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THE STRENGTH OF THE TREE THEOREM FOR PAIRS

IN REVERSE MATHEMATICS

LUDOVIC PATEY

Abstract. No natural principle is currently known to be strictly between the arithmetic com-
prehension axiom (ACA0) and Ramsey’s theorem for pairs (RT2

2) in reverse mathematics. The
tree theorem for pairs (TT2

2) is however a good candidate. The tree theorem states that for every
finite coloring over tuples of comparable nodes in the full binary tree, there is a monochromatic
subtree isomorphic to the full tree. The principle TT2

2 is known to lie between ACA0 and RT2
2

over RCA0, but its exact strength remains open. In this paper, we prove that RT2
2 together with

weak König’s lemma (WKL0) does not imply TT2
2, thereby answering a question of Montálban.

This separation is a case in point of the method of Lerman, Solomon and Towsner for design-
ing a computability-theoretic property which discriminates between two statements in reverse
mathematics. We therefore put the emphasis on the different steps leading to this separation
in order to serve as a tutorial for separating principles in reverse mathematics.

1. Introduction

“Every sufficiently large collection of objects has an arbitrarily large sub-collection whose
objects satisfy some structural properties”. This general statement reflects the main idea of
Ramsey’s theory. This theory has connections with many areas of mathematics, namely, com-
binatorics, model theory or set theory. One of the most well-known statements is Ramsey’s
theorem, stating that for every coloring of the k-tuples of integers in finitely many colors, there
is an infinite monochromatic subset. In this paper, we are interested in the tree theorem for
pairs, a strengthening of Ramsey’s theorem for pairs stating that for every finite coloring over
pairs of comparable nodes in the full binary tree, there is a monochromatic subtree isomorphic
to the full tree. Our main theorem states that the tree theorem for pairs is strictly stronger
than Ramsey’s theorem for pairs in the sense of reverse mathematics.

Reverse mathematics is a mathematical program whose goal is to classify theorems in terms
of their provability strength. It uses the framework of subsystems of second-order arithmetic,
with the base theory RCA0 (recursive comprehension axiom). RCA0 is composed of the basic
first-order Peano axioms, together with ∆0

1-comprehension and Σ0
1-induction schemes. RCA0 is

usually thought of as capturing computational mathematics. This program led to two important
observations: First, most “ordinary” (i.e. non set-theoreric) theorems require only very weak
set existence axioms. Second, many of those theorems are actually equivalent to one of five
main subsystems over RCA0, known as the “Big Five”.

Ramsey’s theory, among others, provides a large class of theorems escaping this phenomenon.
Indeed, consequences of Ramsey’s theorem for pairs usually belong to their own subsystem and
their study is still an active research subject within reverse mathematics. This article focuses
on Ramseyan principles below ACA0, the arithmetic comprehension axiom. See [14] for a good
introduction to reverse mathematics.

1.1. Ramsey’s theorem

The strength of Ramsey-type statements is notoriously hard to tackle in the setting of re-
verse mathematics. The separation of Ramsey’s theorem for pairs (RT2

2) from the arithmetic
comprehension axiom (ACA0) was a long-standing open problem, until Seetapun solved it [27]
using the notion of cone avoidance.
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2 LUDOVIC PATEY

Definition 1.1 (Ramsey’s theorem) A subset H of ω is homogeneous for a coloring f : [ω]k → n

(or f -homogeneous) if each k-tuples over H are given the same color by f . RTkn is the statement
“Every coloring f : [ω]k → n has an infinite f -homogeneous set”.

Simpson [29, Theorem III.7.6] proved that whenever k ≥ 3 and n ≥ 2, RCA0 ` RTkn ↔ ACA0.
Ramsey’s theorem for pairs is probably the most famous example of statement escaping the
Big Five. Seetapun [27] proved that RT2

2 is strictly weaker than ACA0 over RCA0. Because of
the complexity of the related separations, RT2

2 received a particular attention from the reverse
mathematics community [2, 27, 16]. Cholak, Jockusch and Slaman [2] and Liu [18] proved that
RT2

2 is incomparable with weak König’s lemma. Dorais, Dzhafarov, Hirst, Mileti and Shafer [6],
Dzhafarov [7], Hirschfeldt and Jockusch [15] and the author [25] studied the computational
strength of Ramsey’s theorem according to the number of colors, when fixing the number of
applications of the principle.

1.2. The tree theorem

There is no natural principle currently known to be strictly between ACA0 and RT2
2. The tree

theorem for pairs is however a good candidate. The tree theorem is a strengthening of Ramsey’s
theorem in which we do not consider colorings over tuples of integers, but colorings over tuples
of nodes over a binary tree. Ramsey’s theorem can be recovered from the tree theorem by
identifying all nodes at every given level of the tree.

Given a set of binary strings S ⊆ 2<ω, we denote by [S]n the collection of linearly ordered
subsets of S of size n, that is, n-sets of strings {σ0, . . . , σn−1} ⊆ S such that σi ≺ σi+1 for
each i < n− 1.

Definition 1.2 (Tree theorem) A subtree S ⊆ 2<ω is order isomorphic to 2<ω (written S ∼=
2<ω) if there is a bijection g : 2<ω → S such that for all σ, τ ∈ 2<ω, σ � τ if and only if
g(σ) � g(τ). Given a coloring f : [2<ω]n → k, a tree S is f -homogeneous if S ∼= 2<ω and f�[S]n

is monochromatic. TTnk is the statement “Every coloring f : [2<ω]n → k has an f -homogeneous
tree.”

Note that if S ∼= 2<ω, witnessed by the bijection g : 2<ω → S, then S is g-computable. There-
fore we can consider that TTn states the existence of the bijection g instead of the pair 〈S, g〉.
The tree theorem was first analyzed by McNicholl [19] and by Chubb, Hirst, and McNicholl [4].
They proved that TT2

2 lies between ACA0 and RT2
2 over RCA0, and left open whether any of the

implications is strict. Further work was done by Corduan, Groszek, and Mileti [5]. Dzhafarov,
Hirst and Lakins [8] studied stability notions for the tree theorem and introduced a polarized
variant. Montálban [21] asked whether RT2

2 implies TT2
2 over RCA0. We give a negative answer

by proving the following stronger theorem, where WKL0 stands for weak König’s lemma.

Theorem 1.3 (Main result) RT2
2 ∧WKL0 does not imply TT2

2 over RCA0.

The separation builds on the forcing method introduced by Lerman, Solomon and Tows-
ner [17], and enhanced by the author [23], for designing a computability-theoretic property
which discriminates between two statements in reverse mathematics. The construction being
quite complex, we present the proof step by step, hoping that our exposition can serve as a
tutorial for separating principles in reverse mathematics.

1.3. Separating principles in reverse mathematics

An ω-structure is a structureM = (ω,S,+, ·, <) where ω is the set of standard integers, +, ·
and < are the standard operations over integers and S is a set of reals such thatM satisfies the
axioms of RCA0. Friedman [12] characterized the second-order parts S of ω-structures as those
forming a Turing ideal, that is, a set of reals closed under Turing join and downward-closed
under the Turing reduction. Given two principles P and Q, proving that P does not imply Q
over RCA0 usually consists in constructing a Turing ideal I in which P holds, but not Q.
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Many theorems in reverse mathematics are Π1
2 statements, i.e., of the form (∀X)(∃Y )Φ(X,Y )

where Φ is an arithmetic formula. They can be considered as problems which usually come with
a natural class of instances. Given an instance X, a set Y such that Φ(X,Y ) holds is called
a solution to X. For example, an instance of RT2

2 is a coloring f : [ω]2 → 2, and a solution to f
is an infinite f -homogeneous set. In this setting, the construction of an ω-model of P which is
not a model of Q consists in creating a Turing ideal I together with a fixed Q-instance I ∈ I,
such that every P-instance J ∈ I has a solution in I, whereas I contains no solution in I.
Building a Turing ideal is usually achieved via the following technique.

1. Choose a particular Q-instance I admitting no I-computable solution.
2. Start with the Turing ideal I0 = {Z : Z ≤T I}.
3. Given a Turing ideal In containing no solution to I, take any P-instance J ∈ In having

no solution in In and add a solution Y to J . The closure by Turing reducibility and
join gives In+1.

4. Repeat step 3 to obtain a Turing ideal I =
⋃
n In such that every P-instance in I admits

a solution in I.

The difficulty of such a construction is to avoid adding a solution to the instance I in In+1

during step 3. One needs to ensure that every P-instance in In admits a solution Y such that
Y ⊕ C avoids computing a solution to I for each C ∈ In.

Assuming that In does not contain a solution to I is sometimes not sufficient to ensure the
existence of a solution Y to the next P-instance such that the ideal closure of In∪{Y } does not
contain such a solution as well. A core step of the separation of P from Q consists in designing
the computability-theoretic property that we will propagate from In to In+1 and which will
ensure in particular that I has no solution in In+1. This property strongly depends on the
nature of the principles P and Q.

Lerman, Solomon and Towsner [17] introduced a general technique for designing such a
property. Their framework has been successfuly reused to separate various principles in reverse
mathematics [11, 22, 24]. Recently, the author [23] refined their technique to make it more
lightweight and modular. Once simplified, a separation between two statements P and Q using
the framework of Lerman, Solomon and Towsner yields a computability-theoretic property called
fairness property. This property is closed downward under the Turing reduction and is preserved
by the statement P, that is, for every fair set X and every X-computable P-instance I, there is
a solution Y to I such that X ⊕ Y is fair. This property is designed so that it is not preserved
by Q, which enables one to build an ω-model of P in which Q does not hold. Note that
“fairness property” is a generic appelation for the computability-theoretic property yielded by
the construction of Lerman, Solomon and Towsner. Different statements give different fairness
properties, such as hyperimmunity [23], CAC-fairness [26] or again TT-fairness [13].

In this paper, we shall take the case of the separation of Ramsey’s theorem for pairs from
the tree theorem for pairs to make explicit the different steps leading to the separation of two
principles. In particular, we shall focus on the design of the discriminating property.

1.4. Definitions and notation

String, sequence. Fix an integer k ∈ ω. A string (over k) of length n is an ordered tuple
of integers a0, . . . , an−1 (such that ai < k for every i < n). The empty string is written ε. A
sequence (over k) is an infinite listing of integers a0, a1, . . . (such that ai < k for every i ∈ ω).
Given s ∈ ω, ks is the set of strings of length s over k and k<s is the set of strings of length
< s over k. Similarly, k<ω is the set of finite strings over k and kω is the set of sequences (i.e.
infinite strings) over k. Given a string σ ∈ k<ω, we denote by |σ| its length. Given two strings
σ, τ ∈ k<ω, σ is a prefix of τ (written σ � τ) if there exists a string ρ ∈ k<ω such that σρ = τ .
Given a sequence X, we write σ ≺ X if σ = X�n for some n ∈ ω, where X�n denotes the
restriction of X to its first n elements. A binary string (resp. binary sequence) is a string (resp.
sequence) over 2. We may identify a binary sequence with a set of integers by considering that
the sequence is its characteristic function.
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Tree, path. A tree T ⊆ k<ω is a set downward-closed under the prefix relation. A binary tree
is a tree T ⊆ 2<ω. A sequence P ∈ ωω is a path though T if for every σ ≺ P , σ ∈ T . A string
σ ∈ k<ω is a stem of a tree T if every τ ∈ T is comparable with σ. Given a tree T and a string
σ ∈ T , we denote by T [σ] the subtree {τ ∈ T : τ � σ ∨ τ � σ}.

Sets, partitions. Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈
B)[x < y] and by A ⊆∗ B the formula (∀∞x ∈ A)[x ∈ B], meaning that A is included in B
up to finitely many elements. Given a set X and some integer k, a k-cover of X is a k-uple
A0, . . . , Ak−1 such that A0 ∪ · · · ∪ Ak−1 = X. We may simply say k-cover when the set X is
unambiguous. A k-partition is a k-cover whose sets are pairwise disjoint. A Mathias condition
is a pair (F,X) where F is a finite set, X is an infinite set and F < X. A condition (F1, X1)
extends (F,X) (written (F1, X1) ≤ (F,X)) if F ⊆ F1, X1 ⊆ X and F1 r F ⊂ X. A set G
satisfies a Mathias condition (F,X) if F ⊂ G and Gr F ⊆ X.

2. Partitioning trees and strong reducibility

In order to get progressively into the framework used to separate Ramsey’s theorem for
pairs from the tree theorem for pairs, we shall first study the singleton version of the considered
principles. The fairness property that we shall design during the next section is directly obtained
by abstracting and generalizing the diagonalization argument of this section. Ramsey’s theorem
for singletons is simply the infinite pigeonhole principle, stating that for every finite partition of
an infinite set, one of its parts has an infinite subset. Both RT1

k and TT1
k are computably true

and provable over RCA0. We shall therefore study non-computable instances of RT1
k and TT1

k

to see how their combinatorics differ.
As explained in subsection 1.3, a proof of implication from P to Q over RCA0 may involve

multiple applications of P. Therefore, if we want to prove that P does not imply Q over RCA0,
we need to create an instance of Q diagonalizing against successive applications of P. In order to
simplify our argument, we shall first describe a one-step diagonalization between a ∆0

2 instance
of TT1

2 and arbitrary instances of RT1
k, that is, with no effectiveness restriction. This is the

notion of strong computable non-reducibility.

Definition 2.1 (Computable reducibility) Fix two Π1
2 statements P and Q. P is strongly com-

putably reducible to a Q (written P ≤sc Q) if every P-instance I computes a Q-instance J such
that every solution to J computes a solution to I.

The remainder of this section will be dedicated to proving that TT1
2 6≤sc RT1

2. More precisely,
we shall prove the following stronger theorem.

Theorem 2.2 There exists a ∆0
2 TT1

2-instance A0 ∪ A1 = 2<ω such that for every (non-
necessarily computable) RT1

2-instance B0 ∪ B1 = ω, there is an infinite set homogeneous for
the B’s which does not compute a TT1

2-solution to the A’s.

In section 4, we will prove a theorem which implies Theorem 2.2. Therefore we shall focus
on the key ideas of the construction rather than on the technical details.

Requirements. Let us first assume that we have constructed our TT1
2 instance A0∪A1 = 2<ω.

Fix some 2-partition B0 ∪ B1 = ω. We will construct by forcing an infinite set G such that
both G ∩ B0 and G ∩ B1 are infinite. Either G ∩ B0, or G ∩ B1 will be taken as our solution
to the RT1

2-instance B0 ∪ B1 = ω. We only need one solution to the RT1
2-instance. However,

we will be only able to ensure that either G∩B0, or G∩B1 will not compute a solution to the
TT1

2-instance A0 ∪ A1 = 2<ω. Therefore, among G ∩ B0 and G ∩ B1, only the one which does
not compute a solution to the TT1

2-instance will be the desired solution to our RT1
2-instance.

Here, by “solution to the TT1
2-instance”, we mean an infinite subtree isomorphic to 2<ω which

is included in A0 or A1.
Let Φ0,Φ1, . . . be an enumeration of all partial tree functionals isomorphic to 2<ω, that is, if

ΦX(n) halts, then ΦX(n) outputs 2n pairwise incomparable strings representing the nth level
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of the tree. We ensure that the following requirements hold for every pair of indices e0, e1.

Qe0,e1 : RG∩B0
e0 ∨ RG∩B1

e1

where RHe is the statement

Either ΦH
e is partial, or ΦH

e (n) is a set D of 2n incomparable strings intersecting
both A0 and A1 for some n.

We call any Qe0,e1 a Q-requirement and for a given H (being either G∩B0, or G∩B1), we call
any RHe an R-requirement for H. If every Q-requirement is satisfied, then by the usual pairing
argument, either every R-requirement is satisfied for G∩B0, or every R-requirement is satisfied
for G∩B1. Call H a set among G∩B0 and G∩B1 for which every R-requirement is satisfied.
We claim that H does not compute a solution to the TT1

2-instance A0 ∪A1 = 2<ω. Suppose for
the sake of contradiction that H computes a tree S ∼= 2<ω using some procedure Φe. By the
requirement RHe , S intersects both A0 and A1, and therefore S is not a TT1

2-solution to the A’s.

Forcing. The forcing conditions are Mathias conditions, that is, an ordered pair (F,X),
where F is a finite set of integers, X is an infinite set belonging to some fixed Scott set S,
and such that max(F ) < min(X). A Scott set Turing ideal satisfying weak König’s lemma.
By Simpson [29, Theorem VIII.2.17], we can choose S so that S = {Xi : C =

⊕
iXi} for

some low set C. This precision will be useful during the construction of the TT1
2-instance. We

furthermore assume that C does not compute a TT1
2-solution to the A’s, and therefore that

there is no C-computable infinite set homogeneous for the B’s, otherwise we are done.
The following lemma ensures that we can force both G∩B0 and G∩B1 to be infinite, assuming

that the B’s have no infinite C-computable homogeneous set.

Lemma 2.3 Given a condition c = (F,X) and some side i < 2, there is an extension d = (E, Y )
such that |E ∩Bi| > |F ∩Bi|.

Proof. If X ∩ Bi = ∅ then X is an infinite C-computable subset of B1−i, contradicting our
assumption. So there is some x ∈ X ∩ Bi. Take d = (F ∪ {x}, X r [0, x]) as the desired
extension. �

The next step consists in forcing the Q-requirements to be satisfied. A condition c forces
a requirement Qe0,e1 if Qe0,e1 holds for every set G satisfying c. Of course, we cannot force

the Q-requirements for any TT1
2-instance A0 ∪A1 = 2<ω since some of them admit computable

solutions. We must therefore choose our TT1
2-instance carefully. For now, simply assume that

we managed to build a TT1
2-instance A0 ∪ A1 = 2<ω satisfying the following property (P). We

will detail its construction later.

(P) Given a condition c = (F,X) and some indices e0, e1, there is an extension d
of c forcing Qe0,e1 .

Assuming that the property (P) holds, we now show how to build our infinite set G from it.
After that, we will construct a TT1

2-instance A0∪A1 = 2<ω so that the property (P) is satisfied.

Construction. Thanks to Lemma 2.3 and the property (P), we can define an infinite, decreas-
ing sequence of conditions (∅, ω) ≥ c0 ≥ c1 . . . such that for each s ∈ ω

(i) |Fs ∩B0| ≥ s and |Fs ∩B1| ≥ s
(ii) cs forces Qe0,e1 if s = 〈e0, e1〉

where cs = (Fs, Xs). The set G =
⋃
s Fs is such that both G ∩ B0 and G ∩ B1 are infinite by

(i), and either G ∩ B0 or G ∩ B1 does not compute a TT1
2-solution to the A’s by (ii). The set

among G ∩ B0 and G ∩ B1 which does not compute a TT1
2-solution to the A’s is our desired

RT1
2-solution to the B’s. We now need to satisfy the property (P).

Satisfying the property (P). Given a condition, the extension stated in the property (P) cannot
be ensured for an arbitrary TT1

2-instance A0 ∪ A1 = 2<ω. We must design the A’s so that the
property (P) holds. To do so, we will apply the ideas developped by Lerman, Solomon and
Towsner [17]. We can see the construction of the set G as a game. The opponent is the TT1

2-
instance which will try everything, not to be diagonalized against. However, the opponent is
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fair, in the sense that if we have infinitely many occasions to diagonalize against him, then he
will let us do it. More precisely, if given a condition c = (F,X) and some indices e0, e1, we can
find extensions which makes both ΦG∩B0

e0 and ΦG∩B1
e1 produce arbitrarily large initial segments

of the output, then one of those outputs will intersect both A0 and A1. In this case, we will
have succeeded to satisfy (P) for the condition c by producing an extension d forcing ΦG∩Bi

ei
to intersect both A0 and A1 for some i < 2, and therefore forcing Qe0,e1 . In the other case,
we will also have vacuously succeeded since we will not be able to find extensions making both
ΦG∩B0
e0 and ΦG∩B1

e1 produce arbitrarily large initial segments of the output tree, and therefore c

is already a condition forcing one ΦG∩B0
e0 and ΦG∩B1

e1 to be partial, so forcing Qe0,e1 .

We now describe how to construct a fair TT1
2-instance. The construction of the A’s will be

∆0,C
2 , hence ∆0

2 since C is low. The access to the oracle C enables us to code the conditions
c = (F,X) into finite objects, namely, pairs (F, i) so that C =

⊕
iXi and X = Xi, and to enu-

merate them C-computably. More precisely, we will enumerate all 6-tuples 〈F, i, E0, E1, e0, e1〉,
where (F,Xi) is a preconditions, that is, a condition where we drop the constraint that Xi is
infinite since it requires too much computational power to know it, E0 t E1 = F represents a
guess of the sets F ∩B0 and F ∩B1, and e0, e1 denote the Qe0,e1 we want to force. In particular,
among those 6-tuples enumerated, we will enumerate 〈F, i, F ∩B0, F ∩B1, e0, e1〉 for all the
true conditions (F,Xi).

The construction of the A’s is done by stages. At stage s, we have constructed two sets A0,s∪
A1,s = 2<q for some q ∈ ω. We want to satisfy the property (P) given a 6-tuple 〈F, i, E0, E1, e0, e1〉,
that is, given a precondition c = (F,X), a guess of F ∩B0 and F ∩B1, and a pair of indices e0, e1.
If any of ΦE0

e0 (2) and ΦE1
e1 (2) is not defined, do nothing and go to the next stage. We can re-

strict ourselves without loss of generality to preconditions such that both ΦE0
e0 (2) and ΦE1

e1 (2)
are defined. Indeed, if in the property (P), the condition c has no such extension, then c already
forces either ΦG∩B0

e0 or ΦG∩B1
e1 to be partial and therefore vacuously forces Qe0,e1 . The choice of

“2” as input seems arbitrary. It has not been picked randomly and this choice will be justified
in the next paragraph.

Let D0 and D1 be the 4-sets of pairwise incomparable strings outputted by ΦE0
e0 (2) and

ΦE1
e1 (2), respectively. Altough the strings are pairwise incomparable within D0 or D1, there

may be two comparable strings in D0 ∪D1. However, by a simple combinatorial argument, we
may always find two strings σ0, τ0 ∈ D0 and σ1, τ1 ∈ D1 such that σ0, τ0, σ1 and τ1 are pairwise
incomparable (see Lemma 3.2). Here, we use the fact that on input 2, the sets have cardinality
4, which is enough to apply Lemma 3.2. We are now ready to ask the main question.

“Is it true that for every 2-partition Z0∪Z1 = X, there is some side i < 2 and some set G ⊆ Zi
such that ΦEi∪G

ei (q) halts?”

Note that the question looks Π1,X
2 , but is in fact Σ0,X

1 by a compactness argument. It is
therefore C ′-decidable since X ∈ S and so can be uniformly decided during the construction.
We have two cases.

Case 1: The answer is negative. In this case, the Π0,X
1 class C of all sets Z0 ⊕ Z1 such that

Z0 ∪ Z1 = X and for every i < 2 and every set G ⊆ Zi, ΦEi∪G
ei (q) ↑ is non-empty. In this

case, we do nothing and claim that the property (P) holds for c. Indeed, since S is a Scott set
containing X, there is some Z0 ⊕ Z1 ∈ C ∩ S such that Z0 ∪ Z1 = X. As X is infinite, there is
some i < 2 such that Zi is infinite. In this case, if E0 = F ∩B0 and E1 = F ∩B1, d = (F,Zi) is

an extension forcing Φ
(G∩Bi)
ei (q) ↑ and therefore forcing Qe0,e1 . Note that this extension cannot

be found C ′-computably since it requires to decide which of Z0 and Z1 is infinite. However, we
do not need to uniformly provide this extension. The property (P) simply states the existence
of such an extension.

Case 2: The answer is positive. Given a string σ ∈ 2<ω, let Sσ = {τ � σ}. Since the
Φ’s are tree functionals and ΦEi∪G

ei (2) outputs (among others) the strings σi and τi, whenever

ΦEi∪G
ei (q) halts, it outputs a finite set D of size 2q intersecting both Sσi and Sτi . Therefore, by

compactness, there are finite sets U0 ⊆ Sσ0 , V0 ⊆ Sτ0 , U1 ⊆ Sσ1 and V1 ⊆ Sτ1 such that for
every 2-partition Z0∪Z1 = X, there is some side i < 2 and some set G ⊆ Zi such that ΦEi∪G

ei (q)
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intersects both Ui and Vi. In particular, whenever E0 = F ∩ G0, E1 = F ∩ B1, Z0 = X ∩ B0

and Z1 = X ∩ B1, there is some i < 2 and some finite set G ⊆ X ∩ Bi such that Φ
(F∩Bi)∪G
ei (q)

intersects both Ui and Vi. Notice that all the strings in Ui and Vi have length at least q and
therefore are not yet colored by the A’s. Put the U ’s in A0,s+1 and the V ’s in A1,s+1 and
complete the coloring so that A0,s+1 ∪ A1,s+1 = 2<r for some r ≥ q. Then go to the next step.
We claim that the property (P) holds for c. Indeed, let G ⊆ X ∩Bi be the finite set witnessing

Φ
(F∩Bi)∪G
ei (q)∩Ui 6= ∅ and Φ

(F∩Bi)∪G
ei (q)∩ Vi 6= ∅. The condition d = (F ∪G,X r [0,max(E)])

is an extension forcing Qe0,e1 by its ith side. This finishes the construction of the TT1
2-instance

and the proof of Theorem 2.2.

3. The fairness property

In this section, we analyse the one-step separation proof of section 2 in order to extract the
core of the argument. Then, we use the framework of Lerman, Solomon and Towsner to design
the computability-theoretic property which will enable us to discriminate RT2

2 from TT2
2.

The multiple-step case. We have seen how to diagonalize against one application of RT1
2. The

strength of TT1
2 comes from the fact that when we build a solution S to some TT1

2-instance
A0 ∪ A1 = 2<ω, we must provide finite subtrees Sn ∼= 2<n for arbitrarily large n. However,
as soon as we have outputted Sn, we commit to provide arbitrarily large extensions to each
leaf of Sn. Since the leaves in Sn are pairwise incomparable, the sets of their extensions are
mutually disjoint. During the construction of the TT1

2-instance, we can pick any pair σ, τ of
incomparable leaves in Sn, and put the extensions of σ in A0 and the extensions of τ in A1 since
they are disjoint.

In the proof of TT1
2 6≤sc RT1

2, when we create a solution to some RT1
2-instance B0 ∪ B1 = ω,

we build two candidate solutions G ∩ B0 and G ∩ B1 at the same time. For each pair of tree
functionals Φe0 and Φe1 , we must prevent one of ΦG∩B0

e0 and ΦG∩B1
e1 from being a TT1

2-solution
to the A’s. However, the finite subtrees S0 and S1 outputted respectively by the left side and
the right side may have comparable leaves. We cannot take any 2 leaves of S0 and 2 leaves of S1
to obtain 4 pairwise incomparable strings. Thankfully, if S0 and S1 contain enough leaves (4 is
enough), we can find such strings.

If we try to diagonalize against two applications of RT1
2, below each side G ∩ B0 and G ∩

B1 of the first RT1
2-instance, we will have again two sides corresponding to the second RT1

2-
instance. We will have then to diagonalize against four candidate subtrees S0, S1, S2 and S3.
We need therefore to wait until the subtrees have enough leaves, so that we can find 8 pairwise
incomparable leaves σ0, τ0, . . . , σ3, τ3 such that σi, τi ∈ Si for each i < 4.

In the general case, we will then have to diagonalize against an arbitrarily large number of
subtrees, and want to ensure that if they contain enough leaves, we can find two leaves in each,
such that they form a set of pairwise incomparable strings. This leads to the notion of disjoint
matrix.

Definition 3.1 (Disjoint matrix) An m-by-n matrix M is a rectangular array of strings σi,j ∈
2<ω such that i < m and j < n. The ith row M(i) of the matrix M is the n-tuple of strings
σi,0, . . . , σi,n−1. An m-by-n matrix M is disjoint if for each row i < m, the strings σi,0, . . . , σi,n−1
are pairwise incomparable.

The following combinatorial lemma gives an explicit bound on the number of leaves we require
on each subtree to obtain our desired sequence of pairwise incomparable strings.

Lemma 3.2 For every m-by-2m disjoint matrix M , there are pairwise incomparable strings
σ0, τ0, . . . , σm−1, τm−1 such that σi, τi ∈M(i) for every i < m.

Proof. Consider the following greedy algorithm. At each stage, we maintain a set P of pending
rows which is initially the whole matrix M . Among those rows, some strings are flagged as
invalid. Initially, all the strings are valid. Pick a string ρ of maximal length among all the valid
strings of all the pending rows. Let M(i) be a pending row to which ρ belongs. If we have
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already chosen the value of σi, set τi = ρ and remove M(i) from the pending rows. Otherwise,
set σi = ρ. In any case, flag every prefix of ρ from any row of M as invalid, and go to the next
step.

Notice that at any step, we flag as invalid at most one string from each row of M since the
strings in each row are pairwise incomparable. Moreover, since we want to construct a sequence
of 2m pairwise incomparable strings, and at each step we add one string to this sequence, there
are at most 2m steps. The algorithm gets stuck at some points only if all pending rows contain
only invalid strings, which cannot happen since each row contains at least 2m strings.

We claim that the chosen strings are pairwise incomparable. Indeed, when at some stage, we
pick a string ρ, it is of shorter length than any string we have picked so far, and cannot be a
prefix of any of them since each time we pick a string, we flag all its prefixes as invalid in the
matrix. �

Abstracting the requirements. The first feature of the framework of Lerman, Solomon and
Towsner that we already exploited is the “fairness” of the TT1

2-instance which allows each RT1
2-

instance to diagonalize it as soon as the RT1
2-instance gives him enough occasions to do it. We

will now use the second aspect of this framework which consists in getting rid of the complexity
of the requirements by replacing them with arbitrary computable predicates (or blackboxes).

Indeed, consider the case of two successive applications of RT1
2. Say that the first instance is

B0 ∪B1 = ω, and the second C0 ∪C1 = ω. We need to design the TT1
2-instance A0 ∪A1 = 2<ω

so that there is an infinite set G ∩Bi for some i < 2 and an infinite set H ∩Bj for some j < 2
such that (G ∩ Bi) ⊕ (H ∩ Bj) does not compute a solution to the A’s. While constructing
the A’s, we enumerate two levels of conditions. We first enumerate the conditions c = (F,X)
used for constructing the set G, but we also enumerate the conditions c0 = (F0, X0) and c1 =
(F1, X1) such that ci is used to construct a solution H to the second RT1

2-instance C0 ∪C1 = ω
below G ∩Bi. The question that the TT1

2-instance asks during its construction becomes

“For every 2-partition Z0 ∪ Z1 = X, is there some side i < 2 and some set G ⊆ Zi such that
for every 2-partition W0 ∪W1 = Xi, there is some side j < 2 and some set H ⊆ Wj such that

Φ
((F∩Bi)∪G)⊕((Fi∩Cj)∪H)
ei,j (q) halts?”

While staying Σ0
1 (with parameters), the question becomes arbitrarily complicated to formu-

late. Moreover, looking at the shape of the question, we see that the first iteration can box
any Σ0

1 question asked about the second iteration. We can therefore abstract the question and
make the fairness property independent of the specificities of the forcing notion used to solve
the RT1

2-instances. See [23] for detailed explanations about this abstraction process.

Definition 3.3 (Formula, valuation) An m-by-n formula is a formula ϕ with distinguished set
variables Ui,j for each i < m and j < n. Given an m-by-n matrix M = {σi,j : i < m, j < n}, an
M -valuation V is a tuple of finite sets Ai,j ⊆ {τ ∈ 2<ω : τ � σi,j} for each i < m and j < n. The
valuation V satisfies ϕ if ϕ(Ai,j : i < m, j < n) holds. We write ϕ(V ) for ϕ(Ai,j : i < m, j < n).

Given some valuation V = (Ai,j : i < m, j < n) and some integer s, we write V > s to
say that for every τ ∈ Ai,j , |τ | > s. Moreover, we denote by V (i) the n-tuple Ai,0, . . . , Ai,n−1.
Following the terminology of [17], we define the notion of essentiality for a formula (an abstract
requirement), which corresponds to the idea that there is room for diagonalization since the
formula is satisfied for arbitrarily far valuations.

Definition 3.4 (Essential formula) An m-by-n formula ϕ is essential in an m-by-n matrix M
if for every s ∈ ω, there is an M -valuation V > s such that ϕ(V ) holds.

The notion of fairness is defined accordingly. If some formula is essential, that is, gives
enough room for diagonalization, then there is an actual valuation which will diagonalize against
the TT1

2-instance.

Definition 3.5 (Fairness) Fix two sets A0, A1 ⊆ 2<ω. Given an m-by-n disjoint matrix M , an
M -valuation V diagonalizes against A0, A1 ⊆ 2<ω if for every i < m, there is some L,R ∈ V (i)
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such that L ⊆ A0 and R ⊆ A1. A set X is n-fair for A0, A1 if for every m and every Σ0,X
1 m-

by-2nm formula ϕ essential in some disjoint matrix M , there is an M -valuation V diagonalizing
against A0, A1 such that ϕ(V ) holds. A set X is fair for A0, A1 if it is n-fair for A0, A1 for
some n ≥ 1.

Of course, if Y ≤T X, then every Σ0,Y
1 formula is Σ0,X

1 . As an immediate consequence, if X
is n-fair for some A0, A1 and Y ≤T X, then Y is n-fair for A0, A1. Moreover, if X is n-fair for
A0, A1 and p > n, X is also p-fair for A0, A1 as witnessed by cropping the rows.

Definition 3.6 (Fairness preservation) Fix a Π1
2 statement P.

1. P admits fairness (resp. n-fairness) preservation if for all sets A0, A1 ⊆ 2<ω, every set
C which is fair (resp. n-fair) for A0, A1 and every C-computable P-instance X, there is
a solution Y to X such that Y ⊕ C is fair (resp. n-fair) for A0, A1.

2. P admits strong fairness (resp. n-fairness) preservation if for all sets A0, A1 ⊆ 2<ω,
every set C which is fair (resp. n-fair) for A0, A1 and every P-instance X, there is a
solution Y to X such that Y ⊕ C is fair (resp. n-fair) for A0, A1.

Note that a principle P may admit fairness preservation without preserving n-fairness for any
fixed n, as this is the case with RT2

2 (see Theorem 4.11 and Theorem 4.13). On the other hand,
if P admits n-fairness preservation for every n, then it admits fairness preservation. The notion
of fairness preservation has been designed so that it is closed under the implication over RCA0.

Lemma 3.7 If P admits fairness preservation but not Q, then P does not imply Q over RCA0.

Proof. Since Q does not admit fairness preservation, there is a set C which is n-fair for some
A0, A1 ⊆ 2<ω and a C-computable Q-instance J such that for every solution Y to J , C ⊕ Y is
not fair for A0, A1. We build an infinite sequence of sets X0, X1, . . . starting with X0 = C and
such that for every s ∈ ω,

(i) Xs+1 is a solution to the P-instance IX0⊕···⊕Xs
s

(ii) X0 ⊕ · · · ⊕Xs+1 is fair for A0, A1

where I0, I1, . . . is a (non-computable) enumeration of all P-instance functionals. LetM be the
ω-model whose second-order part is the Turing ideal

I = {Z : (∃s)[Z ≤T X0 ⊕ · · · ⊕Xs]}
By Friedman [12], M |= RCA0 since I is a Turing ideal. By (i), M |= P. As J ≤T C = X0,
J ∈ I. However, for every Z ∈ I, Z⊕C is fair for A0, A1 by downward closure of fairness under
the Turing reducibility, so Z is not a solution to the Q-instance J . Therefore M 6|= Q. �

Now we have introduced the necessary terminology, we create a ∆0
2 instance of TT1

2 which
will serve as a bootstrap for fairness preservation.

Lemma 3.8 There exists a ∆0
2 partition A0 ∪A1 = 2<ω such that ∅ is 1-fair for A0, A1.

Proof. The proof is done by a no-injury priority construction. Let ϕ0, ϕ1, . . . be a computable
enumeration of all m-by-2m Σ0

1 formulas and M0,M1, . . . be an enumeration of all m-by-2m
disjoint matrices for every m. We want to satisfy the following requirements for each pair of
integers e, k.

Re,k: If ϕe is essential in Mk, then ϕe(V ) holds for some Mk-valuation V diag-
onalizing against A0, A1.

The requirements are ordered via the standard pairing function 〈·, ·〉. The sets A0 and A1

are constructed by a ∅′-computable list of finite approximations Ai,0 ⊆ Ai,1 ⊆ . . . such that all
elements added to Ai,s+1 from Ai,s are strictly greater than the maximum of Ai,s for each i < 2.
We then let Ai =

⋃
sAi,s which will be a ∆0

2 set. At stage 0, set A0,0 = A1,0 = ∅. Suppose that
at stage s, we have defined two disjoint finite sets A0,s and A1,s such that

(i) A0,s ∪A1,s = 2<b for some integer b ≥ s
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(ii) Re′,k′ is satisfied for every 〈e′, k′〉 < s

Let Re,k be the requirement such that 〈e, k〉 = s. Decide ∅′-computably whether there is some
Mk-valuation V > b such that ϕe(V ) holds. If so, computably fetch such a V and let d be an
upper bound on the length of the strings in V . By Lemma 3.2, there are pairwise incomparable
strings σ0, τ0, . . . , σm−1, τm−1 such that σi, τi ∈ M(i) for every i < m. For each i < m, let Ai,l
and Ai,r be the sets in V corresponding to σi and τi, respectively. Set A0,s+1 = A0,s

⋃
i<mAi,l

and A1,s+1 = 2<drA0,s+1. This way, A0,s+1 ∪A1,s+1 = 2<d. Since the σ’s and τ ’s are pairwise

incomparable, the sets Ai,l and Ai,r are disjoint, so
⋃
i<mAi,r ⊆ 2<drA0,s+1 and the requirement

Re,i is satisfied. If no such Mk-valuation is found, the requirement Re,k is vacuously satisfied.

Set A0,s+1 = A0,s ∪ 2b and A1,s+1 = A1,s. This way, A0,s+1 ∪ A1,s+1 = 2<(b+1). In any case, go
to the next stage. This finishes the construction. �

Theorem 3.9 TT2
2 does not admit fairness preservation.

Proof. Let A0 ∪ A1 = 2<ω be the ∆0
2 partition constructed in Lemma 3.8. By Schoenfield’s

limit lemma [28], there is a computable function h : 2<ω × ω → 2 such that for each σ ∈ 2<ω,
lims h(σ, s) exists and σ ∈ Alims h(σ,s). Let f : [2<ω]2 → 2 be the computable coloring defined

by f(σ, τ) = h(σ, |τ |) for each σ ≺ τ ∈ 2<ω. Let S ∼= 2<ω be a TT2
2-solution to f with witness

isomorphism g : 2<ω → S and witness color c < 2. Note that S ⊆ Ac.
Fix any n ≥ 1. We claim that S is not n-fair for A0, A1. For this, we construct a 1-by-2n

Σ0,S
1 formula and a 1-by-2n disjoint matrix M such that ϕ is essential in M , but such that every

M -valuation V satisfying ϕ is included in Ac.

Let ϕ(Uj : j < 2n) be the 1-by-2n Σ0,S
1 formula which holds if for each j < 2n, Uj is a

non-empty subset of S. Let M = (σj : j < 2n) be the 1-by-2n disjoint matrix defined for each
j < 2n by σj = g(τj) where τj is the jth string of length n. In other words, σj is the jth node
at level n in S. For every s, let Vs be the M -valuation defined by Bj = {g(ρ)} such that ρ is the
least string of length max(n, s) extending τj . Notice that Vs > s and ϕ(Vs) holds. Therefore,
the formula ϕ is essential in M . For every M -valuation V = (Bj : j < 2n) such that ϕ(V )
holds, there is no j < 2n such that Bj ⊆ A1−c. Indeed, since ϕ(V ) holds, Bj is a non-empty
subset of S, which is itself a subset of Ac. Therefore S is not n-fair for A0, A1. �

Notice that we actually proved a stronger statement. Dzhafarov, Hirst and Lakins defined
in [8] various notions of stability for the tree theorem for pairs. A coloring f : [2<ω]2 → r
is 1-stable if for every σ ∈ 2<ω, there is some threshold t and some color c < r such that
f(σ, τ) = c for every τ � σ such that |τ | ≥ t. In the proof of Theorem 3.9, we showed in
fact that TT2

2 restricted to 1-stable colorings does not admit fairness preservation. In the same
paper, Dzhafarov et al. studied an increasing polarized version of the tree theorem for pairs, and
proved that its 1-stable restriction coincides with the 1-stable tree theorem for pairs over RCA0.
Therefore the increasing polarized tree theorem for pairs does not admit fairness preservation.

4. Separating principles in reverse mathematics

In this section, we prove fairness preservation for various principles in reverse mathematics,
namely, weak König’s lemma, cohesiveness and RT2

2. We prove independently that they admit
fairness preservation, and then use the compositional nature of the notion of preservation to
deduce that the conjunction of these principles do not imply TT2

2 over RCA0.

Definition 4.1 (Weak König’s lemma) WKL0 is the statement “Every infinite binary tree has
an infinite path”.

Weak König’s lemma is one of the “Big Five”. It can be thought of as capturing compactness
arguments. The question of its relation with RT2

2 has been a long standing open problem,
until Cholak, Jockusch and Slaman [2] and Liu [18] proved that RT2

2 is incomparable with
weak König’s lemma. Although the above mentioned results show that compactness is not
really necessary in the proof of RT2

2, WKL0 preserves many computability-theoretic notions
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and is therefore involved in many effective constructions related to RT2
2. Flood [10] introduced

recently a Ramsey-type version of König’s lemma (RWKL). This strict weakening of WKL0 is
sufficient in most applications of WKL0 involved in proofs of RT2

2. The statement RWKL has
been later studied by Bienvenu, Patey and Shafer [1] and by Flood and Towsner [11].

Theorem 4.2 For every n ≥ 1, WKL0 admits n-fairness preservation.

Proof. Let C be a set n-fair for some sets A0, A1 ⊆ 2<ω, and let T ⊆ 2<ω be a C-computable
infinite binary tree. We construct an infinite decreasing sequence of computable subtrees T =
T0 ⊇ T1 ⊇ . . . such that for every path P through

⋂
s Ts, P ⊕ C is n-fair for A0, A1. Note

that the intersection
⋂
s Ts is non-empty since the T ’s are infinite trees. More precisely, if we

interpret s as a tuple 〈m,ϕ,M〉 where ϕ(G,U) is an m-by-2nm Σ0,C
1 formula ϕ(G,U) and M

is an m-by-2nm disjoint matrix M , we want to satisfy the following requirement.

Rs : For every path P through Ts+1, either ϕ(P,U) is not essential in M ,
or ϕ(P, V ) holds for some M -valuation V diagonalizing against A0, A1.

Given two M -valuations V0 = (Bi,j : i < m, j < 2nm) and V1 = (Di,j : i < m, j < 2nm),
we write V0 ⊆ V1 to denote the pointwise subset relation, that is, for every i < m and every
j < 2nm, Bi,j ⊆ Di,j . At stage s = 〈m,ϕ,M〉, given some infinite, computable binary tree Ts,

define the m-by-2nm Σ0,C
1 formula

ψ(U) = (∃n)(∀τ ∈ Ts ∩ 2n)(∃Ṽ ⊆ U)ϕ(τ, Ṽ )

We have two cases. In the first case, ψ(U) is not essential in M with some witness t. By
compactness, the following set is an infinite C-computable subtree of Ts:

Ts+1 = {τ ∈ Ts : (for every M -valuation V > t)¬ϕ(τ, V )}

The tree Ts+1 has been defined so that ϕ(P,U) is not essential in M for every P ∈ [Ts+1].
In the second case, ψ(U) is essential in M . By n-fairness of C for A0, A1, there is an

M -valuation V diagonalizing against A0, A1 such that ψ(V ) holds. We claim that for every

path P ∈ [Ts], ϕ(P, Ṽ ) holds for some M -valuation Ṽ diagonalizing against A0, A1. Fix some

path P ∈ [Ts]. Unfolding the definition of ψ(V ), there is some n such that ϕ(P �n, Ṽ ) holds for

some M -valuation Ṽ ⊆ V . Since V is diagonalizing against A0, A1, for every i < m, there is
some L,R ∈ V (i) such that L ⊆ A0 and R ⊆ A1. Let L̃, R̃ ∈ Ṽ (i) be such that L̃ ⊆ L and

R̃ ⊆ R. In particular, L̃ ⊆ A0 and R̃ ⊆ A1 so Ṽ diagonalizes against A0, A1. Take Ts+1 = Ts
and go to the next stage. This finishes the proof of Theorem 4.2. �

As previously noted, preserving n-fairness for every n implies preserving fairness. However, we
really need the fact that WKL0 admits n-fairness preservation and not only fairness preservation
in the proof of Theorem 4.8.

Corollary 4.3 WKL0 admits fairness preservation.

Cholak, Jockusch and Slaman [2] studied extensively Ramsey’s theorem for pairs in reverse
mathematics, and introduced their cohesive and stable variants.

Definition 4.4 (Cohesiveness) An infinite set C is ~R-cohesive for a sequence of sets R0, R1, . . .
if for each i ∈ ω, C ⊆∗ Ri or C ⊆∗ Ri. COH is the statement “Every uniform sequence of sets
~R has an ~R-cohesive set.”

A coloring f : [ω]k+1 → n is stable if for every k-tuple σ ∈ [ω]k, lims f(σ, s) exists. SRTkn
is the restriction of RTkn to stable colorings. Mileti [20] and Jockusch & Lempp [unpublished]
proved that RT2

2 is equivalent to SRT2
2 +COH over RCA0. Recently, Chong et al. [3] proved

that SRT2
2 is strictly weaker than RT2

2 over RCA0. However they used non-standard models
to separate the statements and the question whether SRT2

2 and RT2
2 coincide over ω-models

remains open.
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Cohesiveness can be seen as a sequential version of RT1
2 with finite errors. There is a natural

decomposition of RT2
2 between COH and ∆0

2 instances of RT1
2. Indeed, given a computable

instance f : [ω]2 → 2 of RT2
2, COH states the existence of an infinite set H such that f : [H]2 → 2

is stable. By Schoenfield’s limit lemma [28], the stable coloring f : [H]2 → 2 can be seen as

the ∆0
2 approximation of a ∅′-computable instance f̃ : H → 2 of RT1

2. Moreover, we can H-

compute an infinite f -homogeneous set from any f̃ -homogeneous set. We shall therefore prove
independently fairness preservation of COH and strong fairness preservation of RT1

2 to deduce
that RT2

2 admits fairness preservation.

Theorem 4.5 For every n ≥ 1, COH admits n-fairness preservation.

Proof. Let C be a set n-fair for some sets A0, A1 ⊆ 2<ω, and let R0, R1, . . . be a C-computable

sequence of sets. We will construct an ~R-cohesive set G such that G ⊕ C is n-fair for A0, A1.
The construction is done by a Mathias forcing, whose conditions are pairs (F,X) where X is a
C-computable set. The result is a direct consequence of the following lemma.

Lemma 4.6 For every condition (F,X), every m-by-2nm Σ0,C
1 formula ϕ(G,U) and every m-

by-2nm disjoint matrix M , there exists an extension d = (E, Y ) such that either ϕ(G,U) is not
essential for every set G satisfying d, or ϕ(E, V ) holds for some M -valuation V diagonalizing
against A0, A1.

Proof. Define the m-by-2nm Σ0,C
1 formula ψ(U) = (∃G ⊇ F )[(G ⊆ F ∪X) ∧ ϕ(G,U)]. By n-

fairness of C for A0, A1, either ψ(U) is not essential in M , or ψ(V ) holds for some M -valuation
V diagonalizing against A0, A1. In the former case, the condition (F,X) already satisfies the
desired property. In the latter case, by the finite use property, there exists a finite set E
satisfying (F,X) such that ϕ(E, V ) holds. Let Y = X r [0,max(E)]. The condition (E, Y ) is
a valid extension. �

Using Lemma 4.6, define an infinite descending sequence of conditions c0 = (∅, ω) ≥ c1 ≥ . . .
such that for each s ∈ ω

(i) |Fs| ≥ s
(ii) Xs+1 ⊆ Rs or Xs+1 ⊆ Rs

(iii) ϕ(G,U) is not essential in M for every set G satisfying cs+1, or ϕ(Fs+1, V ) holds for
some M -valuation V diagonalizing against A0, A1 if s = 〈ϕ,M〉

where cs = (Fs, Xs). The set G =
⋃
s Fs is infinite by (i), ~R-cohesive by (ii) and G⊕C is n-fair

for A0, A1 by (iii). This finishes the proof of Theorem 4.5. �

Corollary 4.7 COH admits fairness preservation.

The next theorem is the reason why we use the notion of fairness instead of n-fairness in our
separation of RT2

2 from TT2
2. Indeed, given an instance of RT1

2 and a set C which is n-fair for
some sets A0, A1, the proof constructs a solution H such that H ⊕ C is (n+ 1)-fair for A0, A1.
We shall see in Corollary 4.14 that the proof is optimal, in the sense that RT1

2 does not admit
strong n-fairness preservation.

Theorem 4.8 RT1
2 admits strong fairness preservation.

Proof. Let C be a set n-fair for some sets A0, A1 ⊆ 2<ω, and let B0∪B1 = ω be a (non-necessarily
computable) 2-partition of ω. Suppose that there is no infinite set H ⊆ B0 or H ⊆ B1 such
that H ⊕ C is n-fair for A0, A1, since otherwise we are done. We construct a set G such that
both G ∩ B0 and G ∩ B1 are infinite. We need therefore to satisfy the following requirements
for each p ∈ ω.

Np : (∃q0 > p)[q0 ∈ G ∩B0] ∧ (∃q1 > p)[q1 ∈ G ∩B1]
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Furthermore, we want to ensure that one of (G ∩B0)⊕ C and (G ∩B1)⊕ C is fair for A0, A1.
To do this, we will satisfy the following requirements for every integer m, every m-by-2n+1m

Σ0,C
1 formulas ϕ0(H,U) and ϕ1(H,U) and every m-by-2n+1m disjoint matrices M0 and M1.

Qϕ0,M0,ϕ1,M1 : RG∩B0
ϕ0,M0

∨ RG∩B1
ϕ1,M1

where RHϕ,M holds if ϕ(H,U) is not essential in M or ϕ(H,V ) holds for some M -valuation V
diagonalizing against A0, A1. We first justify that if every Q-requirement is satisfied, then either
(G ∩ B0) ⊕ C or (G ∩ B1) ⊕ C is (n + 1)-fair for A0, A1. By the usual pairing argument, for
every m, there is some side i < 2 such that the following property holds:

(P) For every m-by-2n+1m Σ0,C
1 formula ϕ(G ∩ Bi, U) and every m-by-2n+1m

disjoint matrix M , either ϕ(G ∩ Bi, U) is not essential in M , or ϕ(G ∩ Bi, V )
holds for some M -valuation V diagonalizing against A0, A1.

By the infinite pigeonhole principle, there is some side i < 2 such that (P) holds for infinitely
many m. By a cropping argument, if (P) holds for m and q < m, then (P) holds for q. Therefore
(P) holds for every m on side i. In other words, (G ∩Bi)⊕ C is (n+ 1)-fair for A0, A1.

We construct our set G by forcing. Our conditions are Mathias conditions (F,X), such
that X ⊕ C is n-fair for A0, A1. We now prove the progress lemma, stating that we can force
both G ∩B0 and G ∩B1 to be infinite.

Lemma 4.9 For every condition c = (F,X), every i < 2 and every p ∈ ω there is some
extension d = (E, Y ) such that E ∩Bi ∩ (p,+∞) 6= ∅.

Proof. Fix c, i and p. If X ∩Bi ∩ (p,+∞) = ∅, then X ∩ (p,+∞) is an infinite subset of B1−i.
Moreover, X∩(p,+∞) is n-fair for A0, A1, contradicting our hypothesis. Thus, there is some q >
p such that q ∈ X ∩Bi ∩ (p,+∞). Take d = (F ∪ {q}, X r [0, q]) as the desired extension. �

Next, we prove the core lemma stating that we can satisfy each Q-requirement. A condition c
forces a requirement Q if Q is holds for every set G satisfying c. This is the place where we really
need the fact that WKL0 admits n-fairness preservation and not only fairness preservation.

Lemma 4.10 For every condition c = (F,X), every integer m, every m-by-2n+1m Σ0,C
1 formu-

las ϕ0(H,U) and ϕ1(H,U) and every m-by-2n+1m disjoint matrices M0 and M1, there is an
extension d = (E, Y ) forcing Qϕ0,M0,ϕ1,M1 .

Proof. Let ψ(U0, U1) be the 2m-by-2n+1m Σ0,X⊕C
1 formula which holds if for every 2-partition Z0∪

Z1 = X, there is some i < 2, some finite set E ⊆ Zi and an m-by-2n+1m Mi-valuation V ⊆ Ui
such that ϕi((F ∩Bi) ∪ E, V ) holds. By n-fairness of X ⊕ C, we have two cases.

In the first case, ψ(U0, U1) is not essential in M0,M1, with some witness t. By compactness,

the Π0,X⊕C
1 class C of sets Z0 ⊕ Z1 such that Z0 ∪ Z1 = ω and for every i < 2 and every finite

set E ⊆ Zi, there is no Mi-valuation V > t such that ϕi((F ∩ Bi) ∪ E, V ) holds is non-empty.
By n-fairness preservation of WKL0 (Theorem 4.2), there is a 2-partition Z0 ⊕ Z1 ∈ C such
that Z0 ⊕ Z1 ⊕ C is n-fair for A0, A1. Since Z0 ∪ Z1 = X, there is some i < 2 such that Zi is
infinite. Take such an i. The condition d = (F,Zi) is an extension forcing Qϕ0,M0,ϕ1,M1 by the
ith side.

In the second case, ψ(V0, V1) holds for some (M0,M1)-valuation (V0, V1) diagonalizing against
A0, A1. Let Z0 = X ∩ B0 and Z1 = X ∩ B1. By hypothesis, there is some i < 2, some
finite set E ⊆ Zi = X ∩ Bi and some Mi-valuation V ⊆ Vi such that ϕi((F ∩ Bi) ∪ E, V )
holds. Since V ⊆ Vi, the Mi-valuation V diagonalizes against A0, A1. The condition d =
(F ∪ E,X r [0,max(E)]) is an extension forcing Qϕ0,M0,ϕ1,M1 by the ith side. �

Using Lemma 4.9 and Lemma 4.10, define an infinite descending sequence of conditions c0 =
(∅, ω) ≥ c1 ≥ . . . such that for each s ∈ ω

(i) |Fs ∩B0| ≥ s and |Fs ∩B1| ≥ s
(ii) cs+1 forces Qϕ0,M0,ϕ1,M1 if s = 〈ϕ0,M0, ϕ1,M1〉
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where cs = (Fs, Xs). Let G =
⋃
s Fs. The sets G ∩ B0 and G ∩ B1 are both infinite by (i) and

one of G ∩B0 and G ∩B1 is fair for A0, A1 by (ii). This finishes the proof of Theorem 4.8. �

Theorem 4.11 RT2
2 admits fairness preservation.

Proof. Fix any set C fair for some sets A0, A1 ⊆ 2<ω and any C-computable coloring f : [ω]2 →
2. Consider the uniformly C-computable sequence of sets ~R defined for each x ∈ ω by

Rx = {s ∈ ω : f(x, s) = 1}

As COH admits fairness preservation, there is some ~R-cohesive set G such that G⊕C is fair for
A0, A1. The set G induces a (G⊕ C)′-computable coloring f̃ : ω → 2 defined by:

(∀x ∈ ω)f̃(x) = lim
s∈G

f(x, s)

As RT1
2 admits strong fairness preservation, there is an infinite f̃ -homogeneous set H such that

H ⊕G⊕C is fair for A0, A1. The set H ⊕G⊕C computes an infinite f -homogeneous set. �

Corollary 4.12 RT2
2 ∧WKL0 does not imply TT2

2 over RCA0.

Proof. By Theorem 4.11 and Corollary 4.3, RT2
2 and WKL0 admit fairness preservation. By

Theorem 3.9, TT2
2 does not admit fairness preservation. We conclude by Lemma 3.7. �

We now prove the optimality of Theorem 4.8 and Theorem 4.11 by showing that n-fairness
cannot be preserved.

Theorem 4.13 SRT2
2 does not admit n-fairness preservation for any n ≥ 1.

Proof. Let A0 ∪ A1 = 2<ω be the ∆0
2 partition constructed in Lemma 3.8. By Schoenfield’s

limit lemma [28], there is a stable computable function f : [ω]2 → 2 such that x ∈ Alims f(x,s)

for every x. Fix some n ≥ 1. For each σ ∈ 2n+1, apply SRT2
2 to the coloring f restricted to

the set Sσ = {τ � σ} to obtain an infinite f -homogeneous set Hσ for some color cσ < 2. By
definition of f , Hσ ⊆ Acσ . By the finite pigeonhole principle, there is a color c < 2 and a set
M ⊆ 2n+1 of size 2n such that cσ = c for every σ ∈ M . We can see M as a 1-by-2n disjoint

matrix. Let H =
⊕

σ∈M Hσ and let ϕ(Uσ : σ ∈M) be the 1-by-2n Σ0,H
1 formula which holds if

for every σ ∈ M , Uσ is a non-empty subset of Hσ. Note that Hσ ⊆ Ac for every σ ∈ M . The
formula ϕ(U) is essential in M but there is no M -valuation V = (Vσ : σ ∈ M) such that ϕ(V )
holds and Vσ ⊆ A1−c for some σ ∈M . Therefore H is not n-fair for A0, A1. �

Corollary 4.14 RT1
2 does not admit n-fairness preservation for every n ≥ 1.

Proof. Fix some n ≥ 2. By Theorem 4.13, there is some set C n-fair some A0, A1 and a stable
C-computable function f : [ω]2 → 2 such that for every infinite f -homogeneous set H, H ⊕ C
is not n-fair for A0, A1. Let f̃ : ω → 2 be defined by f̃(x) = lims f(x, s). Every infinite f̃ -
homogeneous set H C-computes an infinite f -homogeneous set H1 such that H1 ⊕ C is not
n-fair for A0, A1. Therefore H ⊕ C is not n-fair for A0, A1. �

5. Questions

In this last section, we state some remaining open questions. The tree theorem for pairs is
known to lie between ACA0 and RT2

2 over RCA0. By Corollary 4.12, TT2
2 is strictly stronger

than RT2
2 over RCA0. However, it is unknown whether TT2

2 is strictly weaker than ACA0

over RCA0.

Question 5.1 Does TT2
2 imply ACA0 over RCA0?

From a computability-theoretic point of view, Seetapun [27] proved that for every non-
computable set C, every computable instance of RT2

2 has a solution which does not compute C.
This is the notion of cone avoidance.
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Question 5.2 Does TT2
2 admit cone avoidance?

Dzhafarov and Jockusch [9] simplified Seetapun’s argument and proved that for every non-
computable set C, every arbitrary, that is, non-necessarily computable, instance of RT1

2 has a
solution which does not compute C. This strengthening is called strong cone avoidance and is
usually joined with the cone avoidance of the cohesive version of the principle to obtain cone
avoidance for the principle over pairs.

Question 5.3 Does TT1
2 admit strong cone avoidance?
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