The strength of the tree theorem for pairs in reverse mathematics

Ludovic Patey

To cite this version:

Ludovic Patey. The strength of the tree theorem for pairs in reverse mathematics. The Journal of Symbolic Logic, Association for Symbolic Logic, 2016, 81 (04), pp.1481-1499. 10.1017/jsl.2015.80 . hal-01888614

HAL Id: hal-01888614
 https://hal.archives-ouvertes.fr/hal-01888614

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE STRENGTH OF THE TREE THEOREM FOR PAIRS IN REVERSE MATHEMATICS

LUDOVIC PATEY

Abstract

No natural principle is currently known to be strictly between the arithmetic comprehension axiom ($A C A_{0}$) and Ramsey's theorem for pairs $\left(R T_{2}^{2}\right)$ in reverse mathematics. The tree theorem for pairs $\left(\mathrm{T}_{2}^{2}\right)$ is however a good candidate. The tree theorem states that for every finite coloring over tuples of comparable nodes in the full binary tree, there is a monochromatic subtree isomorphic to the full tree. The principle TT_{2}^{2} is known to lie between $A C A_{0}$ and $R T_{2}^{2}$ over RCA_{0}, but its exact strength remains open. In this paper, we prove that RT_{2}^{2} together with weak König's lemma $\left(\mathrm{WKL}_{0}\right)$ does not imply TT_{2}^{2}, thereby answering a question of Montálban. This separation is a case in point of the method of Lerman, Solomon and Towsner for designing a computability-theoretic property which discriminates between two statements in reverse mathematics. We therefore put the emphasis on the different steps leading to this separation in order to serve as a tutorial for separating principles in reverse mathematics.

1. Introduction

"Every sufficiently large collection of objects has an arbitrarily large sub-collection whose objects satisfy some structural properties". This general statement reflects the main idea of Ramsey's theory. This theory has connections with many areas of mathematics, namely, combinatorics, model theory or set theory. One of the most well-known statements is Ramsey's theorem, stating that for every coloring of the k-tuples of integers in finitely many colors, there is an infinite monochromatic subset. In this paper, we are interested in the tree theorem for pairs, a strengthening of Ramsey's theorem for pairs stating that for every finite coloring over pairs of comparable nodes in the full binary tree, there is a monochromatic subtree isomorphic to the full tree. Our main theorem states that the tree theorem for pairs is strictly stronger than Ramsey's theorem for pairs in the sense of reverse mathematics.

Reverse mathematics is a mathematical program whose goal is to classify theorems in terms of their provability strength. It uses the framework of subsystems of second-order arithmetic, with the base theory $R C A_{0}$ (recursive comprehension axiom). $R C A_{0}$ is composed of the basic first-order Peano axioms, together with Δ_{1}^{0}-comprehension and Σ_{1}^{0}-induction schemes. RCA_{0} is usually thought of as capturing computational mathematics. This program led to two important observations: First, most "ordinary" (i.e. non set-theoreric) theorems require only very weak set existence axioms. Second, many of those theorems are actually equivalent to one of five main subsystems over RCA_{0}, known as the "Big Five".

Ramsey's theory, among others, provides a large class of theorems escaping this phenomenon. Indeed, consequences of Ramsey's theorem for pairs usually belong to their own subsystem and their study is still an active research subject within reverse mathematics. This article focuses on Ramseyan principles below ACA_{0}, the arithmetic comprehension axiom. See [14] for a good introduction to reverse mathematics.

1.1. Ramsey's theorem

The strength of Ramsey-type statements is notoriously hard to tackle in the setting of reverse mathematics. The separation of Ramsey's theorem for pairs $\left(\mathrm{RT}_{2}^{2}\right)$ from the arithmetic comprehension axiom $\left(\mathrm{ACA}_{0}\right)$ was a long-standing open problem, until Seetapun solved it [27] using the notion of cone avoidance.

Definition 1.1 (Ramsey's theorem) A subset H of ω is homogeneous for a coloring $f:[\omega]^{k} \rightarrow n$ (or f-homogeneous) if each k-tuples over H are given the same color by f. RT_{n}^{k} is the statement "Every coloring $f:[\omega]^{k} \rightarrow n$ has an infinite f-homogeneous set".

Simpson [29, Theorem III.7.6] proved that whenever $k \geq 3$ and $n \geq 2, \mathrm{RCA}_{0} \vdash \mathrm{RT}_{n}^{k} \leftrightarrow \mathrm{ACA}_{0}$. Ramsey's theorem for pairs is probably the most famous example of statement escaping the Big Five. Seetapun [27] proved that RT_{2}^{2} is strictly weaker than ACA_{0} over $\mathrm{RCA} A_{0}$. Because of the complexity of the related separations, RT_{2}^{2} received a particular attention from the reverse mathematics community [2, 27, 16]. Cholak, Jockusch and Slaman [2] and Liu [18] proved that RT_{2}^{2} is incomparable with weak König's lemma. Dorais, Dzhafarov, Hirst, Mileti and Shafer [6], Dzhafarov [7], Hirschfeldt and Jockusch [15] and the author [25] studied the computational strength of Ramsey's theorem according to the number of colors, when fixing the number of applications of the principle.

1.2. The tree theorem

There is no natural principle currently known to be strictly between $A C A_{0}$ and $R T_{2}^{2}$. The tree theorem for pairs is however a good candidate. The tree theorem is a strengthening of Ramsey's theorem in which we do not consider colorings over tuples of integers, but colorings over tuples of nodes over a binary tree. Ramsey's theorem can be recovered from the tree theorem by identifying all nodes at every given level of the tree.

Given a set of binary strings $S \subseteq 2^{<\omega}$, we denote by $[S]^{n}$ the collection of linearly ordered subsets of S of size n, that is, n-sets of strings $\left\{\sigma_{0}, \ldots, \sigma_{n-1}\right\} \subseteq S$ such that $\sigma_{i} \prec \sigma_{i+1}$ for each $i<n-1$.

Definition 1.2 (Tree theorem) A subtree $S \subseteq 2^{<\omega}$ is order isomorphic to $2^{<\omega}$ (written $S \cong$ $\left.2^{<\omega}\right)$ if there is a bijection $g: 2^{<\omega} \rightarrow S$ such that for all $\sigma, \tau \in 2^{<\omega}, \sigma \preceq \tau$ if and only if $g(\sigma) \preceq g(\tau)$. Given a coloring $f:\left[2^{<\omega}\right]^{n} \rightarrow k$, a tree S is f-homogeneous if $S \cong 2^{<\omega}$ and $f \upharpoonright[S]^{n}$ is monochromatic. TT_{k}^{n} is the statement "Every coloring $f:\left[2^{<\omega}\right]^{n} \rightarrow k$ has an f-homogeneous tree."

Note that if $S \cong 2^{<\omega}$, witnessed by the bijection $g: 2^{<\omega} \rightarrow S$, then S is g-computable. Therefore we can consider that TT^{n} states the existence of the bijection g instead of the pair $\langle S, g\rangle$. The tree theorem was first analyzed by McNicholl [19] and by Chubb, Hirst, and McNicholl [4]. They proved that TT_{2}^{2} lies between $\mathrm{ACA} A_{0}$ and RT_{2}^{2} over RCA_{0}, and left open whether any of the implications is strict. Further work was done by Corduan, Groszek, and Mileti [5]. Dzhafarov, Hirst and Lakins [8] studied stability notions for the tree theorem and introduced a polarized variant. Montálban [21] asked whether RT_{2}^{2} implies TT_{2}^{2} over RCA_{0}. We give a negative answer by proving the following stronger theorem, where $W_{K L}$ stands for weak König's lemma.
Theorem 1.3 (Main result) $\mathrm{RT}_{2}^{2} \wedge \mathrm{WKL}_{0}$ does not imply TT_{2}^{2} over RCA_{0}.
The separation builds on the forcing method introduced by Lerman, Solomon and Towsner [17], and enhanced by the author [23], for designing a computability-theoretic property which discriminates between two statements in reverse mathematics. The construction being quite complex, we present the proof step by step, hoping that our exposition can serve as a tutorial for separating principles in reverse mathematics.

1.3. Separating principles in reverse mathematics

An ω-structure is a structure $\mathcal{M}=(\omega, \mathcal{S},+, \cdot,<)$ where ω is the set of standard integers, + ,. and $<$ are the standard operations over integers and \mathcal{S} is a set of reals such that \mathcal{M} satisfies the axioms of RCA_{0}. Friedman [12] characterized the second-order parts \mathcal{S} of ω-structures as those forming a Turing ideal, that is, a set of reals closed under Turing join and downward-closed under the Turing reduction. Given two principles P and Q, proving that P does not imply Q over RCA A_{0} usually consists in constructing a Turing ideal \mathcal{I} in which P holds, but not Q.

Many theorems in reverse mathematics are Π_{2}^{1} statements, i.e., of the form $(\forall X)(\exists Y) \Phi(X, Y)$ where Φ is an arithmetic formula. They can be considered as problems which usually come with a natural class of instances. Given an instance X, a set Y such that $\Phi(X, Y)$ holds is called a solution to X. For example, an instance of RT_{2}^{2} is a coloring $f:[\omega]^{2} \rightarrow 2$, and a solution to f is an infinite f-homogeneous set. In this setting, the construction of an ω-model of P which is not a model of Q consists in creating a Turing ideal \mathcal{I} together with a fixed Q -instance $I \in \mathcal{I}$, such that every P-instance $J \in \mathcal{I}$ has a solution in \mathcal{I}, whereas I contains no solution in \mathcal{I}. Building a Turing ideal is usually achieved via the following technique.

1. Choose a particular Q-instance I admitting no I-computable solution.
2. Start with the Turing ideal $\mathcal{I}_{0}=\left\{Z: Z \leq_{T} I\right\}$.
3. Given a Turing ideal \mathcal{I}_{n} containing no solution to I, take any P-instance $J \in \mathcal{I}_{n}$ having no solution in \mathcal{I}_{n} and add a solution Y to J. The closure by Turing reducibility and join gives \mathcal{I}_{n+1}.
4. Repeat step 3 to obtain a Turing ideal $\mathcal{I}=\bigcup_{n} \mathcal{I}_{n}$ such that every P-instance in \mathcal{I} admits a solution in \mathcal{I}.

The difficulty of such a construction is to avoid adding a solution to the instance I in \mathcal{I}_{n+1} during step 3 . One needs to ensure that every P-instance in \mathcal{I}_{n} admits a solution Y such that $Y \oplus C$ avoids computing a solution to I for each $C \in \mathcal{I}_{n}$.

Assuming that \mathcal{I}_{n} does not contain a solution to I is sometimes not sufficient to ensure the existence of a solution Y to the next P -instance such that the ideal closure of $\mathcal{I}_{n} \cup\{Y\}$ does not contain such a solution as well. A core step of the separation of P from Q consists in designing the computability-theoretic property that we will propagate from \mathcal{I}_{n} to \mathcal{I}_{n+1} and which will ensure in particular that I has no solution in \mathcal{I}_{n+1}. This property strongly depends on the nature of the principles P and Q.

Lerman, Solomon and Towsner [17] introduced a general technique for designing such a property. Their framework has been successfuly reused to separate various principles in reverse mathematics [11, 22, 24]. Recently, the author [23] refined their technique to make it more lightweight and modular. Once simplified, a separation between two statements P and Q using the framework of Lerman, Solomon and Towsner yields a computability-theoretic property called fairness property. This property is closed downward under the Turing reduction and is preserved by the statement P , that is, for every fair set X and every X-computable P -instance I, there is a solution Y to I such that $X \oplus Y$ is fair. This property is designed so that it is not preserved by Q, which enables one to build an ω-model of P in which Q does not hold. Note that "fairness property" is a generic appelation for the computability-theoretic property yielded by the construction of Lerman, Solomon and Towsner. Different statements give different fairness properties, such as hyperimmunity [23], CAC-fairness [26] or again TT-fairness [13].

In this paper, we shall take the case of the separation of Ramsey's theorem for pairs from the tree theorem for pairs to make explicit the different steps leading to the separation of two principles. In particular, we shall focus on the design of the discriminating property.

1.4. Definitions and notation

String, sequence. Fix an integer $k \in \omega$. A string (over k) of length n is an ordered tuple of integers a_{0}, \ldots, a_{n-1} (such that $a_{i}<k$ for every $i<n$). The empty string is written ε. A sequence (over k) is an infinite listing of integers a_{0}, a_{1}, \ldots (such that $a_{i}<k$ for every $i \in \omega$). Given $s \in \omega, k^{s}$ is the set of strings of length s over k and $k^{<s}$ is the set of strings of length $<s$ over k. Similarly, $k^{<\omega}$ is the set of finite strings over k and k^{ω} is the set of sequences (i.e. infinite strings) over k. Given a string $\sigma \in k^{<\omega}$, we denote by $|\sigma|$ its length. Given two strings $\sigma, \tau \in k^{<\omega}, \sigma$ is a prefix of τ (written $\sigma \preceq \tau$) if there exists a string $\rho \in k^{<\omega}$ such that $\sigma \rho=\tau$. Given a sequence X, we write $\sigma \prec X$ if $\sigma=X \upharpoonright n$ for some $n \in \omega$, where $X \upharpoonright n$ denotes the restriction of X to its first n elements. A binary string (resp. binary sequence) is a string (resp. sequence) over 2 . We may identify a binary sequence with a set of integers by considering that the sequence is its characteristic function.

Tree, path. A tree $T \subseteq k^{<\omega}$ is a set downward-closed under the prefix relation. A binary tree is a tree $T \subseteq 2^{<\omega}$. A sequence $P \in \omega^{\omega}$ is a path though T if for every $\sigma \prec P, \sigma \in T$. A string $\sigma \in k^{<\omega}$ is a stem of a tree T if every $\tau \in T$ is comparable with σ. Given a tree T and a string $\sigma \in T$, we denote by $T^{[\sigma]}$ the subtree $\{\tau \in T: \tau \preceq \sigma \vee \tau \succeq \sigma\}$.

Sets, partitions. Given two sets A and B, we denote by $A<B$ the formula $(\forall x \in A)(\forall y \in$ $B)[x<y]$ and by $A \subseteq^{*} B$ the formula $\left(\forall^{\infty} x \in A\right)[x \in B]$, meaning that A is included in B up to finitely many elements. Given a set X and some integer k, a k-cover of X is a k-uple A_{0}, \ldots, A_{k-1} such that $A_{0} \cup \cdots \cup A_{k-1}=X$. We may simply say k-cover when the set X is unambiguous. A k-partition is a k-cover whose sets are pairwise disjoint. A Mathias condition is a pair (F, X) where F is a finite set, X is an infinite set and $F<X$. A condition $\left(F_{1}, X_{1}\right)$ extends $(F, X)\left(\right.$ written $\left.\left(F_{1}, X_{1}\right) \leq(F, X)\right)$ if $F \subseteq F_{1}, X_{1} \subseteq X$ and $F_{1} \backslash F \subset X$. A set G satisfies a Mathias condition (F, X) if $F \subset G$ and $G \backslash F \subseteq X$.

2. Partitioning trees and strong Reducibility

In order to get progressively into the framework used to separate Ramsey's theorem for pairs from the tree theorem for pairs, we shall first study the singleton version of the considered principles. The fairness property that we shall design during the next section is directly obtained by abstracting and generalizing the diagonalization argument of this section. Ramsey's theorem for singletons is simply the infinite pigeonhole principle, stating that for every finite partition of an infinite set, one of its parts has an infinite subset. Both RT_{k}^{1} and TT_{k}^{1} are computably true and provable over RCA_{0}. We shall therefore study non-computable instances of RT_{k}^{1} and TT_{k}^{1} to see how their combinatorics differ.

As explained in subsection 1.3, a proof of implication from P to Q over $R C A_{0}$ may involve multiple applications of P. Therefore, if we want to prove that P does not imply Q over $R C A_{0}$, we need to create an instance of Q diagonalizing against successive applications of P. In order to simplify our argument, we shall first describe a one-step diagonalization between a Δ_{2}^{0} instance of TT_{2}^{1} and arbitrary instances of RT_{k}^{1}, that is, with no effectiveness restriction. This is the notion of strong computable non-reducibility.

Definition 2.1 (Computable reducibility) Fix two Π_{2}^{1} statements P and Q . P is strongly computably reducible to a Q (written $\mathrm{P} \leq_{s c} \mathrm{Q}$) if every P-instance I computes a Q-instance J such that every solution to J computes a solution to I.

The remainder of this section will be dedicated to proving that $T T_{2}^{1} \not \leq_{s c} R T_{2}^{1}$. More precisely, we shall prove the following stronger theorem.

Theorem 2.2 There exists a $\Delta_{2}^{0} \mathrm{TT}_{2}^{1}$-instance $A_{0} \cup A_{1}=2^{<\omega}$ such that for every (nonnecessarily computable) RT_{2}^{1}-instance $B_{0} \cup B_{1}=\omega$, there is an infinite set homogeneous for the B 's which does not compute a TT_{2}^{1}-solution to the A 's.

In section 4, we will prove a theorem which implies Theorem 2.2. Therefore we shall focus on the key ideas of the construction rather than on the technical details.

Requirements. Let us first assume that we have constructed our TT_{2}^{1} instance $A_{0} \cup A_{1}=2^{<\omega}$. Fix some 2-partition $B_{0} \cup B_{1}=\omega$. We will construct by forcing an infinite set G such that both $G \cap B_{0}$ and $G \cap B_{1}$ are infinite. Either $G \cap B_{0}$, or $G \cap B_{1}$ will be taken as our solution to the RT_{2}^{1}-instance $B_{0} \cup B_{1}=\omega$. We only need one solution to the RT_{2}^{1}-instance. However, we will be only able to ensure that either $G \cap B_{0}$, or $G \cap B_{1}$ will not compute a solution to the TT_{2}^{1}-instance $A_{0} \cup A_{1}=2^{<\omega}$. Therefore, among $G \cap B_{0}$ and $G \cap B_{1}$, only the one which does not compute a solution to the TT_{2}^{1}-instance will be the desired solution to our RT_{2}^{1}-instance. Here, by "solution to the TT_{2}^{1}-instance", we mean an infinite subtree isomorphic to $2^{<\omega}$ which is included in A_{0} or A_{1}.

Let $\Phi_{0}, \Phi_{1}, \ldots$ be an enumeration of all partial tree functionals isomorphic to $2^{<\omega}$, that is, if $\Phi^{X}(n)$ halts, then $\Phi^{X}(n)$ outputs 2^{n} pairwise incomparable strings representing the nth level
of the tree. We ensure that the following requirements hold for every pair of indices e_{0}, e_{1}.

$$
\mathcal{Q}_{e_{0}, e_{1}}: \quad \mathcal{R}_{e_{0}}^{G \cap B_{0}} \quad \vee \quad \mathcal{R}_{e_{1}}^{G \cap B_{1}}
$$

where \mathcal{R}_{e}^{H} is the statement
Either Φ_{e}^{H} is partial, or $\Phi_{e}^{H}(n)$ is a set D of 2^{n} incomparable strings intersecting both A_{0} and A_{1} for some n.
We call any $\mathcal{Q}_{e_{0}, e_{1}}$ a \mathcal{Q}-requirement and for a given H (being either $G \cap B_{0}$, or $G \cap B_{1}$), we call any \mathcal{R}_{e}^{H} an \mathcal{R}-requirement for H. If every \mathcal{Q}-requirement is satisfied, then by the usual pairing argument, either every \mathcal{R}-requirement is satisfied for $G \cap B_{0}$, or every \mathcal{R}-requirement is satisfied for $G \cap B_{1}$. Call H a set among $G \cap B_{0}$ and $G \cap B_{1}$ for which every \mathcal{R}-requirement is satisfied. We claim that H does not compute a solution to the TT_{2}^{1}-instance $A_{0} \cup A_{1}=2^{<\omega}$. Suppose for the sake of contradiction that H computes a tree $S \cong{ }_{2}{ }^{<\omega}$ using some procedure Φ_{e}. By the requirement \mathcal{R}_{e}^{H}, S intersects both A_{0} and A_{1}, and therefore S is not a TT_{2}^{1}-solution to the A 's.

Forcing. The forcing conditions are Mathias conditions, that is, an ordered pair (F, X), where F is a finite set of integers, X is an infinite set belonging to some fixed Scott set \mathcal{S}, and such that $\max (F)<\min (X)$. A Scott set Turing ideal satisfying weak König's lemma. By Simpson [29, Theorem VIII.2.17], we can choose \mathcal{S} so that $\mathcal{S}=\left\{X_{i}: C=\bigoplus_{i} X_{i}\right\}$ for some low set C. This precision will be useful during the construction of the TT_{2}^{1}-instance. We furthermore assume that C does not compute a TT_{2}^{1}-solution to the A 's, and therefore that there is no C-computable infinite set homogeneous for the B 's, otherwise we are done.

The following lemma ensures that we can force both $G \cap B_{0}$ and $G \cap B_{1}$ to be infinite, assuming that the B 's have no infinite C-computable homogeneous set.

Lemma 2.3 Given a condition $c=(F, X)$ and some side $i<2$, there is an extension $d=(E, Y)$ such that $\left|E \cap B_{i}\right|>\left|F \cap B_{i}\right|$.

Proof. If $X \cap B_{i}=\emptyset$ then X is an infinite C-computable subset of B_{1-i}, contradicting our assumption. So there is some $x \in X \cap B_{i}$. Take $d=(F \cup\{x\}, X \backslash[0, x])$ as the desired extension.

The next step consists in forcing the \mathcal{Q}-requirements to be satisfied. A condition c forces a requirement $\mathcal{Q}_{e_{0}, e_{1}}$ if $\mathcal{Q}_{e_{0}, e_{1}}$ holds for every set G satisfying c. Of course, we cannot force the \mathcal{Q}-requirements for any TT_{2}^{1}-instance $A_{0} \cup A_{1}=2^{<\omega}$ since some of them admit computable solutions. We must therefore choose our TT_{2}^{1}-instance carefully. For now, simply assume that we managed to build a TT_{2}^{1}-instance $A_{0} \cup A_{1}=2^{<\omega}$ satisfying the following property (P). We will detail its construction later.
(P) Given a condition $c=(F, X)$ and some indices e_{0}, e_{1}, there is an extension d of c forcing $\mathcal{Q}_{e_{0}, e_{1}}$.
Assuming that the property (P) holds, we now show how to build our infinite set G from it. After that, we will construct a TT_{2}^{1}-instance $A_{0} \cup A_{1}=2^{<\omega}$ so that the property (P) is satisfied.

Construction. Thanks to Lemma 2.3 and the property (P), we can define an infinite, decreasing sequence of conditions $(\emptyset, \omega) \geq c_{0} \geq c_{1} \ldots$ such that for each $s \in \omega$
(i) $\left|F_{s} \cap B_{0}\right| \geq s$ and $\left|F_{s} \cap B_{1}\right| \geq s$
(ii) c_{s} forces $\mathcal{Q}_{e_{0}, e_{1}}$ if $s=\left\langle e_{0}, e_{1}\right\rangle$
where $c_{s}=\left(F_{s}, X_{s}\right)$. The set $G=\bigcup_{s} F_{s}$ is such that both $G \cap B_{0}$ and $G \cap B_{1}$ are infinite by (i), and either $G \cap B_{0}$ or $G \cap B_{1}$ does not compute a TT_{2}^{1}-solution to the A 's by (ii). The set among $G \cap B_{0}$ and $G \cap B_{1}$ which does not compute a TT_{2}^{1}-solution to the A 's is our desired RT_{2}^{1}-solution to the B 's. We now need to satisfy the property (P).

Satisfying the property (P). Given a condition, the extension stated in the property (P) cannot be ensured for an arbitrary TT_{2}^{1}-instance $A_{0} \cup A_{1}=2^{<\omega}$. We must design the A 's so that the property (P) holds. To do so, we will apply the ideas developped by Lerman, Solomon and Towsner [17]. We can see the construction of the set G as a game. The opponent is the $\mathrm{TT}_{2^{-}}^{1}$ instance which will try everything, not to be diagonalized against. However, the opponent is
fair, in the sense that if we have infinitely many occasions to diagonalize against him, then he will let us do it. More precisely, if given a condition $c=(F, X)$ and some indices e_{0}, e_{1}, we can find extensions which makes both $\Phi_{e_{0}}^{G \cap B_{0}}$ and $\Phi_{e_{1}}^{G \cap B_{1}}$ produce arbitrarily large initial segments of the output, then one of those outputs will intersect both A_{0} and A_{1}. In this case, we will have succeeded to satisfy (P) for the condition c by producing an extension d forcing $\Phi_{e_{i}}^{G \cap B_{i}}$ to intersect both A_{0} and A_{1} for some $i<2$, and therefore forcing $\mathcal{Q}_{e_{0}, e_{1}}$. In the other case, we will also have vacuously succeeded since we will not be able to find extensions making both $\Phi_{e_{0}}^{G \cap B_{0}}$ and $\Phi_{e_{1}}^{G \cap B_{1}}$ produce arbitrarily large initial segments of the output tree, and therefore c is already a condition forcing one $\Phi_{e_{0}}^{G \cap B_{0}}$ and $\Phi_{e_{1}}^{G \cap B_{1}}$ to be partial, so forcing $\mathcal{Q}_{e_{0}, e_{1}}$.

We now describe how to construct a fair TT_{2}^{1}-instance. The construction of the A 's will be $\Delta_{2}^{0, C}$, hence Δ_{2}^{0} since C is low. The access to the oracle C enables us to code the conditions $c=(F, X)$ into finite objects, namely, pairs (F, i) so that $C=\bigoplus_{i} X_{i}$ and $X=X_{i}$, and to enumerate them C-computably. More precisely, we will enumerate all 6 -tuples $\left\langle F, i, E_{0}, E_{1}, e_{0}, e_{1}\right\rangle$, where $\left(F, X_{i}\right)$ is a preconditions, that is, a condition where we drop the constraint that X_{i} is infinite since it requires too much computational power to know it, $E_{0} \sqcup E_{1}=F$ represents a guess of the sets $F \cap B_{0}$ and $F \cap B_{1}$, and e_{0}, e_{1} denote the $\mathcal{Q}_{e_{0}, e_{1}}$ we want to force. In particular, among those 6 -tuples enumerated, we will enumerate $\left\langle F, i, F \cap B_{0}, F \cap B_{1}, e_{0}, e_{1}\right\rangle$ for all the true conditions (F, X_{i}).

The construction of the A 's is done by stages. At stage s, we have constructed two sets $A_{0, s} \cup$ $A_{1, s}=2^{<q}$ for some $q \in \omega$. We want to satisfy the property (P) given a 6 -tuple $\left\langle F, i, E_{0}, E_{1}, e_{0}, e_{1}\right\rangle$, that is, given a precondition $c=(F, X)$, a guess of $F \cap B_{0}$ and $F \cap B_{1}$, and a pair of indices e_{0}, e_{1}. If any of $\Phi_{e_{0}}^{E_{0}}(2)$ and $\Phi_{e_{1}}^{E_{1}}(2)$ is not defined, do nothing and go to the next stage. We can restrict ourselves without loss of generality to preconditions such that both $\Phi_{e_{0}}^{E_{0}}(2)$ and $\Phi_{e_{1}}^{E_{1}}(2)$ are defined. Indeed, if in the property (P), the condition c has no such extension, then c already forces either $\Phi_{e_{0}}^{G \cap B_{0}}$ or $\Phi_{e_{1}}^{G \cap B_{1}}$ to be partial and therefore vacuously forces $\mathcal{Q}_{e_{0}, e_{1}}$. The choice of " 2 " as input seems arbitrary. It has not been picked randomly and this choice will be justified in the next paragraph.

Let D_{0} and D_{1} be the 4 -sets of pairwise incomparable strings outputted by $\Phi_{e_{0}}^{E_{0}}(2)$ and $\Phi_{e_{1}}^{E_{1}}(2)$, respectively. Altough the strings are pairwise incomparable within D_{0} or D_{1}, there may be two comparable strings in $D_{0} \cup D_{1}$. However, by a simple combinatorial argument, we may always find two strings $\sigma_{0}, \tau_{0} \in D_{0}$ and $\sigma_{1}, \tau_{1} \in D_{1}$ such that $\sigma_{0}, \tau_{0}, \sigma_{1}$ and τ_{1} are pairwise incomparable (see Lemma 3.2). Here, we use the fact that on input 2 , the sets have cardinality 4, which is enough to apply Lemma 3.2. We are now ready to ask the main question.
"Is it true that for every 2-partition $Z_{0} \cup Z_{1}=X$, there is some side $i<2$ and some set $G \subseteq Z_{i}$ such that $\Phi_{e_{i}}^{E_{i} \cup G}(q)$ halts?"

Note that the question looks $\Pi_{2}^{1, X}$, but is in fact $\Sigma_{1}^{0, X}$ by a compactness argument. It is therefore C^{\prime}-decidable since $X \in \mathcal{S}$ and so can be uniformly decided during the construction. We have two cases.

Case 1: The answer is negative. In this case, the $\Pi_{1}^{0, X}$ class \mathcal{C} of all sets $Z_{0} \oplus Z_{1}$ such that $Z_{0} \cup Z_{1}=X$ and for every $i<2$ and every set $G \subseteq Z_{i}, \Phi_{e_{i}}^{E_{i} \cup G}(q) \uparrow$ is non-empty. In this case, we do nothing and claim that the property (P) holds for c. Indeed, since \mathcal{S} is a scott set containing X, there is some $Z_{0} \oplus Z_{1} \in \mathcal{C} \cap \mathcal{S}$ such that $Z_{0} \cup Z_{1}=X$. As X is infinite, there is some $i<2$ such that Z_{i} is infinite. In this case, if $E_{0}=F \cap B_{0}$ and $E_{1}=F \cap B_{1}, d=\left(F, Z_{i}\right)$ is an extension forcing $\Phi_{e_{i}}^{\left(G \cap B_{i}\right)}(q) \uparrow$ and therefore forcing $\mathcal{Q}_{e_{0}, e_{1}}$. Note that this extension cannot be found C^{\prime}-computably since it requires to decide which of Z_{0} and Z_{1} is infinite. However, we do not need to uniformly provide this extension. The property (P) simply states the existence of such an extension.

Case 2: The answer is positive. Given a string $\sigma \in 2^{<\omega}$, let $S_{\sigma}=\{\tau \succeq \sigma\}$. Since the Φ 's are tree functionals and $\Phi_{e_{i}}^{E_{i} \cup G}(2)$ outputs (among others) the strings σ_{i} and τ_{i}, whenever $\Phi_{e_{i}}^{E_{i} \cup G}(q)$ halts, it outputs a finite set D of size 2^{q} intersecting both $S_{\sigma_{i}}$ and $S_{\tau_{i}}$. Therefore, by compactness, there are finite sets $U_{0} \subseteq S_{\sigma_{0}}, V_{0} \subseteq S_{\tau_{0}}, U_{1} \subseteq S_{\sigma_{1}}$ and $V_{1} \subseteq S_{\tau_{1}}$ such that for every 2-partition $Z_{0} \cup Z_{1}=X$, there is some side $i<2$ and some set $G \subseteq Z_{i}$ such that $\Phi_{e_{i}}^{E_{i} \cup G}(q)$
intersects both U_{i} and V_{i}. In particular, whenever $E_{0}=F \cap G_{0}, E_{1}=F \cap B_{1}, Z_{0}=X \cap B_{0}$ and $Z_{1}=X \cap B_{1}$, there is some $i<2$ and some finite set $G \subseteq X \cap B_{i}$ such that $\Phi_{e_{i}}^{\left(F \cap B_{i}\right) \cup G}(q)$ intersects both U_{i} and V_{i}. Notice that all the strings in U_{i} and V_{i} have length at least q and therefore are not yet colored by the A 's. Put the U 's in $A_{0, s+1}$ and the V 's in $A_{1, s+1}$ and complete the coloring so that $A_{0, s+1} \cup A_{1, s+1}=2^{<r}$ for some $r \geq q$. Then go to the next step. We claim that the property (P) holds for c. Indeed, let $G \subseteq X \cap B_{i}$ be the finite set witnessing $\Phi_{e_{i}}^{\left(F \cap B_{i}\right) \cup G}(q) \cap U_{i} \neq \emptyset$ and $\Phi_{e_{i}}^{\left(F \cap B_{i}\right) \cup G}(q) \cap V_{i} \neq \emptyset$. The condition $d=(F \cup G, X \backslash[0, \max (E)])$ is an extension forcing $\mathcal{Q}_{e_{0}, e_{1}}$ by its i th side. This finishes the construction of the TT_{2}^{1}-instance and the proof of Theorem 2.2.

3. The fairness property

In this section, we analyse the one-step separation proof of section 2 in order to extract the core of the argument. Then, we use the framework of Lerman, Solomon and Towsner to design the computability-theoretic property which will enable us to discriminate RT_{2}^{2} from TT_{2}^{2}.

The multiple-step case. We have seen how to diagonalize against one application of RT_{2}^{1}. The strength of TT_{2}^{1} comes from the fact that when we build a solution S to some TT_{2}^{1}-instance $A_{0} \cup A_{1}=2^{<\omega}$, we must provide finite subtrees $S_{n} \cong 2^{<n}$ for arbitrarily large n. However, as soon as we have outputted S_{n}, we commit to provide arbitrarily large extensions to each leaf of S_{n}. Since the leaves in S_{n} are pairwise incomparable, the sets of their extensions are mutually disjoint. During the construction of the TT_{2}^{1}-instance, we can pick any pair σ, τ of incomparable leaves in S_{n}, and put the extensions of σ in A_{0} and the extensions of τ in A_{1} since they are disjoint.

In the proof of $\mathrm{TT}_{2}^{1} \not Z_{s c} \mathrm{RT}_{2}^{1}$, when we create a solution to some RT_{2}^{1}-instance $B_{0} \cup B_{1}=\omega$, we build two candidate solutions $G \cap B_{0}$ and $G \cap B_{1}$ at the same time. For each pair of tree functionals $\Phi_{e_{0}}$ and $\Phi_{e_{1}}$, we must prevent one of $\Phi_{e_{0}}^{G \cap B_{0}}$ and $\Phi_{e_{1}}^{G \cap B_{1}}$ from being a TT ${ }_{2}^{1}$-solution to the A 's. However, the finite subtrees S_{0} and S_{1} outputted respectively by the left side and the right side may have comparable leaves. We cannot take any 2 leaves of S_{0} and 2 leaves of S_{1} to obtain 4 pairwise incomparable strings. Thankfully, if S_{0} and S_{1} contain enough leaves (4 is enough), we can find such strings.

If we try to diagonalize against two applications of RT_{2}^{1}, below each side $G \cap B_{0}$ and $G \cap$ B_{1} of the first RT_{2}^{1}-instance, we will have again two sides corresponding to the second $\mathrm{RT}_{2^{-}}^{1}$ instance. We will have then to diagonalize against four candidate subtrees S_{0}, S_{1}, S_{2} and S_{3}. We need therefore to wait until the subtrees have enough leaves, so that we can find 8 pairwise incomparable leaves $\sigma_{0}, \tau_{0}, \ldots, \sigma_{3}, \tau_{3}$ such that $\sigma_{i}, \tau_{i} \in S_{i}$ for each $i<4$.

In the general case, we will then have to diagonalize against an arbitrarily large number of subtrees, and want to ensure that if they contain enough leaves, we can find two leaves in each, such that they form a set of pairwise incomparable strings. This leads to the notion of disjoint matrix.

Definition 3.1 (Disjoint matrix) An m-by- n matrix M is a rectangular array of strings $\sigma_{i, j} \in$ $2^{<\omega}$ such that $i<m$ and $j<n$. The i th row $M(i)$ of the matrix M is the n-tuple of strings $\sigma_{i, 0}, \ldots, \sigma_{i, n-1}$. An m-by- n matrix M is disjoint if for each row $i<m$, the strings $\sigma_{i, 0}, \ldots, \sigma_{i, n-1}$ are pairwise incomparable.

The following combinatorial lemma gives an explicit bound on the number of leaves we require on each subtree to obtain our desired sequence of pairwise incomparable strings.

Lemma 3.2 For every m-by- $2 m$ disjoint matrix M, there are pairwise incomparable strings $\sigma_{0}, \tau_{0}, \ldots, \sigma_{m-1}, \tau_{m-1}$ such that $\sigma_{i}, \tau_{i} \in M(i)$ for every $i<m$.

Proof. Consider the following greedy algorithm. At each stage, we maintain a set P of pending rows which is initially the whole matrix M. Among those rows, some strings are flagged as invalid. Initially, all the strings are valid. Pick a string ρ of maximal length among all the valid strings of all the pending rows. Let $M(i)$ be a pending row to which ρ belongs. If we have
already chosen the value of σ_{i}, set $\tau_{i}=\rho$ and remove $M(i)$ from the pending rows. Otherwise, set $\sigma_{i}=\rho$. In any case, flag every prefix of ρ from any row of M as invalid, and go to the next step.

Notice that at any step, we flag as invalid at most one string from each row of M since the strings in each row are pairwise incomparable. Moreover, since we want to construct a sequence of $2 m$ pairwise incomparable strings, and at each step we add one string to this sequence, there are at most $2 m$ steps. The algorithm gets stuck at some points only if all pending rows contain only invalid strings, which cannot happen since each row contains at least $2 m$ strings.

We claim that the chosen strings are pairwise incomparable. Indeed, when at some stage, we pick a string ρ, it is of shorter length than any string we have picked so far, and cannot be a prefix of any of them since each time we pick a string, we flag all its prefixes as invalid in the matrix.

Abstracting the requirements. The first feature of the framework of Lerman, Solomon and Towsner that we already exploited is the "fairness" of the TT_{2}^{1}-instance which allows each RT_{2}^{1} instance to diagonalize it as soon as the RT_{2}^{1}-instance gives him enough occasions to do it. We will now use the second aspect of this framework which consists in getting rid of the complexity of the requirements by replacing them with arbitrary computable predicates (or blackboxes).

Indeed, consider the case of two successive applications of RT_{2}^{1}. Say that the first instance is $B_{0} \cup B_{1}=\omega$, and the second $C_{0} \cup C_{1}=\omega$. We need to design the TT_{2}^{1}-instance $A_{0} \cup A_{1}=2^{<\omega}$ so that there is an infinite set $G \cap B_{i}$ for some $i<2$ and an infinite set $H \cap B_{j}$ for some $j<2$ such that $\left(G \cap B_{i}\right) \oplus\left(H \cap B_{j}\right)$ does not compute a solution to the A 's. While constructing the A 's, we enumerate two levels of conditions. We first enumerate the conditions $c=(F, X)$ used for constructing the set G, but we also enumerate the conditions $c_{0}=\left(F_{0}, X_{0}\right)$ and $c_{1}=$ $\left(F_{1}, X_{1}\right)$ such that c_{i} is used to construct a solution H to the second RT_{2}^{1}-instance $C_{0} \cup C_{1}=\omega$ below $G \cap B_{i}$. The question that the TT_{2}^{1}-instance asks during its construction becomes
"For every 2-partition $Z_{0} \cup Z_{1}=X$, is there some side $i<2$ and some set $G \subseteq Z_{i}$ such that for every 2-partition $W_{0} \cup W_{1}=X_{i}$, there is some side $j<2$ and some set $H \subseteq W_{j}$ such that $\Phi_{e_{i, j}}^{\left(\left(F \cap B_{i}\right) \cup G\right) \oplus\left(\left(F_{i} \cap C_{j}\right) \cup H\right)}(q)$ halts?"

While staying Σ_{1}^{0} (with parameters), the question becomes arbitrarily complicated to formulate. Moreover, looking at the shape of the question, we see that the first iteration can box any Σ_{1}^{0} question asked about the second iteration. We can therefore abstract the question and make the fairness property independent of the specificities of the forcing notion used to solve the RT_{2}^{1}-instances. See [23] for detailed explanations about this abstraction process.

Definition 3.3 (Formula, valuation) An m-by-n formula is a formula φ with distinguished set variables $U_{i, j}$ for each $i<m$ and $j<n$. Given an m-by- n matrix $M=\left\{\sigma_{i, j}: i<m, j<n\right\}$, an M-valuation V is a tuple of finite sets $A_{i, j} \subseteq\left\{\tau \in 2^{<\omega}: \tau \succeq \sigma_{i, j}\right\}$ for each $i<m$ and $j<n$. The valuation V satisfies φ if $\varphi\left(A_{i, j}: i<m, j<n\right)$ holds. We write $\varphi(V)$ for $\varphi\left(A_{i, j}: i<m, j<n\right)$.

Given some valuation $V=\left(A_{i, j}: i<m, j<n\right)$ and some integer s, we write $V>s$ to say that for every $\tau \in A_{i, j},|\tau|>s$. Moreover, we denote by $V(i)$ the n-tuple $A_{i, 0}, \ldots, A_{i, n-1}$. Following the terminology of [17], we define the notion of essentiality for a formula (an abstract requirement), which corresponds to the idea that there is room for diagonalization since the formula is satisfied for arbitrarily far valuations.

Definition 3.4 (Essential formula) An m-by- n formula φ is essential in an m-by- n matrix M if for every $s \in \omega$, there is an M-valuation $V>s$ such that $\varphi(V)$ holds.

The notion of fairness is defined accordingly. If some formula is essential, that is, gives enough room for diagonalization, then there is an actual valuation which will diagonalize against the TT_{2}^{1}-instance.

Definition 3.5 (Fairness) Fix two sets $A_{0}, A_{1} \subseteq 2^{<\omega}$. Given an m-by- n disjoint matrix M, an M-valuation V diagonalizes against $A_{0}, A_{1} \subseteq 2^{<\omega}$ if for every $i<m$, there is some $L, R \in V(i)$
such that $L \subseteq A_{0}$ and $R \subseteq A_{1}$. A set X is n-fair for A_{0}, A_{1} if for every m and every $\Sigma_{1}^{0, X} m$ -by- $2^{n} m$ formula φ essential in some disjoint matrix M, there is an M-valuation V diagonalizing against A_{0}, A_{1} such that $\varphi(V)$ holds. A set X is fair for A_{0}, A_{1} if it is n-fair for A_{0}, A_{1} for some $n \geq 1$.

Of course, if $Y \leq_{T} X$, then every $\Sigma_{1}^{0, Y}$ formula is $\Sigma_{1}^{0, X}$. As an immediate consequence, if X is n-fair for some A_{0}, A_{1} and $Y \leq_{T} X$, then Y is n-fair for A_{0}, A_{1}. Moreover, if X is n-fair for A_{0}, A_{1} and $p>n, X$ is also p-fair for A_{0}, A_{1} as witnessed by cropping the rows.

Definition 3.6 (Fairness preservation) Fix a Π_{2}^{1} statement P .

1. P admits fairness (resp. n-fairness) preservation if for all sets $A_{0}, A_{1} \subseteq 2^{<\omega}$, every set C which is fair (resp. n-fair) for A_{0}, A_{1} and every C-computable P-instance X, there is a solution Y to X such that $Y \oplus C$ is fair (resp. n-fair) for A_{0}, A_{1}.
2. P admits strong fairness (resp. n-fairness) preservation if for all sets $A_{0}, A_{1} \subseteq 2^{<\omega}$, every set C which is fair (resp. n-fair) for A_{0}, A_{1} and every P -instance X, there is a solution Y to X such that $Y \oplus C$ is fair (resp. n-fair) for A_{0}, A_{1}.

Note that a principle \mathbf{P} may admit fairness preservation without preserving n-fairness for any fixed n, as this is the case with RT_{2}^{2} (see Theorem 4.11 and Theorem 4.13). On the other hand, if P admits n-fairness preservation for every n, then it admits fairness preservation. The notion of fairness preservation has been designed so that it is closed under the implication over RCA ${ }_{0}$.

Lemma 3.7 If P admits fairness preservation but not Q, then P does not imply Q over $R C A_{0}$.
Proof. Since Q does not admit fairness preservation, there is a set C which is n-fair for some $A_{0}, A_{1} \subseteq 2^{<\omega}$ and a C-computable Q-instance J such that for every solution Y to $J, C \oplus Y$ is not fair for A_{0}, A_{1}. We build an infinite sequence of sets X_{0}, X_{1}, \ldots starting with $X_{0}=C$ and such that for every $s \in \omega$,
(i) X_{s+1} is a solution to the P-instance $I_{s}^{X_{0} \oplus \cdots \oplus X_{s}}$
(ii) $X_{0} \oplus \cdots \oplus X_{s+1}$ is fair for A_{0}, A_{1}
where I_{0}, I_{1}, \ldots is a (non-computable) enumeration of all P-instance functionals. Let \mathcal{M} be the ω-model whose second-order part is the Turing ideal

$$
\mathcal{I}=\left\{Z:(\exists s)\left[Z \leq_{T} X_{0} \oplus \cdots \oplus X_{s}\right]\right\}
$$

By Friedman [12], $\mathcal{M} \models \mathrm{RCA}_{0}$ since \mathcal{I} is a Turing ideal. By (i), $\mathcal{M} \models \mathrm{P}$. As $J \leq_{T} C=X_{0}$, $J \in \mathcal{I}$. However, for every $Z \in \mathcal{I}, Z \oplus C$ is fair for A_{0}, A_{1} by downward closure of fairness under the Turing reducibility, so Z is not a solution to the Q -instance J. Therefore $\mathcal{M} \not \vDash \mathrm{Q}$.

Now we have introduced the necessary terminology, we create a Δ_{2}^{0} instance of T_{2}^{1} which will serve as a bootstrap for fairness preservation.

Lemma 3.8 There exists a Δ_{2}^{0} partition $A_{0} \cup A_{1}=2^{<\omega}$ such that \emptyset is 1-fair for A_{0}, A_{1}.
Proof. The proof is done by a no-injury priority construction. Let $\varphi_{0}, \varphi_{1}, \ldots$ be a computable enumeration of all m-by- $2 m \Sigma_{1}^{0}$ formulas and M_{0}, M_{1}, \ldots be an enumeration of all m-by- $2 m$ disjoint matrices for every m. We want to satisfy the following requirements for each pair of integers e, k.
$\mathcal{R}_{e, k}$: If φ_{e} is essential in M_{k}, then $\varphi_{e}(V)$ holds for some M_{k}-valuation V diagonalizing against A_{0}, A_{1}.
The requirements are ordered via the standard pairing function $\langle\cdot, \cdot\rangle$. The sets A_{0} and A_{1} are constructed by a \emptyset^{\prime}-computable list of finite approximations $A_{i, 0} \subseteq A_{i, 1} \subseteq \ldots$ such that all elements added to $A_{i, s+1}$ from $A_{i, s}$ are strictly greater than the maximum of $A_{i, s}$ for each $i<2$. We then let $A_{i}=\bigcup_{s} A_{i, s}$ which will be a Δ_{2}^{0} set. At stage 0 , set $A_{0,0}=A_{1,0}=\emptyset$. Suppose that at stage s, we have defined two disjoint finite sets $A_{0, s}$ and $A_{1, s}$ such that
(i) $A_{0, s} \cup A_{1, s}=2^{<b}$ for some integer $b \geq s$
(ii) $\mathcal{R}_{e^{\prime}, k^{\prime}}$ is satisfied for every $\left\langle e^{\prime}, k^{\prime}\right\rangle<s$

Let $\mathcal{R}_{e, k}$ be the requirement such that $\langle e, k\rangle=s$. Decide \emptyset^{\prime}-computably whether there is some M_{k}-valuation $V>b$ such that $\varphi_{e}(V)$ holds. If so, computably fetch such a V and let d be an upper bound on the length of the strings in V. By Lemma 3.2, there are pairwise incomparable strings $\sigma_{0}, \tau_{0}, \ldots, \sigma_{m-1}, \tau_{m-1}$ such that $\sigma_{i}, \tau_{i} \in M(i)$ for every $i<m$. For each $i<m$, let $A_{i, l}$ and $A_{i, r}$ be the sets in V corresponding to σ_{i} and τ_{i}, respectively. Set $A_{0, s+1}=A_{0, s} \bigcup_{i<m} A_{i, l}$ and $A_{1, s+1}=2^{<d} \backslash A_{0, s+1}$. This way, $A_{0, s+1} \cup A_{1, s+1}=2^{<d}$. Since the σ 's and τ 's are pairwise incomparable, the sets $A_{i, l}$ and $A_{i, r}$ are disjoint, so $\bigcup_{i<m} A_{i, r} \subseteq 2^{<d} \backslash A_{0, s+1}$ and the requirement $\mathcal{R}_{e, i}$ is satisfied. If no such M_{k}-valuation is found, the requirement $\mathcal{R}_{e, k}$ is vacuously satisfied. Set $A_{0, s+1}=A_{0, s} \cup 2^{b}$ and $A_{1, s+1}=A_{1, s}$. This way, $A_{0, s+1} \cup A_{1, s+1}=2^{<(b+1)}$. In any case, go to the next stage. This finishes the construction.

Theorem 3.9 TT_{2}^{2} does not admit fairness preservation.
Proof. Let $A_{0} \cup A_{1}=2^{<\omega}$ be the Δ_{2}^{0} partition constructed in Lemma 3.8. By Schoenfield's limit lemma [28], there is a computable function $h: 2^{<\omega} \times \omega \rightarrow 2$ such that for each $\sigma \in 2^{<\omega}$, $\lim _{s} h(\sigma, s)$ exists and $\sigma \in A_{\lim _{s} h(\sigma, s)}$. Let $f:\left[2^{<\omega}\right]^{2} \rightarrow 2$ be the computable coloring defined by $f(\sigma, \tau)=h(\sigma,|\tau|)$ for each $\sigma \prec \tau \in 2^{<\omega}$. Let $S \cong 2^{<\omega}$ be a TT_{2}^{2}-solution to f with witness isomorphism $g: 2^{<\omega} \rightarrow S$ and witness color $c<2$. Note that $S \subseteq A_{c}$.

Fix any $n \geq 1$. We claim that S is not n-fair for A_{0}, A_{1}. For this, we construct a 1-by- 2^{n} $\Sigma_{1}^{0, S}$ formula and a 1-by- 2^{n} disjoint matrix M such that φ is essential in M, but such that every M-valuation V satisfying φ is included in A_{c}.

Let $\varphi\left(U_{j}: j<2^{n}\right)$ be the 1-by- $2^{n} \Sigma_{1}^{0, S}$ formula which holds if for each $j<2^{n}, U_{j}$ is a non-empty subset of S. Let $M=\left(\sigma_{j}: j<2^{n}\right)$ be the 1 -by- 2^{n} disjoint matrix defined for each $j<2^{n}$ by $\sigma_{j}=g\left(\tau_{j}\right)$ where τ_{j} is the j th string of length n. In other words, σ_{j} is the j th node at level n in S. For every s, let V_{s} be the M-valuation defined by $B_{j}=\{g(\rho)\}$ such that ρ is the least string of length $\max (n, s)$ extending τ_{j}. Notice that $V_{s}>s$ and $\varphi\left(V_{s}\right)$ holds. Therefore, the formula φ is essential in M. For every M-valuation $V=\left(B_{j}: j<2^{n}\right)$ such that $\varphi(V)$ holds, there is no $j<2^{n}$ such that $B_{j} \subseteq A_{1-c}$. Indeed, since $\varphi(V)$ holds, B_{j} is a non-empty subset of S, which is itself a subset of A_{c}. Therefore S is not n-fair for A_{0}, A_{1}.

Notice that we actually proved a stronger statement. Dzhafarov, Hirst and Lakins defined in [8] various notions of stability for the tree theorem for pairs. A coloring $f:\left[2^{<\omega}\right]^{2} \rightarrow r$ is 1-stable if for every $\sigma \in 2^{<\omega}$, there is some threshold t and some color $c<r$ such that $f(\sigma, \tau)=c$ for every $\tau \succ \sigma$ such that $|\tau| \geq t$. In the proof of Theorem 3.9, we showed in fact that TT_{2}^{2} restricted to 1-stable colorings does not admit fairness preservation. In the same paper, Dzhafarov et al. studied an increasing polarized version of the tree theorem for pairs, and proved that its 1-stable restriction coincides with the 1-stable tree theorem for pairs over RCA A_{0}. Therefore the increasing polarized tree theorem for pairs does not admit fairness preservation.

4. Separating principles in Reverse mathematics

In this section, we prove fairness preservation for various principles in reverse mathematics, namely, weak König's lemma, cohesiveness and RT_{2}^{2}. We prove independently that they admit fairness preservation, and then use the compositional nature of the notion of preservation to deduce that the conjunction of these principles do not imply TT_{2}^{2} over RCA_{0}.

Definition 4.1 (Weak König's lemma) $W_{K L}$ is the statement "Every infinite binary tree has an infinite path".

Weak König's lemma is one of the "Big Five". It can be thought of as capturing compactness arguments. The question of its relation with RT_{2}^{2} has been a long standing open problem, until Cholak, Jockusch and Slaman [2] and Liu [18] proved that RT_{2}^{2} is incomparable with weak König's lemma. Although the above mentioned results show that compactness is not really necessary in the proof of $\mathrm{RT}_{2}^{2}, W K L_{0}$ preserves many computability-theoretic notions
and is therefore involved in many effective constructions related to RT_{2}^{2}. Flood [10] introduced recently a Ramsey-type version of König's lemma (RWKL). This strict weakening of $W K L_{0}$ is sufficient in most applications of $W K L_{0}$ involved in proofs of RT_{2}^{2}. The statement RWKL has been later studied by Bienvenu, Patey and Shafer [1] and by Flood and Towsner [11].

Theorem 4.2 For every $n \geq 1, W_{K L}$ admits n-fairness preservation.
Proof. Let C be a set n-fair for some sets $A_{0}, A_{1} \subseteq 2^{<\omega}$, and let $T \subseteq 2^{<\omega}$ be a C-computable infinite binary tree. We construct an infinite decreasing sequence of computable subtrees $T=$ $T_{0} \supseteq T_{1} \supseteq \ldots$ such that for every path P through $\bigcap_{s} T_{s}, P \oplus C$ is n-fair for A_{0}, A_{1}. Note that the intersection $\bigcap_{s} T_{s}$ is non-empty since the T 's are infinite trees. More precisely, if we interpret s as a tuple $\langle m, \varphi, M\rangle$ where $\varphi(G, U)$ is an m-by- $2^{n} m \Sigma_{1}^{0, C}$ formula $\varphi(G, U)$ and M is an m-by- $2^{n} m$ disjoint matrix M, we want to satisfy the following requirement.
\mathcal{R}_{s} : For every path P through T_{s+1}, either $\varphi(P, U)$ is not essential in M, or $\varphi(P, V)$ holds for some M-valuation V diagonalizing against A_{0}, A_{1}.
Given two M-valuations $V_{0}=\left(B_{i, j}: i<m, j<2^{n} m\right)$ and $V_{1}=\left(D_{i, j}: i<m, j<2^{n} m\right)$, we write $V_{0} \subseteq V_{1}$ to denote the pointwise subset relation, that is, for every $i<m$ and every $j<2^{n} m, B_{i, j} \subseteq D_{i, j}$. At stage $s=\langle m, \varphi, M\rangle$, given some infinite, computable binary tree T_{s}, define the m-by- $2^{n} m \Sigma_{1}^{0, C}$ formula

$$
\psi(U)=(\exists n)\left(\forall \tau \in T_{s} \cap 2^{n}\right)(\exists \tilde{V} \subseteq U) \varphi(\tau, \tilde{V})
$$

We have two cases. In the first case, $\psi(U)$ is not essential in M with some witness t. By compactness, the following set is an infinite C-computable subtree of T_{s} :

$$
T_{s+1}=\left\{\tau \in T_{s}:(\text { for every } M \text {-valuation } V>t) \neg \varphi(\tau, V)\right\}
$$

The tree T_{s+1} has been defined so that $\varphi(P, U)$ is not essential in M for every $P \in\left[T_{s+1}\right]$.
In the second case, $\psi(U)$ is essential in M. By n-fairness of C for A_{0}, A_{1}, there is an M-valuation V diagonalizing against A_{0}, A_{1} such that $\psi(V)$ holds. We claim that for every path $P \in\left[T_{s}\right], \varphi(P, \tilde{V})$ holds for some M-valuation \tilde{V} diagonalizing against A_{0}, A_{1}. Fix some path $P \in\left[T_{s}\right]$. Unfolding the definition of $\psi(V)$, there is some n such that $\varphi(P \upharpoonright n, \tilde{V})$ holds for some M-valuation $\tilde{V} \subseteq V$. Since V is diagonalizing against A_{0}, A_{1}, for every $i<m$, there is some $L, R \in V(i)$ such that $L \subseteq A_{0}$ and $R \subseteq A_{1}$. Let $\tilde{L}, \tilde{R} \in \tilde{V}(i)$ be such that $\tilde{L} \subseteq L$ and $\tilde{R} \subseteq R$. In particular, $\tilde{L} \subseteq A_{0}$ and $\tilde{R} \subseteq A_{1}$ so \tilde{V} diagonalizes against A_{0}, A_{1}. Take $T_{s+1}=T_{s}$ and go to the next stage. This finishes the proof of Theorem 4.2.

As previously noted, preserving n-fairness for every n implies preserving fairness. However, we really need the fact that WKL_{0} admits n-fairness preservation and not only fairness preservation in the proof of Theorem 4.8.

Corollary $4.3 \mathrm{WKL}_{0}$ admits fairness preservation.
Cholak, Jockusch and Slaman [2] studied extensively Ramsey's theorem for pairs in reverse mathematics, and introduced their cohesive and stable variants.

Definition 4.4 (Cohesiveness) An infinite set C is \vec{R}-cohesive for a sequence of sets R_{0}, R_{1}, \ldots if for each $i \in \omega, C \subseteq^{*} R_{i}$ or $C \subseteq^{*} \overline{R_{i}}$. COH is the statement "Every uniform sequence of sets \vec{R} has an \vec{R}-cohesive set."

A coloring $f:[\omega]^{k+1} \rightarrow n$ is stable if for every k-tuple $\sigma \in[\omega]^{k}, \lim _{s} f(\sigma, s)$ exists. SRT_{n}^{k} is the restriction of RT_{n}^{k} to stable colorings. Mileti [20] and Jockusch \& Lempp [unpublished] proved that RT_{2}^{2} is equivalent to $\mathrm{SRT}_{2}^{2}+\mathrm{COH}$ over RCA_{0}. Recently, Chong et al. [3] proved that $S R T_{2}^{2}$ is strictly weaker than $R T_{2}^{2}$ over $R C A_{0}$. However they used non-standard models to separate the statements and the question whether SRT_{2}^{2} and RT_{2}^{2} coincide over ω-models remains open.

Cohesiveness can be seen as a sequential version of RT_{2}^{1} with finite errors. There is a natural decomposition of RT_{2}^{2} between COH and Δ_{2}^{0} instances of RT_{2}^{1}. Indeed, given a computable instance $f:[\omega]^{2} \rightarrow 2$ of RT_{2}^{2}, COH states the existence of an infinite set H such that $f:[H]^{2} \rightarrow 2$ is stable. By Schoenfield's limit lemma [28], the stable coloring $f:[H]^{2} \rightarrow 2$ can be seen as the Δ_{2}^{0} approximation of a \emptyset^{\prime}-computable instance $\tilde{f}: H \rightarrow 2$ of RT_{2}^{1}. Moreover, we can H compute an infinite f-homogeneous set from any \tilde{f}-homogeneous set. We shall therefore prove independently fairness preservation of COH and strong fairness preservation of RT_{2}^{1} to deduce that RT_{2}^{2} admits fairness preservation.

Theorem 4.5 For every $n \geq 1$, COH admits n-fairness preservation.
Proof. Let C be a set n-fair for some sets $A_{0}, A_{1} \subseteq 2^{<\omega}$, and let R_{0}, R_{1}, \ldots be a C-computable sequence of sets. We will construct an \vec{R}-cohesive set G such that $G \oplus C$ is n-fair for A_{0}, A_{1}. The construction is done by a Mathias forcing, whose conditions are pairs (F, X) where X is a C-computable set. The result is a direct consequence of the following lemma.

Lemma 4.6 For every condition (F, X), every m-by- $2^{n} m \Sigma_{1}^{0, C}$ formula $\varphi(G, U)$ and every m -by- $2^{n} m$ disjoint matrix M, there exists an extension $d=(E, Y)$ such that either $\varphi(G, U)$ is not essential for every set G satisfying d, or $\varphi(E, V)$ holds for some M-valuation V diagonalizing against A_{0}, A_{1}.

Proof. Define the m-by- $2^{n} m \Sigma_{1}^{0, C}$ formula $\psi(U)=(\exists G \supseteq F)[(G \subseteq F \cup X) \wedge \varphi(G, U)]$. By n fairness of C for A_{0}, A_{1}, either $\psi(U)$ is not essential in M, or $\psi(V)$ holds for some M-valuation V diagonalizing against A_{0}, A_{1}. In the former case, the condition (F, X) already satisfies the desired property. In the latter case, by the finite use property, there exists a finite set E satisfying (F, X) such that $\varphi(E, V)$ holds. Let $Y=X \backslash[0, \max (E)]$. The condition (E, Y) is a valid extension.

Using Lemma 4.6, define an infinite descending sequence of conditions $c_{0}=(\emptyset, \omega) \geq c_{1} \geq \ldots$ such that for each $s \in \omega$
(i) $\left|F_{s}\right| \geq s$
(ii) $X_{s+1} \subseteq R_{s}$ or $X_{s+1} \subseteq \bar{R}_{s}$
(iii) $\varphi(G, U)$ is not essential in M for every set G satisfying c_{s+1}, or $\varphi\left(F_{s+1}, V\right)$ holds for some M-valuation V diagonalizing against A_{0}, A_{1} if $s=\langle\varphi, M\rangle$
where $c_{s}=\left(F_{s}, X_{s}\right)$. The set $G=\bigcup_{s} F_{s}$ is infinite by (i), \vec{R}-cohesive by (ii) and $G \oplus C$ is n-fair for A_{0}, A_{1} by (iii). This finishes the proof of Theorem 4.5.

Corollary 4.7 COH admits fairness preservation.
The next theorem is the reason why we use the notion of fairness instead of n-fairness in our separation of RT_{2}^{2} from TT_{2}^{2}. Indeed, given an instance of RT_{2}^{1} and a set C which is n-fair for some sets A_{0}, A_{1}, the proof constructs a solution H such that $H \oplus C$ is $(n+1)$-fair for A_{0}, A_{1}. We shall see in Corollary 4.14 that the proof is optimal, in the sense that RT_{2}^{1} does not admit strong n-fairness preservation.

Theorem 4.8 RT_{2}^{1} admits strong fairness preservation.
Proof. Let C be a set n-fair for some sets $A_{0}, A_{1} \subseteq 2^{<\omega}$, and let $B_{0} \cup B_{1}=\omega$ be a (non-necessarily computable) 2-partition of ω. Suppose that there is no infinite set $H \subseteq B_{0}$ or $H \subseteq B_{1}$ such that $H \oplus C$ is n-fair for A_{0}, A_{1}, since otherwise we are done. We construct a set G such that both $G \cap B_{0}$ and $G \cap B_{1}$ are infinite. We need therefore to satisfy the following requirements for each $p \in \omega$.

$$
\mathcal{N}_{p}: \quad\left(\exists q_{0}>p\right)\left[q_{0} \in G \cap B_{0}\right] \quad \wedge \quad\left(\exists q_{1}>p\right)\left[q_{1} \in G \cap B_{1}\right]
$$

Furthermore, we want to ensure that one of $\left(G \cap B_{0}\right) \oplus C$ and $\left(G \cap B_{1}\right) \oplus C$ is fair for A_{0}, A_{1}. To do this, we will satisfy the following requirements for every integer m, every m-by- $2^{n+1} m$ $\Sigma_{1}^{0, C}$ formulas $\varphi_{0}(H, U)$ and $\varphi_{1}(H, U)$ and every m-by- $2^{n+1} m$ disjoint matrices M_{0} and M_{1}.

$$
\mathcal{Q}_{\varphi_{0}, M_{0}, \varphi_{1}, M_{1}}: \quad \mathcal{R}_{\varphi_{0}, M_{0}}^{G \cap B_{0}} \quad \vee \quad \mathcal{R}_{\varphi_{1}, M_{1}}^{G \cap B_{1}}
$$

where $\mathcal{R}_{\varphi, M}^{H}$ holds if $\varphi(H, U)$ is not essential in M or $\varphi(H, V)$ holds for some M-valuation V diagonalizing against A_{0}, A_{1}. We first justify that if every \mathcal{Q}-requirement is satisfied, then either $\left(G \cap B_{0}\right) \oplus C$ or $\left(G \cap B_{1}\right) \oplus C$ is $(n+1)$-fair for A_{0}, A_{1}. By the usual pairing argument, for every m, there is some side $i<2$ such that the following property holds:
(P) For every m-by- $2^{n+1} m \Sigma_{1}^{0, C}$ formula $\varphi\left(G \cap B_{i}, U\right)$ and every m-by- $2^{n+1} m$
disjoint matrix M, either $\varphi\left(G \cap B_{i}, U\right)$ is not essential in M, or $\varphi\left(G \cap B_{i}, V\right)$
holds for some M-valuation V diagonalizing against A_{0}, A_{1}.
By the infinite pigeonhole principle, there is some side $i<2$ such that (P) holds for infinitely many m. By a cropping argument, if (P) holds for m and $q<m$, then (P) holds for q. Therefore (P) holds for every m on side i. In other words, $\left(G \cap B_{i}\right) \oplus C$ is $(n+1)$-fair for A_{0}, A_{1}.

We construct our set G by forcing. Our conditions are Mathias conditions (F, X), such that $X \oplus C$ is n-fair for A_{0}, A_{1}. We now prove the progress lemma, stating that we can force both $G \cap B_{0}$ and $G \cap B_{1}$ to be infinite.

Lemma 4.9 For every condition $c=(F, X)$, every $i<2$ and every $p \in \omega$ there is some extension $d=(E, Y)$ such that $E \cap B_{i} \cap(p,+\infty) \neq \emptyset$.

Proof. Fix c, i and p. If $X \cap B_{i} \cap(p,+\infty)=\emptyset$, then $X \cap(p,+\infty)$ is an infinite subset of B_{1-i}. Moreover, $X \cap(p,+\infty)$ is n-fair for A_{0}, A_{1}, contradicting our hypothesis. Thus, there is some $q>$ p such that $q \in X \cap B_{i} \cap(p,+\infty)$. Take $d=(F \cup\{q\}, X \backslash[0, q])$ as the desired extension.

Next, we prove the core lemma stating that we can satisfy each \mathcal{Q}-requirement. A condition c forces a requirement \mathcal{Q} if \mathcal{Q} is holds for every set G satisfying c. This is the place where we really need the fact that WKL_{0} admits n-fairness preservation and not only fairness preservation.

Lemma 4.10 For every condition $c=(F, X)$, every integer m, every m-by- $2^{n+1} m \Sigma_{1}^{0, C}$ formulas $\varphi_{0}(H, U)$ and $\varphi_{1}(H, U)$ and every m-by- $2^{n+1} m$ disjoint matrices M_{0} and M_{1}, there is an extension $d=(E, Y)$ forcing $\mathcal{Q}_{\varphi_{0}, M_{0}, \varphi_{1}, M_{1}}$.

Proof. Let $\psi\left(U_{0}, U_{1}\right)$ be the $2 m$-by- $2^{n+1} m \Sigma_{1}^{0, X \oplus C}$ formula which holds if for every 2-partition $Z_{0} \cup$ $Z_{1}=X$, there is some $i<2$, some finite set $E \subseteq Z_{i}$ and an m-by- $2^{n+1} m M_{i}$-valuation $V \subseteq U_{i}$ such that $\varphi_{i}\left(\left(F \cap B_{i}\right) \cup E, V\right)$ holds. By n-fairness of $X \oplus C$, we have two cases.

In the first case, $\psi\left(U_{0}, U_{1}\right)$ is not essential in M_{0}, M_{1}, with some witness t. By compactness, the $\Pi_{1}^{0, X \oplus C}$ class \mathcal{C} of sets $Z_{0} \oplus Z_{1}$ such that $Z_{0} \cup Z_{1}=\omega$ and for every $i<2$ and every finite set $E \subseteq Z_{i}$, there is no M_{i}-valuation $V>t$ such that $\varphi_{i}\left(\left(F \cap B_{i}\right) \cup E, V\right)$ holds is non-empty. By n-fairness preservation of WKL_{0} (Theorem 4.2), there is a 2-partition $Z_{0} \oplus Z_{1} \in \mathcal{C}$ such that $Z_{0} \oplus Z_{1} \oplus C$ is n-fair for A_{0}, A_{1}. Since $Z_{0} \cup Z_{1}=X$, there is some $i<2$ such that Z_{i} is infinite. Take such an i. The condition $d=\left(F, Z_{i}\right)$ is an extension forcing $\mathcal{Q}_{\varphi_{0}, M_{0}, \varphi_{1}, M_{1}}$ by the i th side.

In the second case, $\psi\left(V_{0}, V_{1}\right)$ holds for some $\left(M_{0}, M_{1}\right)$-valuation $\left(V_{0}, V_{1}\right)$ diagonalizing against A_{0}, A_{1}. Let $Z_{0}=X \cap B_{0}$ and $Z_{1}=X \cap B_{1}$. By hypothesis, there is some $i<2$, some finite set $E \subseteq Z_{i}=X \cap B_{i}$ and some M_{i}-valuation $V \subseteq V_{i}$ such that $\varphi_{i}\left(\left(F \cap B_{i}\right) \cup E, V\right)$ holds. Since $V \subseteq V_{i}$, the M_{i}-valuation V diagonalizes against A_{0}, A_{1}. The condition $d=$ $(F \cup E, X \backslash[0, \max (E)])$ is an extension forcing $\mathcal{Q}_{\varphi_{0}, M_{0}, \varphi_{1}, M_{1}}$ by the i th side.

Using Lemma 4.9 and Lemma 4.10, define an infinite descending sequence of conditions $c_{0}=$ $(\emptyset, \omega) \geq c_{1} \geq \ldots$ such that for each $s \in \omega$
(i) $\left|F_{s} \cap B_{0}\right| \geq s$ and $\left|F_{s} \cap B_{1}\right| \geq s$
(ii) c_{s+1} forces $\mathcal{Q}_{\varphi_{0}, M_{0}, \varphi_{1}, M_{1}}$ if $s=\left\langle\varphi_{0}, M_{0}, \varphi_{1}, M_{1}\right\rangle$
where $c_{s}=\left(F_{s}, X_{s}\right)$. Let $G=\bigcup_{s} F_{s}$. The sets $G \cap B_{0}$ and $G \cap B_{1}$ are both infinite by (i) and one of $G \cap B_{0}$ and $G \cap B_{1}$ is fair for A_{0}, A_{1} by (ii). This finishes the proof of Theorem 4.8.

Theorem $4.11 \mathrm{RT}_{2}^{2}$ admits fairness preservation.
Proof. Fix any set C fair for some sets $A_{0}, A_{1} \subseteq 2^{<\omega}$ and any C-computable coloring $f:[\omega]^{2} \rightarrow$ 2. Consider the uniformly C-computable sequence of sets \vec{R} defined for each $x \in \omega$ by

$$
R_{x}=\{s \in \omega: f(x, s)=1\}
$$

As COH admits fairness preservation, there is some \vec{R}-cohesive set G such that $G \oplus C$ is fair for A_{0}, A_{1}. The set G induces a $(G \oplus C)^{\prime}$-computable coloring $\tilde{f}: \omega \rightarrow 2$ defined by:

$$
(\forall x \in \omega) \tilde{f}(x)=\lim _{s \in G} f(x, s)
$$

As RT_{2}^{1} admits strong fairness preservation, there is an infinite \tilde{f}-homogeneous set H such that $H \oplus G \oplus C$ is fair for A_{0}, A_{1}. The set $H \oplus G \oplus C$ computes an infinite f-homogeneous set.

Corollary $4.12 \mathrm{RT}_{2}^{2} \wedge \mathrm{WKL}_{0}$ does not imply TT_{2}^{2} over RCA_{0}.
Proof. By Theorem 4.11 and Corollary 4.3, RT_{2}^{2} and $W K L_{0}$ admit fairness preservation. By Theorem 3.9, TT_{2}^{2} does not admit fairness preservation. We conclude by Lemma 3.7.

We now prove the optimality of Theorem 4.8 and Theorem 4.11 by showing that n-fairness cannot be preserved.

Theorem $4.13 \mathrm{SRT}_{2}^{2}$ does not admit n-fairness preservation for any $n \geq 1$.
Proof. Let $A_{0} \cup A_{1}=2^{<\omega}$ be the Δ_{2}^{0} partition constructed in Lemma 3.8. By Schoenfield's limit lemma [28], there is a stable computable function $f:[\omega]^{2} \rightarrow 2$ such that $x \in A_{\lim _{s} f(x, s)}$ for every x. Fix some $n \geq 1$. For each $\sigma \in 2^{n+1}$, apply SRT_{2}^{2} to the coloring f restricted to the set $S_{\sigma}=\{\tau \succeq \sigma\}$ to obtain an infinite f-homogeneous set H_{σ} for some color $c_{\sigma}<2$. By definition of $f, H_{\sigma} \subseteq A_{c_{\sigma}}$. By the finite pigeonhole principle, there is a color $c<2$ and a set $M \subseteq 2^{n+1}$ of size 2^{n} such that $c_{\sigma}=c$ for every $\sigma \in M$. We can see M as a 1 -by- 2^{n} disjoint matrix. Let $H=\bigoplus_{\sigma \in M} H_{\sigma}$ and let $\varphi\left(U_{\sigma}: \sigma \in M\right)$ be the 1-by- $2^{n} \Sigma_{1}^{0, H}$ formula which holds if for every $\sigma \in M, U_{\sigma}$ is a non-empty subset of H_{σ}. Note that $H_{\sigma} \subseteq A_{c}$ for every $\sigma \in M$. The formula $\varphi(U)$ is essential in M but there is no M-valuation $V=\left(V_{\sigma}: \sigma \in M\right)$ such that $\varphi(V)$ holds and $V_{\sigma} \subseteq A_{1-c}$ for some $\sigma \in M$. Therefore H is not n-fair for A_{0}, A_{1}.

Corollary $4.14 \mathrm{RT}_{2}^{1}$ does not admit n-fairness preservation for every $n \geq 1$.
Proof. Fix some $n \geq 2$. By Theorem 4.13, there is some set $C n$-fair some A_{0}, A_{1} and a stable C-computable function $f:[\omega]^{2} \rightarrow 2$ such that for every infinite f-homogeneous set $H, H \oplus C$ is not n-fair for A_{0}, A_{1}. Let $\tilde{f}: \omega \rightarrow 2$ be defined by $\tilde{f}(x)=\lim _{s} f(x, s)$. Every infinite \tilde{f} homogeneous set $H C$-computes an infinite f-homogeneous set H_{1} such that $H_{1} \oplus C$ is not n-fair for A_{0}, A_{1}. Therefore $H \oplus C$ is not n-fair for A_{0}, A_{1}.

5. Questions

In this last section, we state some remaining open questions. The tree theorem for pairs is known to lie between ACA_{0} and RT_{2}^{2} over RCA_{0}. By Corollary 4.12, TT_{2}^{2} is strictly stronger than $R T_{2}^{2}$ over $R C A_{0}$. However, it is unknown whether TT_{2}^{2} is strictly weaker than $A C A_{0}$ over $R C A_{0}$.
Question 5.1 Does TT_{2}^{2} imply ACA_{0} over RCA_{0} ?
From a computability-theoretic point of view, Seetapun [27] proved that for every noncomputable set C, every computable instance of R_{2}^{2} has a solution which does not compute C. This is the notion of cone avoidance.

Question 5.2 Does TT_{2}^{2} admit cone avoidance?
Dzhafarov and Jockusch [9] simplified Seetapun's argument and proved that for every noncomputable set C, every arbitrary, that is, non-necessarily computable, instance of RT_{2}^{1} has a solution which does not compute C. This strengthening is called strong cone avoidance and is usually joined with the cone avoidance of the cohesive version of the principle to obtain cone avoidance for the principle over pairs.

Question 5.3 Does TT_{2}^{1} admit strong cone avoidance?

Acknowledgements. The author is thankful to his PhD advisor Laurent Bienvenu for interesting comments and discussions. The author is funded by the John Templeton Foundation ('Structure and Randomness in the Theory of Computation' project). The opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of the John Templeton Foundation.

References

[1] Laurent Bienvenu, Ludovic Patey, and Paul Shafer. On the logical strengths of partial solutions to mathematical problems. Submitted. Available at http://arxiv.org/abs/1411.5874, 2015.
[2] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, 66(01):1-55, 2001.
[3] Chitat Chong, Theodore Slaman, and Yue Yang. The metamathematics of stable Ramsey's theorem for pairs. Journal of the American Mathematical Society, 27(3):863-892, 2014.
[4] Jennifer Chubb, Jeffry L. Hirst, and Timothy H. McNicholl. Reverse mathematics, computability, and partitions of trees. Journal of Symbolic Logic, 74(01):201-215, 2009.
[5] Jared Corduan, Marcia J. Groszek, and Joseph R. Mileti. Reverse mathematics and Ramsey's property for trees. Journal of Symbolic Logic, 75(03):945-954, 2010.
[6] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer. On uniform relationships between combinatorial problems. arXiv preprint arXiv:1212.0157, 2012.
[7] Damir D. Dzhafarov. Cohesive avoidance and strong reductions. Proceedings of the American Mathematical Society, 2014.
[8] Damir D. Dzhafarov, Jeffry L. Hirst, and Tamara J. Lakins. Ramsey's theorem for trees: the polarized tree theorem and notions of stability. Archive for Mathematical Logic, 49(3):399-415, 2010.
[9] Damir D. Dzhafarov and Carl G. Jockusch. Ramsey's theorem and cone avoidance. Journal of Symbolic Logic, 74(2):557-578, 2009.
[10] Stephen Flood. Reverse mathematics and a Ramsey-type König's lemma. Journal of Symbolic Logic, 77(4):1272-1280, 2012.
[11] Stephen Flood and Henry Towsner. Separating principles below WKL L_{0}, 2014. Submitted. Available at http: //arxiv.org/abs/1410. 4068.
[12] Harvey M. Friedman. Some systems of second order arithmetic and their use. In Proceedings of the International Congress of Mathematicians, Vancouver, volume 1, pages 235-242, 1974.
[13] Emanuele Frittaion and Ludovic Patey. Coloring the rationals in reverse mathematics. Submitted. Available at http://arxiv.org/abs/1508.00752., 2015.
[14] Denis R. Hirschfeldt. Slicing the truth. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, 28, 2014.
[15] Denis R. Hirschfeldt and Carl G. Jockusch. On notions of computability theoretic reduction between Π_{2}^{1} principles. To appear.
[16] Carl G. Jockusch. Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268-280, 1972.
[17] Manuel Lerman, Reed Solomon, and Henry Towsner. Separating principles below Ramsey's theorem for pairs. Journal of Mathematical Logic, 13(02):1350007, 2013.
[18] Lu Liu. RT_{2}^{2} does not imply WKL_{0}. Journal of Symbolic Logic, 77(2):609-620, 2012.
[19] T.H. McNicholl. The Inclusion Problem for Generalized Frequency Classes. PhD thesis, George Washington University, 1995.
[20] Joseph R. Mileti. Partition theorems and computability theory. PhD thesis, Carnegie Mellon University, 2004.
[21] Antonio Montalbán. Open questions in reverse mathematics. Bulletin of Symbolic Logic, 17(03):431-454, 2011.
[22] Ludovic Patey. A note on "Separating principles below Ramsey's theorem for pairs". Unpublished. Available at http://ludovicpatey.com/media/research/note-em-sts.pdf, 2013.
[23] Ludovic Patey. Iterative forcing and hyperimmunity in reverse mathematics. In Arnold Beckmann, Victor Mitrana, and Mariya Soskova, editors, Evolving Computability, volume 9136 of Lecture Notes in Computer Science, pages 291-301. Springer International Publishing, 2015.
[24] Ludovic Patey. Ramsey-type graph coloring and diagonal non-computability. Archive for Mathematical Logic, 54(7-8):899-914, 2015.
[25] Ludovic Patey. The weakness of being cohesive, thin or free in reverse mathematics. Submitted. Available at http://arxiv.org/abs/1502.03709, 2015.
[26] Ludovic Patey. The reverse mathematics of Ramsey-type theorems. PhD thesis, Université Paris Diderot, 2016.
[27] David Seetapun and Theodore A. Slaman. On the strength of Ramsey's theorem. Notre Dame Journal of Formal Logic, 36(4):570-582, 1995.
[28] Joseph R. Shoenfield. On degrees of unsolvability. Annals of Mathematics, 69(03):644-653, May 1959.
[29] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press, 2009.

