algorithm can be applied to reach this
point. In addition, the convergence of iterative waterfilling
algorithm in some case is also proved. Besides the above
results, we analyze the asymptotic computational complexity
of the proposed power control strategies at the end of this
section.

A. Game-Theoretic Analysis
In this subsection, the power control problem is first formu-

lated in a game-theoretic manner. Subsequently, the existence
and uniqueness of this game’s Nash equilibrium are proved.

We consider distributed power allocation problem, in which
each user allocates power to its assigned subcarriers so as to
maximize its individual sum of data rates Rk ,

∑
n∈Nk

Rn
k ,

k ∈ K. Each user treats the interference from other users
after SIC as additional white Gaussian noise (AWGN). From
this point, the power control problem can be regarded as a
K-player game [33], where pk in (7) and Pk in (8) are the
power allocation strategy and the strategy set of player k,
respectively. Note that P represents the strategy space of all
players in the system and is defined in (9). The strategy space
is the set of all possible configurations in the game.

For k ∈ K, let p−k , (p1,p2, . . . ,pk−1,pk+1, . . . ,pK).
We define

uk(pk,p−k) ,
∑
n∈Nk

Rn
k , (13)

as the utility function of user k, in which Rn
k is defined in (1).

Additionally, let

u , (u1, u2, . . . , uK). (14)

Based on the aforementioned definitions, this game is char-
acterized by the pair (P,u). A common equilibrium concept
in game theory is the Nash equilibrium, which is defined as
follows:

Definition 2. Given the link gain matrix and the normalized
noise power of each user, a power allocation strategy p̃ ,
(p̃1, p̃2, · · · , p̃K) ∈ P is called a Nash equilibrium if the
following holds for all k ∈ K and any pk ∈ Pk,

uk(p̃k, p̃−k) ≥ uk(pk, p̃−k,). (15)

At a Nash equilibrium, given that the other players fix
their power allocation, no player would further increase the
data rate unilaterally, i.e, no user has incentive to change its
power strategy at a Nash equilibrium. The absence of Nash
equilibrium indicates that the distributed system is inherently
unstable [34].

The existence of Nash equilibrium in our MC-NOMA
system is a corollary of the fundamental theorem in game
theory [33], [35]–[37]. According to the notation of this work,
it can be represented as follows:
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Theorem 3. If for each k ∈ K, (i) Pk is compact and convex,
(ii) uk is continuous in p, and (iii) uk is concave in pk for
any given p−k, then (P,u) is called a concave game, and it
has at least one Nash Equilibrium.

It is straightforward to see that all three conditions in the
theorem are satisfied. Thus, there exists at least one Nash
equilibrium in game (P,u).

Next, we show that the Nash equilibrium of (P,u) is
unique. Let Φ : P → RD be the pseudo-gradient of u as
defined in [33], i.e.,

Φ(p) , (∇1u1(p), . . . ,∇KuK(p)), ∀p ∈ P, (16)

in which ∇k denotes the gradient with respect to user k’s
power vector pk, i.e.,

∇kuk(p) =

Wn

ln 2
· 1∑|Un|

j=π−1
n (k)

pnπn(j)
+ η̃nk


n∈Nk

. (17)

Since the uniqueness of Nash equilibrium is related to the
monotonicity of Φ [33], we will show that Φ is strongly
monotone. Let RQ

++ be the set of Q-dimensional strictly
positive real vectors. An auxiliary lemma is introduced as
follows:

Lemma 4. Let (bi)i∈{1···Q} ∈ RQ
++ be a non-increasing

sequence with Q positive real values, i.e., b1 ≥ b2 ≥ · · · ≥
bQ−1 ≥ bQ > 0. Then, for all (xi)i∈{1···Q} ∈ RQ,

Q∑
i=1

Q∑
j=i

xixj

bi
≥
∑Q

i=1 x
2
i

2bi
≥
∑Q

i=1 x
2
i

2b1
. (18)

Proof: The second inequality in (18) is obvious. We will
prove the first inequality by mathematical induction.

Basis: It is evident that the statement is true for Q = 1.
Inductive step: Assume that it is true for Q = q, i.e.,

q∑
i=1

q∑
j=i

xixj

bi
≥
∑q

i=1 x
2
i

2bi
. (19)

Consider the case where Q = q+1. According to (18), we
have

q+1∑
i=1

q+1∑
j=i

xixj

bi
−

q+1∑
i=1

x2
i

2bi

=
x2
q+1

bq+1
+

x2
q

bq
+

xqxq+1

bq
+

q−1∑
i=1

q+1∑
j=i

xixj

bi

− (
x2
q+1

2bq+1
+

x2
q

2bq
+

q−1∑
i=1

x2
i

2bi
)

≥
x2
q+1

2bq
+

x2
q

2bq
+

xqxq+1

bq
+

q−1∑
i=1

q+1∑
j=i

xixj

bi
−

q−1∑
i=1

x2
i

2bi

=
(xq+1 + xq)

2

2bq
+

q−1∑
i=1

q+1∑
j=i

xixj

bi
−

q−1∑
i=1

x2
i

2bi
.

(20)

Note that the inequality in (20) holds because bq+1 ≤ bq .

We define an auxiliary variable x′
i as follows:

x′
i ,

{
xi if i < q,

xq+1 + xq if i = q.
(21)

Therefore, the last expression in (20) can be re-written as

(xq+1 + xq)
2

2bq
+

q−1∑
i=1

q+1∑
j=i

xixj

bi
−

q−1∑
i=1

x2
i

2bi

=
x′2
q

2bq
+

 q∑
i=1

q∑
j=i

x′
ix

′
j

bi
−

x′2
q

bq

−
q−1∑
i=1

x′2
i

2bi

= −
x′2
q

2bq
+

q∑
i=1

q∑
j=i

x′
ix

′
j

bi
−

q−1∑
i=1

x′2
i

2bi

≥ −
x′2
q

2bq
+

x′2
q

2bq
by induction hypothesis

= 0.

(22)

Therefore, the statement is true for Q = q + 1, which
completes the proof.

With the aforementioned lemma, we have the following
theorem:

Theorem 5. Φ is strongly monotone, i.e., there exists a
constant c < 0 such that for all p,p′ ∈ P ,

(Φ(p)− Φ(p′))T · (p− p′) ≤ c||p− p′||22, (23)

in which Φ is defined in (16).

Proof: For all p,p′ ∈ P , according to (16) and (17), we
have

(Φ(p)−Φ(p′))T ·(p−p′) =
Wn

ln 2

K∑
k=1

N∑
n=1

( 1

Înk
− 1

Î
′n
k

)
(pnk−p

′n
k ),

(24)
where

Înk =

|Un|∑
j=π−1

n (k)

pnπn(j)
+ η̃nk ,

and

Î
′n
k =

|Un|∑
j=π−1

n (k)

p
′n
πn(j)

+ η̃nk .

We re-arrange (24) as follows:

(Φ(p)− Φ(p′))T · (p− p′)

=
Wn

ln 2

K∑
k=1

N∑
n=1

(pnk − p
′n
k )
(∑|Un|

j=π−1
n (k)

(p
′n
πn(j)

− pnπn(j)
)
)

Înk Î
′n
k

=
Wn

ln 2

N∑
n=1

|Un|∑
i=1

(pnπn(i)
− p

′n
πn(i)

)
(∑|Un|

j=i (p
′n
πn(j)

− pnπn(j)
)
)

Înπn(i)
Î

′n
πn(i)

= −Wn

ln 2

N∑
n=1

|Un|∑
i=1

|Un|∑
j=i

xn
i x

n
j

bni
, (25)
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where xn
i = pnπn(i)

− p
′n
πn(i)

and

bni = Înπn(i)
Î

′n
πn(i)

= (

|Un|∑
j=i

pnπn(j)
+ η̃nπn(i)

)(

|Un|∑
j=i

p
′n
πn(j)

+ η̃nπn(i)
),

for n ∈ N and i ∈ {1, 2, . . . , |Un|}.

Note that

bn1 = (

|Un|∑
j=1

pnπn(j)
+ η̃nπn(1)

)(

|Un|∑
j=1

p
′n
πn(j)

+ η̃nπn(1)
)

≤ (

|Un|∑
j=1

p̄πn(j) + η̃nπn(1)
)2 , Cn

2
.

Based on Lemma 4, we have

−
N∑

n=1

Wn

ln 2

|Un|∑
i=1

|Un|∑
j=i

xn
i x

n
j

bni
≤ −

N∑
n=1

Wn

ln 2 · Cn

|Un|∑
i=1

(xn
i )

2

≤ c||p− p′||22,

where c is a constant such that −
∑N

n=1
Wn

ln 2·Cn
≤ c < 0. This

completes the proof.

Note that the detailed definition of strong monotonicity in
Theorem 5 can be found in [38].

Theorem 6. The game (P,u) has unique Nash equilibrium.

Proof: According to Theorem 5, the pseudo-gradient of
this game, Φ, is strongly monotone. Based on [33], [38], the
game has a unique Nash equilibrium.

B. Two Distributed Power Control Algorithms

In this subsection, we propose two distributed power allo-
cation schemes, which can be applied in Step 1 and Step 3
of our three-step methodology to solve optimization problem
(5).

1) The Pseudo-gradient Descent Method: The first scheme
is based on pseudo-gradient descent method. It follows from
Theorem 6 that the K-player game has a unique equilibrium
point. Therefore, pseudo-gradient descent method can be ap-
plied to both Step 1 and Step 3 and it is guaranteed to converge
to the unique fixed point [33].

For k ∈ K and n ∈ Nk, we define

Ĩnk ,
|Un|∑

j=π−1
n (k)+1

pnπn(j)
+ η̃nk , (26)

as the normalized interference plus noise of user k on subcar-
rier n.

Without loss of generality, we take user k ∈ K as an
example and state the pseudo-code of the pseudo-gradient
descent algorithm in Algorithm 2.

Algorithm 2 Pseudo-gradient descent algorithm
1: procedure of user k
2: Given a starting point p′

k = (0, . . . , 0)
3: repeat
4: Save the previous power vector pk = p′

k

5: Determine the search direction ∆k , ∇kuk (p
′)

6: Exact line search; compute step size αk ,
argmaxα̂k≥0 Rk (p

′
k + α̂k∆k)

7: Update p′
k , ΨPk

(p′
k + αk∆k)

8: until ∀k ∈ K, ||p′
k − pk||22 < ϵ

9: end procedure

In Algorithm 2, ΨPk
represents the projection on Pk,

k ∈ K. The pseudo-gradient descent algorithm is distributed
in the sense that each user only needs to know the link gain
between itself and the BS and the normalized interference plus
noise on each subcarrier, i.e., Ĩnk . This can be seen at Line 5
of Algorithm 2, in which ∇kuk is given by (17). All these
information can be measured or estimated locally.

2) Iterative Waterfilling Method: The second scheme is
based on iterative waterfilling algorithm (IWA). We show that
its convergence can be guaranteed when |Un| ≤ 2 for all
n ∈ N . To prove this, we first introduce the IWA and we
focus on the synchronous version (SIWA), in which all players
adjust their power allocation simultaneously.

Given fixed power allocation for other users and constant
channel gains, i.e., Ĩnk are fixed, the optimal power allocation
for user k is given by the following theorem [39]:

Theorem 7. p∗
k ∈ Pk maximizes Rk if and only if there exists

a water level, ωk, such that

p∗nk = [ωk − Ĩnk ]
+, for n ∈ Nk, (27)

where

[X]+ =

{
0 if X ≤ 0
X otherwise, (28)

and ∑
n∈Nk

p∗nk = p̄k. (29)

With the given power vectors of the other users, we define
the waterfilling function for user k as

fk(p−k) , (p∗nk )n∈Nk,
, (30)

where p∗nk is defined in Theorem 7. Furthermore, we define
F : P → P as the waterfilling function of the system, which
is given as follows:

F (p1,p2, . . . ,pK) , (fk(p−k))
K
k=1. (31)

Note that SIWA is an iterative algorithm. For k ∈ K and
n ∈ Nk, let pnk (t) be the power of user k on subcarrier n

at time t, and p
(t)
k be the corresponding indexed family at

time t. According to (26), we can define Ĩnk (t) as a function
of {pnj (t) : j ∈ Un \ {k}}. SIWA is then defined as follows:

(p
(t+1)
1 ,p

(t+1)
2 , . . . ,p

(t+1)
K ) = F (p

(t)
1 ,p

(t)
2 , . . . ,p

(t)
K ), (32)

with p
(0)
k = 0 for all k ∈ K.
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Let ωk(t) be the water level of user k at time t. From (29),
we have ∑

n∈Nk

[ωk(t+ 1)− Ĩnk (t)]
+ = p̄k. (33)

Note that ωk(t+1) can be regarded as a function of Ĩk(t) ,
(Ĩnk (t))n∈Nk

, and we denote it by

ωk(t+ 1) = gk(Ĩk(t)). (34)

Subsequently, we will investigate the convergence of SIWA.
We consider two waterfilling scenarios for user k. The nor-
malized interference at subcarrier n in the two scenarios
are denoted by Ĩnk and Ĩnk

′
, respectively. After performing

waterfilling, we denote the water levels in the two scenarios
by ωk and ω′

k, respectively. With this setting, we have the
following lemma:

Lemma 8. For any k ∈ K, if Ĩnk ≥ Ĩnk
′

for all n ∈ Nk, then
gk(Ĩk) ≥ gk(Ĩ

′
k).

Proof: Let ωk , gk(Ĩk) and ω′
k , gk(Ĩ

′
k). By contradic-

tion, assume ωk < ω′
k. First, note that∑

n∈Nk

[ωk− Ĩnk ]
+ ≤

∑
n∈Nk

[ω′
k− Ĩnk ]

+ ≤
∑
n∈Nk

[ω′
k− Ĩnk

′
]+, (35)

where the first inequality follows from the assumption that
ωk < ω′

k and the second inequality follows from the condition
that Ĩnk ≥ Ĩnk

′
. According to (33), both sides are equal to

p̄k, which implies, in particular, equality holds in the first
inequality. This is possible only if

[ωk − Ĩnk ]
+ = [ω′

k − Ĩnk ]
+ = 0 (36)

for all n ∈ Nk. As a result, p̄k = 0, which violates our
assumption in the system model.

Theorem 9. Given |Un| ≤ 2 for all n ∈ N , SIWA always
converges.

Proof: Since |Un| ≤ 2, there are at most two multiplexed
users in subcarrier n. For each subcarrier n ∈ Nk, user k
may suffer from intra-band interference if subcarrier n is also
assigned to another user and that user has a smaller normalized
noise power than user k. We denote this subset of subcarriers
by Tk, and its complement by Sk, i.e., Sk = Nk \ Tk. For
n ∈ Tk, we define −kn as the index of the user who shares
subcarrier n with user k.

Since each user has a total power constraint, Ĩnk (t) is
bounded from above for all k and n. Therefore, according
to (33), ωk(t) is also bounded from above for all k ∈ K. The
convergence of SIWA in Step 3 is established if

ω(t) , (ω1(t), ω2(t), . . . , ωK(t)) (37)

is monotonically increasing, i.e., for any t ≥ 1,

ω(t+ 1) ≽ ω(t), (38)

which we will prove in the following by induction.
Basis: Since p

(0)
k = 0 for all k, we have Ĩnk (0) = η̃nk for all

k and n. It is obvious that Ĩnk (1) ≥ Ĩnk (0). Lemma 8 and (34)
imply ω(2) ≽ ω(1).

Inductive step: Suppose (38) holds for t = L, i.e.,

ω(L+ 1) ≽ ω(L). (39)

First, consider n ∈ Sk. By the definition of Sk, Ĩnk (t) = η̃nk
for all t, which implies

Ĩnk (L+ 1) = Ĩnk (L), for n ∈ Sk. (40)

Next, consider n ∈ Tk. According to (26), for any t, we
have

Ĩnk (t) = pn−kn
(t) + η̃nk , for n ∈ Tk. (41)

By the definition of Tk, user −kn experiences no intra-band
interference in subcarrier n. The waterfilling method dictates
that

pn−kn
(t) = [ω−kn

(t)− η̃n−kn
]+. (42)

Substituting it back to (41), we obtain

Ĩnk (t) = [ω−kn
(t)− η̃n−kn

]+ + η̃nk , for n ∈ Tk, (43)

which, together with the inductive hypothesis in (39), implies

Ĩnk (L+ 1) ≥ Ĩnk (L), for n ∈ Tk. (44)

Invoking Lemma 8 with (40) and (44) and using (34), we
obtain ω(L+ 2) ≽ ω(L+ 1), which completes the proof.

Note that M = 2 is commonly applied in practical NOMA
system from implementation point of view [40]. According
to the subcarrier assignment in Step 2 of the proposed three-
step methodology, we have |Un| ≤ M ; therefore, if M = 2,
the convergence of SIWA in Step 3 is guaranteed based on
Theorem 9.

C. Asymptotic Computational Complexity Analysis

In this subsection, we analyze the asymptotic computational
complexity of the proposed centralized and distributed power
allocation algorithms, which are the key components of our
designed three-step resource allocation framework. Besides,
the complexity analysis of both LDDP and FTPC is also
discussed.

1) Complexity analysis of Algorithm 1: Since the optimiza-
tion problem (5) is convex according to Theorem 1, it can be
solved in a centralized manner by Algorithm 1 in O(log(1/ϵ))
iterations [31], where ϵ is the error tolerance for algorithm
termination. As shown in Line 4 of Algorithm 1, each iteration
requires to compute the gradient ∇Rsum (p′) with respect to
the power vector p′. Each element (∇Rsum)

n
k of this gradient

is computed by adding up the differentials of data rates Rn
πn(j)

,
for j <= π−1

n (k), with respect to pnk . Therefore, each iteration
has O(NK2) time complexity. In Step 3 of our three-step
methodology, where no more than M users are multiplexed
on each subcarrier due to constraint C3, this complexity can
be further refined to O(NM2).

2) Complexity analysis of Algorithm 2: According to [33],
Algorithm 2 is guaranteed to converge to the unique fixed
point within O(log(1/ϵ)) iterations. In Line 5 of Algorithm 2,
each user k ∈ K only computes its pseudo-gradient ∇kuk(p

′)
which consists of N elements. Thus, each iteration’s time
complexity is O(NK). In Step 3 of our three-step method,
this complexity can be further reduced to O(NM).
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TABLE I
ASYMPTOTIC COMPUTATIONAL COMPLEXITY COMPARISON OF DIFFERENT SCHEMES

Proposed Algorithms Number of iterations Time complexity of
each iteration in Step 1

Time complexity of
each iteration in Step 3

Projected gradient descent (centralized) O(log(1/ϵ)) O(NK2) O(NM2)
Pseudo-gradient descent (distributed) O(log(1/ϵ)) O(NK) O(NM)

SIWA (distributed) Exponentially fast (empirical) O(NK) O(NM)
Benchmark Algorithms Time complexity

LDDP O(CNMKJ2)
FTPC O(NK)

3) Complexity analysis of SIWA: By simulation results,
we observe that SIWA converges exponentially fast. Since in
Step 1 all users can use N subcarriers simultaneously, each
waterfilling step has O(NK) time complexity. Furthermore,
the time complexity comes to be O(NM) in Step 3 as no
more than M users can be multiplexed on each subcarrier.

4) Complexity analysis of LDDP and FTPC: According to
[25], the complexity of LDDP is O(CNMKJ2), where C
represents the number of sub-gradient optimization iterations
upon termination and J is the number of power levels. In
LDDP, the total power budget Ptotal is divided in J dis-
crete power steps of value Ptotal/J and power allocation is
performed by distributing these discrete power steps among
users and subcarriers. In section VI-D, we study the trade-off
between sum-rate performance and computational complexity
of LDDP for different values of J . We determine that for
the system described in Table II, LDDP with J = 10K is an
appropriate choice as a near-optimal benchmark since its sum-
rate does not improve significantly by further increasing J . In
addition, we analyze how the performance gain in LDDP’s
optimization depends on J , N , K and M . We deduce that
J = O(min{K,MN}) is a good choice for achieving near-
optimal sum-rate in practice.

Besides, the complexity of FTPC is O(NK) by definition.
We summarize the above results in Table I.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
subcarrier and power allocation strategies by extensive simu-
lations. The radius R of the cell is set to 250 meters. Within
the cell, there is one BS located at the center and K users
uniformly distributed inside it. The system bandwidth W is
assumed to be 5 MHz and Wn = W/N for n ∈ N , where
N = 10. The noise power spectral density is assumed to be
-174 dBm/Hz. In the radio propagation model, we follow [41]
and include the distance-dependent path loss, shadow fading
and small-scale fading. The distance-dependent path loss is
given by 128.1 + 37.6 log10 d, in which d is the distance
between the transmitter and the receiver in km. Lognormal
shadowing has a standard deviation of 8 dB. For small-scale
fading, each user experiences independent Rayleigh fading
with variance 1. The details of simulation parameters are
summarized in Table II.

We will compare the performance of the following schemes:
• Double Iterative Waterfilling Algorithm (DIWA): we

adopt the proposed three-step MC-NOMA optimization
framework and use SIWA in Step 1 and 3;

• Double Gradient Algorithm (DGA): we adopt the pro-
posed three-step MC-NOMA optimization framework
and use the projected gradient descent algorithm (Algo-
rithm 1) in both Step 1 and 3;

• Double Pseudo-Gradient Algorithm (DPGA): we ap-
ply the designed three-step MC-NOMA optimization
scheme and adopt pseudo-gradient descent algorithm
(Algorithm 2) in the Step 1 and Step 3;

• LDDP: the near-optimal scheme proposed in [25];
• NOMA-SIWA-FTPC: we apply the proposed SIWA to

NOMA with FTPC, in which SIWA and FTPC are
invoked to perform subcarrier and power allocation, re-
spectively;

• OMA-FTPC: we adopt FTPC [2], [24], [42], [43] in
orthogonal multiple access (OMA) system.

A. The Convergence Time

To begin with, we investigate the convergence time of
the proposed power control algorithms. Fig. 1 shows the
convergence of SIWA, DGA and DPGA in both Step 1 and
Step 3 of our three-step resource allocation methodology. The
number of users K and the number of multiplexed users M
is set to be 10 and 2, respectively.

Fig. 1(a) and Fig. 1(b) show the convergence performance
of SIWA in Step 1 and Step 3, respectively. We choose several
users on an arbitrary chosen instance and use their water levels
during iterations to demonstrate. The x-axis represents the
number of iterations, while the y-axis denotes the water level
of each user. We can observe that SIWA in both Step 1 and
Step 3 takes only a few iterations to converge. As expected, the
water level of each user in Step 3 is monotonically increasing.
Fig. 1(c) illustrates the convergence of DGA (projected gradi-
ent descent algorithm) and DPGA (pseudo-gradient descent
algorithm) in Step 1 and Step 3, respectively. The x-axis
indicates the number of iterations, while the y-axis represents
the sum of user data rates. It can be seen that these gradient
descent based power control algorithms converge rapidly in
both Steps 1 and 3.

B. Sum of Data Rates

In this subsection, we evaluate the sum of data rates perfor-
mance of the aforementioned subcarrier and power allocation
schemes. Note that each data point is obtained by averaging
over 2,000 random instances.

The purpose of Fig. 2 and Fig. 3 is to compare the
performance between NOMA system given by LDDP, our
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Fig. 1. Convergence of the proposed power control algorithms.

TABLE II
SIMULATION PARAMETERS

Parameters Value
Cell radius 250 m

Minimum distance from user to BS 35 m
Path loss 128.1 + 37.6 log10 d dB, d is in km

Shadowing Log-normal, standard deviation 8 dB
Fading Rayleigh fading with variance 1

Users distribution scheme Randomly uniform distribution
Noise power spectral density -174 dBm/Hz

Overall system bandwidth, W 5 MHz
Subcarrier number, N 10
Number of users, K 3 to 20

Throughput calculation Shannon’s capacity formula
Decay factor of FTPC 0.4

Number of power levels of LDDP per user 10, ([0 W, 0.5 W], step by 0.05 W)
Power constraint for each user 0.5 W

Parameter ϵ 10−4

Parameter M 1 (OMA), 2 to 6 (NOMA)
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Fig. 2. Sum of data rates vs. different number of users, M = 2
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Fig. 3. Sum of data rates vs. different number of users, M = 3
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Fig. 5. Performance loss vs. different number of users, M = 3
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Fig. 6. Sum of data rates vs. different number of multiplexed users

three-step method and the performance in OMA system given
by OMA-FTPC. Since projected gradient descent algorithm
(Algorithm 1) achieves the optimal solution to power control
problem (5), in Fig. 2 and Fig. 3, we choose to compare its
sum-rate performance applied in the three-step algorithm (i.e.,
DGA according to our aforementioned definition) to that of
LDDP and OMA-FTPC with different number of users. The
number of multiplexed users M of Fig. 2 and Fig. 3 is set to 2
and 3, respectively. This setting is based on an implementation
point of view, i.e., reducing the receiver complexity and error
propagation due to SIC [40].

In Fig. 2, it can be seen that the sum of data rates of each
scheme increases with the number of users K. For any given
K, LDDP has the best performance among the three schemes.
Nevertheless, DGA achieves comparable sum of data rates to
that of LDDP, see for example, when K = 20 and M = 2, the
proposed DGA has a performance loss of only 3.14% when
compared with LDDP. In addition, OMA-FTPC has the worst
system performance among all. Similar conclusions can be
drawn from Fig. 3. It is worth mentioning that the proposed
scheme becomes more efficient with the increasing of M . For
example, when K = 20 and M = 3, the performance loss of
DGA when compared to LDDP is reduced to 1.71%.

In Fig. 4 and Fig. 5, we compare the sum of data rates
performance of the three-step scheme under DGA, DPGA,
DIWA, and NOMA-SIWA-FTPC. The x-axis indicates the
number of users, while the y-axis represents the sum-rate
performance loss compared to that of LDDP, which is defined
as follows:

Rsum(LLDP )−Rsum

Rsum(LLDP )
, (45)

where Rsum(LLDP ) and Rsum refer to the solutions of
LDDP and the three-step algorithm, respectively.

Fig. 4 shows the performance loss versus different number
of users K of the four proposed schemes, where M = 2. It can
be seen that, for fixed K, DGA has the smallest performance
loss among these four schemes. Meanwhile, DIWA has a
similar performance to that of DPGA. In addition, for any
given K, NOMA-SIWA-FTPC has the largest performance
loss among all.

Fig. 5 represents the performance loss of our proposed
resource allocation strategies when compared with LDDP
where the number of multiplexed users is assumed to be 3.
The similar conclusions can be achieved to the scenario where
2 users are multiplexed on each subcarrier (Fig. 4), which are
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Fig. 7. Number of operations vs. different number of users, M = 2
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Fig. 8. Number of operations vs. different number of users, M = 3

omitted here.
Fig. 6 depicts the sum of data rates of LDDP and our

proposed resource allocation algorithms versus the number
of multiplexed users M , in which the number of users K
is assumed to be 6. It can be seen that with the increasing
of M , the performance gap between LDDP and our proposed
schemes decreases. For example, when M = 4, the proposed
DGA and SIWA have almost the same performance to that of
LDDP, i.e., a performance loss of approximately 0.0016% and
0.0074%, respectively, while DPGA stagnates at 0.036% and
NOMA-SIWA-FTPC has a performance loss of 0.37%.

C. Number of Operations

Fig. 7 to Fig. 9 show the number of operations required
by the different schemes. For each scheme, we count the
number of additions, multiplications, and comparisons used,
which reflects the time complexity, as an estimation.

In Fig. 7 and Fig. 8, the number of multiplexed users M
is fixed to 2 and 3, respectively. We see that except OMA-
FTPC, the number of operations for each scheme increases
with the increasing number of users, K. For any given K,
DGA has the highest computational complexity among the
proposed algorithms (DGA, DPGA, DIWA, NOMA-SIWA-
FTPC). OMA-FTPC requires the fewest operations of all. In
addition, the proposed DIWA uses approximately the same
number of operations as NOMA-SIWA-FTPC and slightly
more operations than OMA-FTPC but much less operations
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Fig. 9. Number of operations vs. different number of multiplexed users
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Fig. 10. Sum of data rates for different values of J , M = 3

than DPGA and DGA. In any case, all of the proposed schemes
are much more time efficient than LDDP especially when
the number of users is large. For example, when K = 20
and M = 2, the number of operations required by DIWA,
DPGA and DGA is less than 0.1%, 0.2%, and 0.27% of that
required by LDDP, respectively. Besides, when K = 20 and
M = 3, the needed operations of DIWA, DPGA and DGA
is around 0.01%, 0.07%, and 0.1% of that needed by LDDP,
respectively.

Fig. 9 compares the number of operations required under
different number of multiplexed users M with fixed number
of users K = 6. We can see that for any given M , the number
of operations of LDDP is the highest of all. In addition, with
the increasing of M , the computational complexity of LDDP
has the fastest growth rate among all the schemes.

D. Impact of the Power Levels J on LDDP’s Performance

We show in this subsection how the sum-rate and com-
plexity of LDDP depends on the number of power levels
J and the system’s parameters. We present in Fig. 10 and
Fig. 11 the sum-rate and number of operations of LDDP
under different number of power levels J = 10, 20, 50, 200
and 10K, and compare them to the performance of DGA. As
expected from [25], when J increases, the sum-rate of LDDP
increases until reaching the optimal, while the computational
complexity increases in O(CNMKJ2). The number of power
levels considered here is always greater than 10, otherwise
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Fig. 11. Number of operations for different values of J , M = 3

LDDP would not have enough discrete power steps to serve
all N = 10 subcarriers.

We observe in Fig. 10 that LDDP’s sum-rate for J = 200
and J = 10K are very close, i.e. they have less than 0.01% of
difference for any number of users. Hence, LDDP’s sum-rate
does not improve significantly by further increasing J over
10K. Furthermore, the sum-rate is reduced significantly as J
decreases. This justifies the choice of LDDP with 10 power
steps per user, i.e. J = 10K, as a benchmark near-optimal
scheme in our simulations. Note that this value only holds
for the system’s parameters described in Table II. We discuss
below how J can be set in other systems depending on N , K
and M .

As the number of resource increases (subcarriers N , users
K, M , etc.), J should also increase in order to achieve similar
gain in the joint subcarrier and power allocation. The idea is
that each allocated user should have enough power steps to
optimize the allocation of their individual power budget p̄k
among the subcarriers in LDDP. Given that the number of
allocated user is at most min{K,MN}, we choose empirically
J = O(min{K,MN}), which achieves good performance by
simulation. For example, we choose J = 10K in Fig. 10,
since K < MN = 30.

In Fig. 11, all LDDP schemes have higher complexity
than DGA. Among these schemes, only LDDP with J =
50, 200, 10K achieve better sum-rate performance than DGA.
The performance gains compared to DGA, for K = 20, are re-
spectively 1.04% and 1.74% for J = 50 and J = 10K = 200,
while the increase in complexity are approximately 100 and
1000 folds. Moreover, DGA outperforms both LDDP with
J = 10 and J = 20 in terms of higher sum-rate and lower
complexity. For K = 20, the performance loss of LDDP with
J = 10 and J = 20 compared to DGA are respectively 3.20%
and 1.54%.

In summary, DGA has close to the best LDDP’s sum-
rate, while requiring less computational complexity. The latter
statement can be explained by comparing the asymptotic
complexity of LDDP iteration O(NMKJ2) and DGA it-
eration O(NK2). As discussed previously, we can assume
J = O(min{K,MN}). If K ≤ MN (which is the case
considered in our simulations), LDDP iteration’s complexity
can be written as O(NMK3). In this case, DGA requires MK
times less operations than LDDP, which explains the results
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Fig. 12. Fairness index vs. different number of users, M = 2
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Fig. 13. Sum of data rates vs. different number of users, M = 2

shown in Fig. 7, 8, 9 and Fig. 11. Otherwise if K > MN ,
then LDDP iteration’s complexity becomes O(N3M3K). This
complexity is in practice higher than DGA’s iteration complex-
ity. Indeed, let’s consider a 3GPP-LTE use case [44] with a
bandwidth of 10 MHz divided in N = 50 resource blocks,
and let M = 2, DGA remains advantageous in terms of
computational complexity as long as K < N2M3, i.e. up
to 20, 000 connected users.

E. Fairness Performance

As stated in Section II, the fairness among users can be
obtained via adjusting the power constraint of individual user.
We adopt Jain’s fairness index [45] to show this performance,
which is defined as (

∑K
k=1 Rk)

2

K
∑K

k=1 R2
k

. Fig. 12 depicts the fairness

performance of the proposed scheme1 under different user
power constraint strategies where the number of multiplexed
user on each subcarrier is set to 2. Specifically, under DGA
equal power constraints, each user has the same maximum
power budget, i.e., p̄k = Ptotal/K, where k ∈ K. Meanwhile,
in DGA proportional power constraints, the power budget of
user k, p̄k, is given as follows:

p̄k =
(
∑

n∈N gnk )
−1∑

j∈K(
∑

n∈N gnj )
−1

Ptotal, k ∈ K. (46)

From Fig. 12 we see that, given the number of users, DGA
under proportional power constraints has higher fairness index
than that of DGA with equal power constraint. For example,

1For expression simplicity, we choose DGA as an example to demonstrate
the fairness performance. Similar conclusions can be obtained for the other
proposed resource allocation schemes.
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Fig. 14. Fairness index over a scheduling frame, M = 2

4 8 12 16 20

Number of users K

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
u

m
o

f
d

a
ta

ra
te

s
(b

it
s
/s

)

×108

LDDP

DGA proportional power constraints

DGA equal power constraints

Fig. 15. Sum of data rates over a scheduling frame, M = 2

when K = 20, DGA with proportional power constraints
improves Jain’s fairness index by 60% when compared to that
of equal power constraint scheme.

Fig. 13 is applied to illustrate the sum rate performance
of DGA under different power constraint methods where two
users are multiplexed on each subcarrier. For each value
of K, DGA under equal power budget has better sum rate
performance than DGA with proportional power constraints
since the latter scheme assigns more power to users with
weak channel conditions, resulting in sum rate performance
degradation, e.g., when K = 20, DGA with proportional
power budget has 7.3% sum rate loss when compared to that
of equal power budget.

F. Fairness Performance over a Scheduling Frame

In this subsection, we compare the fairness performance
of DGA with proportional power constraint to LDDP with
weighting factor proposed in [25]. In the same way as in [25],
we consider a scheduling frame of T = 20 times slots. The
channel state information is collected at the beginning of the
frame. Let Rk(t) be user k’s achievable data rate at time slot
t ∈ {1, . . . , T}. We define user k’s average rate prior to time
slot t as follows:

R̄k(t) =

(
1− 1

T

)
R̄k(t− 1) +

1

T
Rk(t). (47)

At each time t, LDDP is applied to optimize the weighted sum-
rate

∑
k wk(t)Rk(t), where the weight wk(t) of each user k
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is set inversely proportional to its average rate, i.e. wk(t) =
1/R̄k(t). Besides, at each time t, the individual power budgets
of DGA proportional power constraints are defined similarly
to (46) with additional weight factors quoted below:

p̄k(t) =
wk(t)(

∑
n∈N gnk )

−1∑
j∈K wk(t)(

∑
n∈N gnj )

−1
Ptotal, k ∈ K. (48)

Fig. 14 and Fig. 15 present respectively Jain’s fairness
index and sum-rate of the aforementioned schemes over a
scheduling frame, in which DGA equal power constraints
is also considered. Fig. 14 shows that LDDP and DGA
proportional power constraints outperforms DGA equal power
constraints in terms of fairness. This result is consistent with
the fact that the latter scheme do not take into account previous
data rates.

In Fig. 14, DGA proportional power constraints has greater
fairness than LDDP for K < 10, and inversely for K ≥ 10.
For K = 20, LDDP’s fairness index is 8.9% higher than that of
DGA proportional power constraints. Nevertheless, we can see
in Fig. 15 that DGA proportional power constraints achieves
higher sum-rate than LDDP, with a performance gain of 4.6%
for K = 20.

In summary, the results of this section reveal the trade-
off between sum rate performance and computational cost,
which can be balanced by using different resource allocation
algorithms. Additionally, through adjusting the total power
constraint of each user properly, a balancing between sum rate
performance and user fairness can be obtained.

VII. CONCLUSION

In this work, we investigate the sum rate maximization
problem for the downlink of a MC-NOMA system. A three-
step resource allocation methodology is proposed. First, we
assume each of the users can use all subcarriers simultaneously
and we solve the power control problem to get a power vector
for each user; Second, we allocate subcarriers to users in a
heuristic greedy manner with the obtained power vectors in
Step 1; Third, the power allocation schemes used in Step 1 are
applied once again to further enhance the system performance
with the obtained subcarrier assignment of Step 2.

To solve the power control problem with fixed subcarrier as-
signment in both Step 1 and Step 3, a centralized method based
on projected gradient descent algorithm is proposed. Besides,
by transforming the power control problem into a multi-player
concave game, two distributed power control strategies are
proposed, which are more time efficient than the centralized
scheme. Specifically, one of them is based on pseudo-gradient
algorithm and the other one on iterative waterfilling algorithm.
The existence and uniqueness of Nash equilibrium of this
game is proved and pseudo-gradient algorithm can be applied
to reach this point. In addition, the convergence of iterative
waterfilling algorithm in some cases is also proved.

Simulation results show that the performance of the pro-
posed three-step algorithms is comparable to LDDP but with
much fewer computations. Among our proposed algorithms,
DGA has the best sum-rate performance, while NOMA-SIWA-
FTPC is the most computationally efficient. The other two

proposed algorithms, DPGA and DIWA, are able to strike a
proper balance between sum rate and computation steps. In
particular, DPGA has provable convergence guarantee while
DIWA is more efficient in computation. Numerical results also
demonstrate that through adjusting the total power budget of
each user properly, a tradeoff between sum-rate performance
and fairness performance can be achieved. Future work in-
cludes solving the joint subcarrier and power allocation for
multi-cell MC-NOMA systems and other scenarios.
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