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Model Checking Real-Time Systems

Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey,
Joël Ouaknine, and James Worrell

Abstract This chapter surveys timed automata as a formalism for model
checking real-time systems. We begin with introducing the model, as an
extension of finite-state automata with real-valued variables for measuring
time. We then present the main model-checking results in this framework, and
give a hint about some recent extensions (namely weighted timed automata
and timed games).

1 Introduction

Timed automata were introduced by Rajeev Alur and David Dill in the early
1990s [13] as finite-state automata equipped with real-valued variables for
measuring time between transitions in the automaton. These variables all
evolve at the same rate; they can be reset along some transitions, and used
as guards along other transitions or invariants to be preserved while letting
time elapse in locations of the automaton.
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Fig. 1 A timed automaton

Timed automata have proven
very convenient for modeling
and reasoning about real-time
systems: they combine a pow-
erful formalism with advanced
expressiveness and efficient al-
gorithmic and tool support, and
have become a model of choice in
the framework of verification of
embedded systems. The timed-
automata formalism is now routinely applied to the analysis of real-time
control programs [85,127] and timing analysis of software and asynchronous
circuits [60, 146, 150]. Similarly, numerous real-time communication pro-
tocols have been analysed using timed automata technology, often with
inconsistencies being revealed [95, 144]. During the last few years, timed-
automata-based schedulability and response-time analysis of multitasking
applications running under real-time operating systems have received sub-
stantial research effort [61, 78, 80, 109, 156]. Also, for optimal planning and
scheduling, (priced) timed automata technology has been shown to provide
competitive and complementary performances with respect to classical ap-
proaches [1, 2, 32, 86, 97, 108, 119]. Finally, controller synthesis from timed
games has been applied to a number of industrial case studies [6, 71,110].

The handiness of this formalism is exemplified in Fig. 1, modeling a (sim-
plified) computer mouse: this automaton receives press events, corresponding
to an action of the user on the button of the mouse. When two such events
are close enough (less than 300 milliseconds apart), this is translated into
a double click event.

Because clock variables are real-valued, timed automata are in fact infinite-
state models, where a configuration is given by a location of the automaton
and a valuation of the clocks. Timed automata have two kinds of transitions:
action transitions correspond to firing a transition of the automaton, and
delay transitions correspond to letting time elapse in the current location of
the automaton. Section 2 provides the definitions of this framework. The main
technical ingredient for dealing with this infinity of states is the region ab-
straction, as we explain in Sect. 3. Roughly, two clock valuations are called
region equivalent whenever they satisfy the exact same set of constraints of the
form x−y ./ c, where the difference of two clocks x and y is compared to some
integer c (no greater than some constant M). This abstraction can be used to
develop various algorithms, in particular for deciding bisimilarity (Sect. 4) or
model checking some quantitative extensions of the classical temporal logics
CTL and LTL (Sect. 6). We also show that some problems are undecidable,
most notably language containment (Sect. 5) and model checking the full
quantitative extension of LTL. On the practical side, regions are in some
sense too fine-grained, and another abstraction, called zones, is preferred for
implementation purposes. Roughly, zones provide a way of grouping many
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regions together, which is often relevant in practical situations. We explain in
Sect. 7 how properties of timed automata can be verified in practice.

Finally, we conclude this chapter with two powerful extensions of timed
automata: first, weighted timed automata allow for modeling quantitative
constraints beyond time; since resource (e.g., energy) consumption is usually
tightly bound to time elapsing, timed automata provide a convenient frame-
work for modeling such quantitative aspects of systems. Unlike hybrid systems
(see Chap. 28hybrid), weighted timed automata still enjoy some nice decidabil-
ity properties (in restricted settings though), as we explain in Sect. 8. Then
in Sect. 9 we present timed games, which are very powerful and convenient
for dealing with the controller synthesis problem (see Chap. 25gamesynth) in
a timed framework. Timed games also provide an interesting way of model-
ing uncertainty in real-time systems, assuming worst-case resolution of the
uncertainty while still trying to benefit from non-worst-case situations.

2 Timed Automata

In this chapter, we consider as time domain the set R≥0 of non-negative
reals. While discrete time might look reasonable for representing digital
systems, it assumes synchronous interactions between the systems. We refer
to [17,27,67,102] for more discussions on this point.

Let Σ be a finite set of actions. A time sequence is a finite or infinite
non-decreasing sequence of non-negative reals. A timed word is a finite or
infinite sequence of pairs (a1, t1) . . . (ap, tp) . . . such that ai ∈ Σ for every i,
and (ti)i≥1 is a time sequence. An infinite timed word is converging if its time
sequence is bounded above (or, equivalently, converges).

We consider a finite set C of variables, called clocks. A (clock) valuation
over C is a mapping v : C → R≥0 which assigns to each clock a real value.
The set of all clock valuations over C is denoted RC≥0, and 0C denotes the
valuation assigning 0 to every clock x ∈ C.

Let v ∈ RC≥0 be a valuation and t ∈ R≥0; the valuation v + t is defined by
(v + t)(x) = v(x) + t for every x ∈ C. For a subset r of C, we denote by v[r]
the valuation obtained from v by resetting clocks in r; formally, for every
x ∈ r, v[r](x) = 0 and for every x ∈ C \ r, v[r](x) = v(x).

The set Φ(C) of clock constraints over C is defined by the grammar

Φ(C) 3 ϕ ::= x ./ k | ϕ1 ∧ϕ2 (x ∈ C, k ∈ Z and ./ ∈ {<,≤,=,≥, >}).

We will sometimes make use of diagonal clock constraints, which additionally
allow constraints of the form x − y ./ k. We write Φd(C) for the extension
of Φ(C) with diagonal constraints. If v ∈ RC≥0 is a clock valuation, we write
v |= ϕ when v satisfies the clock constraint ϕ, and we say that v satisfies x ./ k
whenever v(x) ./ k (similarly, v satisfies x − y ./ k when v(x) − v(y) ./ k).



4 Patricia Bouyer et al.

If ϕ is a clock constraint, we write JϕKC for the set of clock valuations
{v ∈ RC≥0 | v |= ϕ}.

Definition 1 ([13]). A timed automaton is a tuple (L, `0, C,Σ, I, E) consist-
ing of a finite set L of locations with initial location `0 ∈ L, a finite set C
of clocks, an invariant1 mapping I : L → Φ(C), a finite alphabet Σ and a

set E ⊆ L × Φ(C) × Σ × 2C × L of edges. We shall write `
ϕ,a,r−−−→ `′ for an

edge (`, ϕ, a, r, `′) ∈ E; formula ϕ is the guard of the transition (and has to
be satisfied when the transition is taken), and r is the set of clocks that are
set to zero after taking that transition.

Later for defining languages accepted by timed automata we may add final
or repeated (Büchi) locations, and for defining logical satisfaction relations
we may add atomic proposition labeling to timed automata. However for
readability reasons we omit them here.

Resource Rj

availablej in usej

(xj ≤ 1)acquire?

xj := 0

xj > 0

release!

Process Pi

idlei

(yi ≤ 2)

attemptingi

(yi ≤ 2)

workingi
start!

yi > 1, yi := 0

acquire!

abort!

yi = 2, yi := 0

release?

yi := 0

Fig. 2 Model of a process that acquires and releases two resources. Here and in the rest of

this chapter, transitions are decorated with their associated guards (e.g., xj > 0), letters

of the alphabet (e.g., release!), and resets (written e.g., as xj := 0); invariants (if any)
are written in brackets below their corresponding locations

Example 1. Figure 2 shows timed automata models for processes and resources.
Processes can use resources, but mutual exclusion is expected. The model
for process Pi is given in the upper part of the figure, whereas the model
for resource Rj is given in the lower part of the figure. Starting in the idle

location, the process should start within one to two time units requesting a

1 The original definition of timed automata [13] did not contain invariants in locations,

but had Büchi conditions to enforce liveness. Invariants were added by [103]. Several other

convenient extensions have been introduced since then, which we discuss in Sect. 3.2.
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resource. After two time units it must abort its request, unless before two
time units it acquires the resource and goes to the working location. The
resource is released when the process is done working with it.

Our model for a resource has two locations, and when the resource is
available, it can be acquired and should be released within one time unit.

The operational semantics of a timed automaton A = (L, `0, C,Σ, I, E) is
the (infinite-state) timed transition system JAK = (S, s0,R≥0 ×Σ,T ) given
as follows:

S =
{

(`, v) ∈ L×RC≥0
∣∣ v |= I(`)

}
s0 = (`0,0C)

T =
{

(`, v)
d,a−−→ (`′, v′)

∣∣ ∀d′ ∈ [0, d] : v + d′ |= I(`),

and ∃` ϕ,a,r−−−→ `′ ∈ E : v + d |= ϕ, and v′ = (v + d)[r]
}

In words, one can jump from one state (`, v) to another one (`′, v′) by
selecting a delay to be elapsed in ` (provided that the invariant of location ` is
fulfilled in the meantime) and an edge of the automaton, which is taken after
the delay, provided that its guard is satisfied at that time. In this semantics, a
transition combines both a delay and (followed by) the application of an edge
of the automaton. A slightly different semantics is sometimes used, which

distinguishes pure-delay transitions (denoted
d−→, for d ∈ R≥0) and pure-action

transitions (denoted
a−→ with a ∈ Σ).

A (finite or infinite) run of a timed automaton A is a (finite or infinite)

path ρ = (`0, v0)
d1,a1−−−→ (`1, v1)

d2,a2−−−→ · · · in the transition system JAK, which

starts with v0 = 0C . Given a run ρ = (`0, v0)
d1,a1−−−→ (`1, v1)

d2,a2−−−→ (`2, v2) . . . ,
we say that it reads the timed word w = (a1, t1)(a2, t2) . . . where for every i,
ti =

∑
j≤i dj . A run is time-divergent if its time sequence (ti)i diverges.

A timed automaton is non-Zeno if any finite run can be extended into a
time-divergent run.

Example 2. The process R1 given in Fig. 2 has a single clock x1, and has as
set of states S = {available1} ×R≥0 ∪ {in use1} × [0, 1] where we identify
valuations (for the single clock x1) with the value of x1. We give below a
possible run for the resource R1:

(available1, 0)
5.4,acquire?−−−−−−−−→ (in use1, 0)

0.8,release!−−−−−−−→ (available1, 0.8)

1.4,acquire?−−−−−−−−→ (in use1, 0)→ . . .

In location in use, the invariant is satisfied in this run because the value
of x1 never exceeds 0.8 (hence satisfies the constraint x1 ≤ 1).

We now define the parallel composition of timed automata, which allows
us to define systems in a compositional way [23, 107]. Let (Ai)1≤i≤n be n
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timed automata, where Ai = (Li, `
i
0, Ci, Σi, Ii, Ei). Assume that all Σi’s are

disjoint, and all Ci’s are disjoint. If Σ is a new alphabet, given a (partial)
synchronization function f :

∏n
i=1(Σi ∪ {−})→ Σ, the synchronized product

(or parallel composition) (A1 ‖ A2 ‖ · · · ‖ An)f is the timed automaton A =
(L, `0, C,Σ, I, E) where L = L1×· · ·×Ln, `0 = (`10, . . . , `

n
0 ), C = C1∪· · ·∪Cn,

I((`1, . . . , `n)) =
∧n
i=1 Ii(`i) for every (`1, . . . , `n) ∈ L1 × · · · × Ln, and the

set E is composed of the transitions (`1, . . . , `n)
ϕ,a,r−−−→ (`′1, . . . , `

′
n) whenever

1. there exists (α1, . . . , αn) ∈
∏n
i=1(Σi ∪ {−}) such that f(α1, . . . , αn) = a;

2. if αi = −, then `′i = `i;

3. if αi 6= −, then there is a transition `i
ϕi,αi,ri−−−−−→ `′i in Ei

4. ϕ =
∧
{ϕi | αi 6= −} and r =

⋃
{ri | αi 6= −}

Example 3. We build on the system given in Fig. 2. The process and the
resources are not expected to run independently, but they are part of a global
system where the process should synchronize with the resources. Hence for
this system we have a natural synchronization function f defined by Table 1.

P1 P2 R1

start! − − → start1
− start! − → start2

abort! − − → abort1
− abort! − → abort2

acquire! − acquire? → acquire1
− acquire! acquire? → acquire2

release? − release! → release1
− release? release! → release2

Table 1 The synchronization function f

The global system (P1 ‖ P2 ‖ R1)f (more precisely the part which is
reachable from the initial state) is depicted in Fig. 3. This automaton is rather
complex, and the component-based definition as (P1 ‖ P2 ‖ R1)f is much
easier to understand. Furthermore this allows addition of other processes and
other resources to the system without any effort.

3 Checking Reachability

In this section we are interested in the most basic problem regarding timed
automata, namely reachability. This problem asks, given a timed automaton A,
whether a distinguished set of locations F of A is reachable or not.
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i1, i2, a1
(
y1≤2
y2≤2

)
a1, i2, a1

(
y1≤2
y2≤2

)

i1, a2, a1
(
y1≤2
y2≤2

)
a1, a2, a1

(
y1≤2
y2≤2

)

w1, i2, u1(x1≤1)

w1, a2, u1(x1≤1)

i1, w2, u1

(x1≤1)

a1, w2, u1

(x1≤1)

y2>1,
start2,
y2:=0

y2=2,
abort2,
y2:=0

y2>1,
start2,
y2:=0

y2=2,
abort2,
y2:=0

y1>1,start1,y1:=0

y1=2,abort1,y1:=0

y1>1,start1,y1:=0

y1=2,abort1,y1:=0

acquire1,
x1:=0

acquire1,
x1:=0

x1≤1,release1,
y1:=0

x1≤1,
release1,y1:=0

x1≤1,
release2,
y2:=0

y2>1,
start2,
y2:=0

acquire2,
x1:=0

acquire2,
x1:=0

x1≤1,
release1,
y1:=0

x1≤1,
release1,
y1:=0

x1≤1,release1,y1:=0

y1>1,start1,y1:=0

Fig. 3 The global system (P1 ‖ P2 ‖ R1)f , where “ij” (resp. “aj”, “wj”) stands for

location “idlej” (resp. “attemptingj”, “workingj”) in Pj , and “a1” (resp. “u1”) stands
for location “available1” (resp. “in use1”) in R1

3.1 Region Equivalence

For the rest of this section we fix a timed automaton A = (L, `0, C,Σ, I, E)
and a set of target locations F . For every clock x ∈ C we let Mx be the
maximal constant clock x is compared to in A.

Two valuations v, v′ : C → R≥0 are said to be region equivalent w.r.t.
maximal constants M = (Mx)x∈C , denoted v ∼=M v′, if 2

• for all x ∈ C, bv(x)c = bv′(x)c or v(x), v′(x) > Mx, and
• for all x ∈ C with v(x) ≤Mx, 〈v(x)〉 = 0 iff 〈v′(x)〉 = 0, and
• for all x, y ∈ C with v(x) ≤ Mx and v(y) ≤ My, 〈v(x)〉 ≤ 〈v(y)〉 iff
〈v′(x)〉 ≤ 〈v′(y)〉.

The equivalence classes of valuations with respect to ∼=M are called regions
(with maximal constants M). The number of regions is finite and is bounded
above by n! ·2n ·

∏
x∈C(2Mx+2). Region equivalence of valuations is extended

to states of A by declaring that (`, v) ∼=M (`′, v′) whenever ` = `′ and v ∼=M v′.
We write [`, v]∼=M

for the equivalence class of (`, v).

2 For d ∈ R≥0 we write bdc and 〈d〉 for the integral and fractional parts of d, i.e., d =

bdc+ 〈d〉.
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Region equivalence enjoys nice properties, the most important of which is
that it is a time-abstracted bisimulation in the following sense:

Definition 2. A relation R on the states of A is a time-abstracted bisimulation

if (`1, v1)R(`2, v2) and (`1, v1)
d1,a−−−→ (`′1, v

′
1) for some d1 ∈ R≥0 and a ∈ Σ

imply (`2, v2)
d2,a−−−→ (`′2, v

′
2) for some d2 ∈ R≥0, with (`′1, v

′
1)R(`′2, v

′
2) and vice

versa.

In other words, from two equivalent states, the automaton can take the
same transitions, except that the values of the delays might have to be changed.
This fundamental property has important consequences, like the construction
of an interesting finite abstraction for A.

Definition 3. The region automaton R∼=M
(A) = (S, s0, Σ, T ) associated

with A has as set of states the quotient S =
(
L × RC≥0

)
/∼=M

, as initial

state s0 = [`0,0C ]∼=M
, and as transitions all the [`, v]∼=M

a−→ [`′, v′]∼=M
for

which (`, v)
d,a−−→ (`′, v′) for some d ∈ R≥0. The target set of R∼=M

(A) is
defined as SF = {[`, v]∼=M

| ` ∈ F}.

y10

x1

1

1 2

Fig. 4 Clock regions for the system (P1 ‖ R1)f1

The region automaton R∼=M
(A) is a finite automaton whose size is expo-

nential compared with the size of A. It can be used to check, e.g., reachability
properties (or equivalently language emptiness):

Proposition 1. The set of locations F is reachable in A from `0 iff SF is
reachable in R∼=M

(A) from s0.

The region automaton has exponentially larger size, but checking a reacha-
bility property can be done on the fly, hence this can be done in polynomial
space. One of the most fundamental theorems in the model checking of timed
automata can be stated as follows.

Theorem 1 ([13]). The reachability problem in timed automata is PSPACE-
complete.
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Example 4. Restricting our running example to process P1 and resource R1

(we assume f1 is the synchronization function f restricted to those two
processes), the global system has two clocks, x1 and y1. The set of regions
is then depicted in Fig. 4. There are 28 regions. The (reachable part of the)
corresponding region automaton is depicted in Fig. 5. In this drawing we
omit indices over names of locations since they should all be 1; also, the thick
“release” transition at the top corresponds to a set of transitions from all the
states on the right to all the states on the left.

idle,available
x = y = 0

idle,available

0 < x < 1, y = 0

idle,available

x = 1, y = 0

idle,available

x > 1, y = 0

attempting,available

x > 1, y = 0

work,in use

x = y = 0

work,in use

x = 0, 0 < y < 1

work,in use

x = 0, y = 1

work,in use
x = 0, 1 < y < 2

work,in use
x = 0, y = 2

start

start

start

sta
rt

ac
qu

ire

acquire

acquire

acquire

acquireabort

release

Fig. 5 Region automaton for (P1 ‖ R1)f1

3.2 Some Extensions of Timed Automata

Timed automata are the most basic model for representing systems with
(quantitative) real-time constraints. It is natural to extend the model with
features that help in modeling real systems. However decidability of the reach-
ability problem remains the fundamental property one wants to preserve. In
this subsection we mention several variants and extensions of timed automata
that have been proposed in the literature.

Timed automata as defined in this chapter are the so-called diagonal-
free timed automata since only constraints of the form x ./ k are used.
Timed automata with diagonal constraints (of the form x − y ./ k) were
also originally defined in the seminal paper [13]. They can be analyzed using
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a slight refinement of the region automaton, but with no extra complexity.
Furthermore, diagonal constraints can be removed from the model, at the
expense of a (possibly exponential) blowup in the number of locations of the
model [40].

Another useful extension of timed automata is obtained by allowing edges
to set clocks to arbitrary positive integers (x := k) instead of only 0, or even to
synchronize clock values (x := y). In [53] it is shown that any such updatable
timed automaton can be converted to a usual one, hence this class is no more
expressive than timed automata. If one also considers other updates however,
like x := x+ 1 or x :> k (which non-deterministically sets x to some value
larger than k), the situation is much more complex [53] and decidability of
reachability is no longer preserved.

One can also extend the timed-automata formalism by allowing richer clock
constraints, such as, e.g., x + y ≤ 5 or 2x − 3y > 1. Most such attempted
extensions however lead to undecidability of the reachability problem, see for
instance [41].

One can extend timed automata with urgency requirements [46]. For in-
stance, some locations might be labelled as urgent, which indicates that no
time can be spent in this location, it has to be left immediately when entered:
an urgent location ` can easily be converted into a usual one by introducing
an extra clock x which is reset in any edge to ` and has invariant x = 0 in `,
hence location-urgency does not add expressiveness to the class of timed
automata. Some synchronization could be also labelled as urgent: in that
case, the corresponding action should be done as soon as it is enabled. In
our modeling of Example 1 the synchronization “acquire!/acquire?” could be
made urgent since it is natural that a process acquires the resource as soon
as it is available.

Another extension of timed automata we should mention is the stopwatch
automata of [100]. Here timed automata are extended by allowing clocks to
be stopped during a delay. Even though reachability is also undecidable for
this extension and it has been shown to have the same expressive power as
hybrid automata [72], stopwatch automata have found some applications,
e.g., in scheduling [3, 141] and permit efficient over-approximate analysis [72].
Further extensions of the dynamics of timed automata lead to rectangular
automata [100] and eventually to general hybrid automata [12,98].

Finally, another interesting direction in which timed automata have been
extended consists in adding parameters. Parameters can be used in lieu of
numerical constants in the timed automaton, with the aim of deciding the
existence of (and computing) values for the parameters for which a given
property holds true. The use of parameters simplifies the modeling phase, but
unfortunately the existence of valid parameters turns out to be undecidable
in general [19]. Several decidable classes have been identified, including one-
clock parametric timed automata [19, 129] and L/U automata, where each
parameter can be used either in lower-bound constraints or in upper-bound
constraints [106].
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4 (Bi)simulation Checking

4.1 (Bi)simulations for Timed Automata

As detailed in Sect. 2, the operational semantics of timed automata is given
in terms of timed transition systems, which in fact can be viewed as standard
labelled transition systems, with labels (d, a) comprising a delay and a letter.
Hence any behavioral equivalence and preorder defined on labelled transition
systems may be interpreted over timed automata. In particular the classical
notions of simulation and bisimulation [130, 138] give rise to the following
notion of timed (bi)simulation:

Definition 4. Let A = (L, `0, C,Σ, I, E) be a timed automaton. A relation
R ⊆ L×RC≥0×L×RC≥0 is a timed simulation provided that for all (`1, v1) R

(`2, v2), for all (`1, v1)
d,a−−→ (`′1, v

′
1) with d ∈ R≥0 and a ∈ Σ, there exists some

(`′2, v
′
2) such that (`′1, v

′
1) R (`′2, v

′
2) and (`2, v2)

d,a−−→ (`′2, v
′
2).

A timed bisimulation is a timed simulation which is also symmetric, and two
states (`1, v1), (`2, v2) ∈ JAK are said to be timed bisimilar, written (`1, v1) ∼
(`2, v2), if there exists a timed bisimulation R for which (`1, v1) R (`2, v2).

Note that ∼ is itself a timed bisimulation on A (indeed the greatest such),
which is easily shown to be an equivalence relation and hence transitive,
reflexive, and symmetric. Also—as usual—timed bisimilarity may be lifted to
an equivalence between two timed automata A and B by relating their initial
states.

A

B

C

y≤1

a

y:=0

y≤1

a

y:=0

X

Y

Z

y≤2

a

y≤2

a

U

V

W

a

y≤2

a

D

E

F

G

y≤2

a

y≤2

a

y>2 a

Fig. 6 Four timed automata A, X, U and D

Consider the four automata A, X, U and D in Fig. 6 (identifying the
automata with the names of their initial locations). Here (U, v) and (D, v)
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are timed bisimilar as any transition (U, v)
d,a−−→ (V, v′) may be matched by

either (D, v)
a−→ (G, v′) or (D, v)

a−→ (E, v′) depending on whether v(y) > 2 or
not after delay d. In fact, it may easily be seen that U and D are the only
locations of Fig. 6 that are timed bisimilar (when coupled with the same
valuation of y). E.g., A and X are not timed bisimilar since the transition

(X, 0)
1.5,a−−−→ (Y, 1.5) cannot be matched by (A, 0) by a transition with exactly

the same duration. Instead A and X are related by the weaker notion of
time-abstracted bisimulation, which does not require equality of the delays
(see Definition 2). It may be seen that A and X are both time-abstracted
simulated by U and D but not time-abstracted bisimilar to U and D. Also,
U and D are time-abstracted bisimilar, which follows from the following easy
fact:

Theorem 2. Any two automata being timed bisimilar are also time-abstracted
bisimilar.

4.2 Checking (Bi)simulations

As we now explain, timed and time-abstracted (bi)similarity are decidable for
timed automata.

Theorem 3. Time-abstracted similarity and bisimilarity are decidable for
timed automata.

For proving this result, one only needs to see that time-abstracted (bi)sim-
ulation in the timed automaton is the same as ordinary (bi)simulation in the
associated region automaton; indeed, any state in JAK is untimed bisimilar to
its image in JAK∼=. The result follows by finiteness of the region automaton.

For timed bisimilarity, decidability—as we shall see in Sect. 9—is obtained
by playing a game on a product construction, yielding an exponential-time
algorithm for checking timed bisimilarity.

Theorem 4 ([73]). Timed similarity and bisimilarity are decidable for timed
automata.

5 Language-Theoretic Properties

5.1 Language of a Timed Automaton

This section introduces the notion of (timed) language associated with timed
automata, and focusses on basic decision problems such as language emptiness
and inclusion, as well as standard Boolean operations on languages.
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Properties of languages associated with various computational models are a
classical object of study in computer science; moreover, many model-checking,
refinement, and verification problems can often be stated in terms of languages,
notably by translating them into language emptiness or language inclusion
problems.

In this section we consider timed automata augmented with sets of accepting
locations. Given a timed automaton A = (L, `0, C,Σ, I, E, F ), where F ⊆ L
is the set of accepting locations, a finite run

ρ = (`0, v0)
d1,a1−→ (`1, v1)

d2,a2−→ . . .
dn,an−→ (`n, vn)

of A is accepting if `n ∈ F . The language L(A) of A consists of all finite timed
words over alphabet Σ∗ generated by accepting runs of A.

The language of infinite words accepted by a timed automaton is defined
analogously; the relevant acceptance condition is that the underlying infinite
run visits locations in F infinitely often. We write Lω(A) to denote the set of
infinite timed words accepted by A.

5.2 Timed Automata with ε-Transitions

Silent transitions are transitions of the form (q, g, ε, r, q′), where ε is the empty
word. In other terms, they are transitions carrying no letter. Silent transitions
offer a convenient way of modeling, e.g., internal actions. In the setting of
finite-state automata, it is well known that such transitions can be removed,
by merging them with the possible subsequent actions.

x = 2
ε

x := 0

x = 0
Σ

Fig. 7 A timed automaton with ε-

transitions

The question whether the above re-
sult extends to the timed setting was
settled in [42], with a negative answer:
to see this, simply consider the automa-
ton in Fig. 7; its language L(A) con-
tains precisely those timed words in
which all timestamps are even integer
numbers. Towards a contradiction, as-
sume that there exists a timed automa-
ton B, without ε-transitions, such that
L(A) = L(B); write m for the maximal integer constant appearing in the
timing constraints of B. Then the one-letter word (σ, 2m) is accepted by B,
since it is accepted by A. Since B has no silent transition, it must have a
σ-transition from an initial state to an accepting one. The guard on this
transition can only involve constants less than or equal to m, so that B must
accept (σ, k) for all k > m, which is a contradiction.

Theorem 5 ([42]). Silent transitions strictly increase the expressive power
of timed automata.
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It can be proved that in the case when ε-transitions do not reset any clock,
they do not add expressiveness. Finally, let us mention that the question
whether a timed automaton with silent transitions is equivalent (i.e., accepts
the same language) to some timed automaton without such transitions is
undecidable [56].

In the sequel, we consider timed automata without ε-transitions.

5.3 Clock Constraints as Acceptance Conditions

Clock constraints can be used to enable or disable certain conditions along the
runs of a timed automaton. As such, they can be used to define acceptance
conditions, when added on top of a finite-state automaton.

In this setting, we consider the untimed language of timed automata: given
a timed automaton A, its untimed language (of infinite words) is the set Lu
containing exactly those words (ai)i∈N for which there is a diverging real-
valued sequence (di)i∈N such that the timed word (ai, di)i∈N ∈ Lω(A). Notice
that thanks to the time-abstracted bisimulation between a timed automaton
and its region automaton, the untimed language of a timed automaton is
easily seen to be ω-regular.

c

x = y ∧ f < 1; a

x = y ∧ f < 1; b

x = y ∧ f = 1; a

y := 0

x = y ∧ f = 1; b

x := 0

x > y ∧ f > 1; a

y > x ∧ f > 1; b

Fig. 8 Automaton accepting words with finitely many a’s or finitely many b’s

Conversely, any ω-regular language is the untimed language of a timed
automaton: as an example, consider the language of infinite words over {a, b, c}
that have finitely many a’s or finitely many b’s. The untimed language of the
automaton depicted in Fig. 8 precisely corresponds to that language: indeed,
the a- and b-transitions on the left can only be taken finitely many times,
since we require time divergence. Hence one of the a- and the b-transitions
at the bottom has to be taken. But after this time, only the corresponding
transition on the right is allowed (together with the c-transition, which is
always allowed). This construction can be generalized, so that:

Theorem 6 ([101]). Given an ω-regular language L, there exists a (one-
location) timed automaton A such that Lu(A) = L.
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The number of clocks and locations can be shown to define strict hierarchies
of (untimed) ω-regular languages.

More generally, given a finite-state automaton A and an ω-regular lan-
guage L, one can equip A with clocks and clock constraints in such a way that
the untimed language of the resulting timed automaton is the intersection of
the language of A with L [101].

5.4 Intersection, Union, and Complement

A (finite or infinite) language is said to be timed regular if it is accepted by
some timed automaton. Timed regular languages (both finite and infinite) are
effectively closed under intersection and union. They are however not closed
under complement. We reproduce in Fig. 9 an example (taken from [13]) of
a timed automaton A, equipped with a single clock, that cannot be comple-
mented: there does not exist a timed automaton A′ such that Lω(A′) is the
set of all timed words not accepted by A. The complement of Lω(A) contains

A :

a a a

a

x := 0

a

x = 1

Fig. 9 A non-complementable timed automaton

all timed traces in which no pair of a’s is separated by exactly one time unit.
Intuitively, since there is no bound on the number of a’s that can occur in any
unit-duration time interval, any timed automaton capturing the complement
of Lω(A) would require an unbounded number of clocks to keep track of the
times of all the a’s within the past one time unit. A formal proof that A
cannot be complemented is given in [105].

Under some restrictions, timed automata can be made determinizable
(hence also complementable). Most notably, event-clock automata [16] enjoy
this property. In such timed automata, each letter a of the alphabet is
associated with two clocks xa and ya (and any clock is associated with some
letter that way): clock xa (called the event-recording clock of a) is used to
measure the delay elapsed since the last reset of event a (and is initially set
to some special value +∞), while ya (the event-predicting clock of a) is used
to constrain the delay until the next occurrence of a. One can easily show
that event-clock automata can be represented as classical timed automata,
though several clocks might be needed to encode each event-recording clock.
Figure 10 displays an example of an event-clock automaton accepting those
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timed words containing two consecutive a’s separated by exactly one time
unit.

B :

a a

a

xa = 1

Fig. 10 An event-clock automaton

It must be remarked that, at any time during a run of an event-clock
automaton on some timed word w, the valuation of the clocks does not
depend on the run, but only on w. As a consequence, the classical subset
construction for determinising finite-state automata can be adapted to handle
event-clock automata, which thus form an (effectively) determinizable and
complementable class of timed automata.

5.5 Language Emptiness, Inclusion

It follows immediately from Theorem 1 that the language-emptiness problem
for timed automata is PSPACE-complete [13]. Unfortunately the language-
universality, language-inclusion and language-equivalence problems for timed
automata are all undecidable. By contrast, recall from Theorem 4 that the
related branching-time counterparts to language inclusion and equivalence,
namely similarity and bisimilarity, are both decidable on timed automata.

Theorem 7 ([13]). The language-inclusion problem for timed automata is
undecidable, both over finite and infinite words.

The proof of Theorem 7 is by reduction from the Halting Problem for Turing
machines. This reduction involves encoding the valid halting computations
of a given Turing machine M as a timed language whose complement is
recognized by a timed automaton AM which can be effectively computed
from M . Intuitively, discrete computation steps of M are simulated over
unit-duration time intervals, with timed events used to encode the tape’s
contents. The integrity of the tape in a valid encoding of a computation is
maintained by requiring that any given timed event be preceded and followed
at a distance of exactly one time unit by the same timed event, and vice-versa
(unless the corresponding character is to be modified by M in the computation
step). Figure 11 illustrates this encoding. Note that the density of time enables
one to accommodate arbitrarily large tape contents. The key idea is that
while no timed automaton can in general accurately capture the encodings of
valid computations of a Turing machine, AM can be engineered to recognise
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n−1 n n+1 n+2

tape’s content

position of

tape head

1 time unit 1 time unit

Fig. 11 Encoding computations of Turing machines as timed words

precisely all the invalid computations of M ; indeed, a computation is invalid if
it fails one of finitely many rules, the most interesting of which is to adequately
preserve the tape’s contents. The latter is easily detected, either by a timed
automaton witnessing a timed event with no predecessor one time unit earlier
(corresponding to an insertion error on the tape), or conversely by a timed
automaton witnessing a timed event with no successor one time unit later
(corresponding to a deletion error on the tape). Other rule failures can likewise
be detected by small timed automata. Automaton AM is obtained as the
disjunction of those finitely many timed automata. The upshot is that M fails
to have a valid halting computation iff AM accepts every single timed trace.
This shows that universality, and a fortiori language inclusion, are indeed
undecidable for timed automata.

Theorem 7 places a serious limitation on the algorithmic analysis of timed
automata since many verification questions naturally reduce to checking
language inclusion. In spite of this hindrance there has been a great deal of
research on various aspects of timed language inclusion, including [16,102,134]
among many others. Here we describe several approaches, involving syntactic
and semantic restrictions on timed automata, to obtaining positive decidability
results for language inclusion.

Let us first notice that the classical approach to deciding language inclusion
is by testing emptiness of the intersection of the first language with the
complement of the second one. Thus whether Lω(A) ⊆ Lω(B) is decidable as
soon as B can be complemented. For instance:

Theorem 8 ([15]). Given timed automata A and B, the language-inclusion
problem Lω(A) ⊆ Lω(B) is decidable if B is an event-clock automaton.

Using more elaborate techniques (based on well-quasi-orderings and Hig-
man’s Lemma), we can prove:

Theorem 9 ([124, 134, 135]). Given timed automata A and B, the finite-
word language-inclusion problem L(A) ⊆ L(B) is decidable and non-primitive
recursive provided B has at most one clock.

In the case of infinite words, the language-inclusion problem Lω(A) ⊆ Lω(B)
is undecidable even when B has only one clock. The proof of undecidability
is by reduction from the boundedness problem for lossy channel machines [4].
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A natural semantic restriction on timed automata to recover decidability
of language inclusion involves adopting a discrete-time model. Given a timed
language L, let Z(L) denote the set of timed words (a1, t1) . . . (ap, tp) such that
each timestamp ti lies in Z. Given timed automata A and B, the discrete-time
language-inclusion problem is to decide whether Z(L(A)) ⊆ Z(L(B)). This
problem is EXPSPACE-complete: the exponential blow-up over the complexity
of the language-inclusion problem for classical non-deterministic finite au-
tomata arises from the succinct binary representation of clock values in timed
automata. Hardness in EXPSPACE is proven in [28].

Using a technique called digitization [102] the discrete behaviors of timed
automata can be used to infer conclusions about their dense-time behavior.
For example:

Theorem 10 ([102]). Let A be a closed timed automaton (i.e., having only
non-strict inequalities as clock constraints) and B an open timed automaton
(i.e., having only strict inequalities). Then L(A) ⊆ L(B) if and only if
Z(L(A)) ⊆ Z(L(B)).

To apply Theorem 10 one can imagine over-approximating a real-time model
by a closed timed automaton and under-approximating a specification by an
open timed automaton.

Rather than restricting the precision of the semantics we can instead
consider a time-bounded semantics in which we consider only finite timed
words of total duration at most N . Note that due to the density of time there
is no bound on the number of events that can be performed in a fixed time
period. In this case, for the whole class of timed automata, we have:

Theorem 11 ([133]). Over bounded time (i.e., considering only finite timed
words of total duration at most N , for some fixed time bound N), the language-
inclusion problem is 2-EXPSPACE-complete.

Theorem 11 was proven as a corollary of the decidability of satisfiability of
monadic second-order logic over structures of the form (I,<,+1), with I a
bounded interval of reals and +1 denoting the plus-one relation: +1(x, y) iff
y = x+ 1.

Notwithstanding the positive decidability results Theorem 9 and Theo-
rem 11, neither one-clock timed automata nor automata over bounded time
are closed under complement. (The counterexample in Sect. 5.4 can still be
used in both cases.) To remedy this deficiency, the strictly more powerful
model of alternating timed automata has been introduced [124, 135]. Alter-
nating timed automata are a common generalization of timed automata and
alternating finite automata; they are closed under all Boolean operations, but
language inclusion remains decidable for alternating timed automata with
one clock or over bounded time. Unlike in the untimed setting, alternating
timed automata are strictly more expressive than purely non-deterministic
timed automata. This extra expressiveness is crucially utilised in [135] where
it is shown how to translate formulas of Metric Temporal Logic (see Sect. 6)
into equivalent one-clock alternating timed automata.
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6 Timed Temporal Logics

The whole theory of temporal-logic model checking has been extended to the
setting of timed automata, in order to express and check richer properties
beyond emptiness/reachability. We present the most significant results below.

6.1 Linear-Time Temporal Logics

The most natural way of extending LTL (see Chap. 2temp) with quantitative
requirements is by decorating modalities with timing constraints. We present
the resulting logic, called Metric Temporal Logic (MTL), below. Another
extension consists in using clocks in formulas, with a way of resetting them
when some property is fulfilled and checking their values at a later moment. The
resulting logic is called Timed Propositional Temporal Logic (TPTL). Due to
lack of space, we don’t detail the latter logic, and rather refer to [17,18,52]
for more details about TPTL.

Given a set P of atomic propositions, the formulas of MTL are built
from P using Boolean connectives and time-constrained versions of the until
operator U as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ ,

where I ⊆ (0,∞) is an interval of reals with endpoints in N ∪ {∞}. We some-
times abbreviate U(0,∞) to U , calling this the unconstrained until operator.

Further connectives can be defined following standard conventions. In ad-
dition to propositions > (true) and ⊥ (false) and disjunction ∨, we have the
constrained eventually operator ♦Iϕ ≡ >UI ϕ, and the constrained always
operator �I ϕ ≡ ¬♦I ¬ϕ.

Sometimes MTL is presented with past connectives (e.g., constrained ver-
sions of the “since” connective from LTL) as well as future connectives [17].
However we do not consider past connectives in this chapter.

Next we describe two commonly adopted semantics for MTL.

Continuous Semantics.

Given a set of propositions P , a signal is a function f : R≥0 → 2P mapping
t ∈ R≥0 to the set f(t) of propositions holding at time t. We say that f has
finite variability if its set of discontinuities has no accumulation points (in other
words, on any finite interval the value of f can only change a finite number of
times). In this chapter, we require that all signals be finitely variable. Given
an MTL formula ϕ over the set of propositional variables P , the satisfaction
relation f |= ϕ is defined inductively, with the classical rules for atomic



20 Patricia Bouyer et al.

propositions and Boolean operators, and with the following rule for the “until”
modality, where f t denotes the signal f t(s) = f(t+ s):

f |= ϕ1 UI ϕ2 iff for some t ∈ I, f t |= ϕ2 and fu |= ϕ1 for all u ∈ (0, t).

Pointwise Semantics.

In the pointwise semantics MTL formulas are interpreted over timed words.
Given a (finite or infinite) timed word w = (a1, t1), . . . , (an, tn) over alphabet
2P and an MTL formula ϕ, the satisfaction relation w, i |= ϕ (read “w satisfies
ϕ at position i”) is defined inductively, with the classical rules for Boolean
operators, and with the following rule for the “until” modality:

w, i |= ϕ1 UI ϕ2 iff there exists j such that i < j < |w|, w, j |= ϕ2,
tj − ti ∈ I, and w, k |= ϕ1 for all k with i < k < j.

The pointwise semantics is less natural if one thinks of temporal logics
as encoding fragments of monadic logic over the reals. On the other hand it
seems more suitable when considering MTL formulas as specifications on timed
automata. In this vein, when adopting the pointwise semantics it is natural
to think of atomic propositions in MTL as referring to events (corresponding
to location changes) rather than to locations themselves.

Consider our example of Fig. 2. Using LTL, we can express the property
that Process Pi will try to get the resource infinitely many times, by writing
�♦ start!. With MTL, we can be more precise and write �♦≤4 start!,
stating that whatever the current state, within four time units Process P1

will start trying to acquire the resource. MTL can also be used to express
bounded-time response properties, such as � (start!⇒ ♦≤10 acquire!).

6.2 Verification of Linear-Time Temporal Logics

Model checking timed automata can be carried out under either pointwise or
continuous semantics. For the latter, it is necessary to alter our definitions
to associate a language of signals with a timed automaton rather than a
language of timed words. In turn, this requires a notion of timed automata in
which locations are labelled by atomic propositions. A full development of
this semantics can be found, e.g., in [14].

Theorem 12 ([13]). Model checking and satisfiability for LTL, over both the
pointwise and continuous semantics, are PSPACE-complete.

The PSPACE upper bound in Theorem 12 can be established in the same
manner as in the untimed case, by translating the negated formula to a Büchi
automaton, and performing an on-the-fly reachability check on the product of
this automaton with the region graph of the model.
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Theorem 13 ([135–137]). Model checking and satisfiability for MTL in the
pointwise semantics over finite words are decidable but non-primitive recursive.
Over infinite words, both problems are undecidable.

As explained in Sect. 5.5, the decidability results are essentially obtained
by translating MTL formulas into one-clock alternating timed automata,
and rephrasing the model-checking or satisfiability problems as instances of
language emptiness in one-clock alternating timed automata.

The undecidability result proceeds by reduction from the recurrent reacha-
bility problem for channel machines with insertion errors: the infinite runs
of such a machine can be encoded as timed words, which in turn are easily
characterized by an MTL formula [136].

Theorem 14 ([14]). Model checking and satisfiability for MTL in the con-
tinuous semantics (over both finite and infinite signals) are undecidable.

The extra expressiveness of the continuous semantics enables a more direct
proof of undecidability than in Theorem 13. In this case, one can directly
encode the computations of a Turing machine as timed signals, which again
can be captured by an MTL formula, following a scheme similar to that of
Theorem 7.

A key ingredient of the undecidability proof of Theorem 14, as well as the
non-primitive recursive complexity in Theorem 13, is the ability of MTL to
express punctuality, i.e., the requirement that two events be separated by an
exact duration. A fragment of MTL that syntactically disallows punctuality,
known as Metric Interval Temporal Logic (MITL), was proposed by Alur et al.
in [14]. In MITL, one requires that all instances of the interval I appearing in
uses of the constrained until operator UI be non-singular. The main result
of [14] is as follows:

Theorem 15 ([14]). For both the pointwise and continuous semantics, model
checking and satisfiability for MITL are EXPSPACE-complete, over both finite
and infinite behaviors.

This theorem was obtained by translating MITL formulas into equivalent
timed automata of potentially exponential size. In contrast, it is easy to
write an MTL formula that has no equivalent timed automaton: for example,
the formula ¬♦ (a ∧ ♦=1 a) captures the complement of the language of
automaton A in Fig. 9.

Another decidable fragment of MTL can be obtained by adapting the idea
of event clocks to temporal logics [140]: here, timing constraints can only refer
to the next (or previous) occurrence of an event. Hence ECTL (standing for
Event-Clock Temporal Logic) extends LTL with .Iϕ and /Iϕ. For instance,
that there are two consecutive a’s separated by one time unit is written in
ECTL as ♦ (a ∧ .=1a).

Theorem 16 ([140]). Satisfiability and model checking are PSPACE-complete
for ECTL, in either the pointwise or continuous semantics.
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Not surprisingly, deciding ECTL is achieved by a translation to event-clock
automata (see Sect. 5.4). However, event-clock automata are not powerful
enough to precisely capture ECTL, and require the use of timed Hintikka
sequences. Intuitively, given a formula ϕ in ECTL, a timed Hintikka sequence
is a timed word on sets of subformulas of ϕ, required to satisfy local consistency
conditions. Compare to a timed word, a timed Hintikka sequence contains
more information about the truth value of the subformulas of ϕ, which will
help the event-clock automaton decide whether the underlying timed word is
to be accepted. We refer to [140] for more details, and to [104] for an extension
of event-clock automata that encompasses ECTL.

Rather than imposing syntactical restrictions, an alternative approach to
recovering decidability is to consider a time-bounded semantics, i.e., in which
either timed words or signals are observed over a fixed, bounded time interval:

Theorem 17 ([133]). Model checking and satisfiability for MTL over bounded
time, in either the pointwise or continuous semantics, are EXPSPACE-
complete.

The main technique used in the proof of Theorem 17 is an exponential trans-
formation from MTL formulas, given a fixed time bound, into equisatisfiable
LTL formulas.

6.3 Branching-Time Temporal Logics

Given a set P of atomic propositions, TCTL∗ formulas are state-formulas
obtained as formulas ϕs from the following grammar:

ϕs ::= p | ¬ϕs | ϕs ∧ ϕs | Eϕp | Aϕp

ϕp ::= ϕs | ¬ϕp | ϕp ∧ ϕp | ϕp UI ϕp

Compared to CTL∗, TCTL∗ has a time-constrained until, requiring as for MTL
that the right-hand side formula should be fulfilled within that time. The
same shorthands as for MTL can be defined, such as ♦Iϕ or �Iϕ.

As for the linear-time temporal logics, the semantics of TCTL∗ comes in
(at least) two flavours: continuous and pointwise. The continuous semantics is
defined on dense trees, which naturally extend classical discrete trees to the
continuous setting [7, 89] and represent the set of signals of timed automata;
this semantics extends the continuous-time semantics of MTL with path
quantifiers.

The pointwise semantics is defined over discrete (but infinite-branching)
trees, which can be used to represent the timed words generated by timed
automata. This corresponds to evaluating TCTL∗ formulas over the operational
semantics of timed automata, as defined in Sect. 2.
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Finally, as for the untimed case, the fragment of TCTL∗ where each temporal
modality is under the immediate scope of a path quantifier is of particular
interest, and will be called TCTL.

Before turning to the algorithmic part, let us show how TCTL can be used
to express desirable properties of the timed system modeled in Fig. 2. Mutual
exclusion (in a setting with two processes P1 and P2 and one resource R1)
is expressed as ¬ E♦ (working1 ∧ working2): two processes will never be
working (i.e., using the resource) at the same time. We can also express
timing requirements, such as the fact that Process Pi will never be working
continuously for more than one time unit: A� ( A♦≤1 ¬workingi).

6.4 Verification of Branching-Time Temporal Logics

Since TCTL∗ embeds MTL, there is no hope that its model checking and
satisfiability will be decidable. On the lower side, CTL model checking is
clearly decidable over timed automata: CTL is invariant under bisimulation,
so that any property to be checked on a timed automaton can equivalently
be checked on its corresponding finite-state region automaton.

Concerning TCTL, model checking can be shown to be decidable. Actually,
this can easily be shown on the explicit-clock version of TCTL (using formula
clocks), which strictly subsumes TCTL. For this logic, the important property
is that any two region-equivalent states satisfy the same formulas: this can be
proven by induction on the structure of the formula. Consider for instance
the formula ζ = EϕUI ψ, assuming that ϕ and ψ are compatible with region
(i.e., if they hold true in some state, then they also hold true in any region-
equivalent state). Given a timed automaton A, consider the automaton At
obtained by adding an extra clock t to A, which does not modify its behavior.
Then if (`, v) |= ζ in A, then (`, vt) |= EϕU (ψ ∧ t ∈ I) where vt extends v
by mapping clock t to zero and “t ∈ I” (which is not a TCTL formula but
whose meaning is rather clear) is also compatible with regions. In the end,
the set of states in At where formula EϕU (ψ ∧ t ∈ I) is a union of regions,
so that it is also the case for the set of states of A where ζ holds.

Using this result, TCTL model checking can be achieved by labeling states
of the region automaton with the subformulas they satisfy. This applies for
both semantics, with slight differences. It should be noticed that this extends
to the explicit-clock version of TCTL, and even to the fragment of explicit-clock
TCTL∗ where formula-clocks are only reset at the level of path quantifiers [66].

While labeling the region automaton requires exponential space, the al-
gorithm can be implemented in a space-efficient manner so as to only use
polynomial space. Reachability being already PSPACE-hard, we get the fol-
lowing theorem:

Theorem 18 ([9]). TCTL model checking is PSPACE-complete.
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TCTL (as well as CTL) suffers from not being able to express useful prop-
erties, in particular fairness (see Chap. 2temp on temporal logics). One
way to solve this problem is by decorating path quantifiers with fairness
requirements [7,152]. One can then apply classical algorithms for CTL with
fairness [75] or adapt fixpoint characterizations. Another approach is to con-
sider TCTL defined with formula clocks as sketched above, and to have it
include CTL∗. The resulting logic is very expressive while still enjoying a
PSPACE model-checking algorithm [66].

These positive results about model checking do not extend to satisfiability:

Theorem 19 ([9]). TCTL satisfiability is undecidable.

The proof follows the same ideas as for undecidability of MTL satisfiability,
by associating universal path-quantifiers with each temporal modality. As for
the linear-time case, it suffices to ban equality constraints to recover decid-
ability [117,118]. This can be proved by lifting tree-automata techniques to
the timed setting.

7 Symbolic Algorithms, Data Structures, Tools

7.1 Zones and Operations

As shown in the previous sections, the regions introduced in Sect. 3 provide a
finite and elegant abstraction of the infinite state space of timed automata,
enabling us to prove decidability of a wide range of problems, including
(timed and untimed) bisimilarity, untimed language equivalence and language
emptiness, as well as TCTL model checking.

Unfortunately, the number of states obtained from the region partitioning
is extremely large. Indeed, it is exponential in the number of clocks as well as
in (the binary representation of) the maximal constants of the timed automa-
ton [13]. Efforts have been made to develop more efficient representations of
the state space [34,39,103,121], using the notion of zones introduced below
as a coarser and more compact representation of the state space.

For a finite set C of clocks, a subset Z ⊆ RC≥0 is called a zone if there
exists ϕ ∈ Φd(C) for which Z = JϕKC . For reachability analysis, we need the
following operations on zones: for a zone Z ⊆ RC≥0 and r ⊆ C, let us denote

• the delay of Z by Z↑ = {v + d | v ∈ Z, d ∈ R≥0} and
• the reset of Z under r by Z[r] = {v[r] | v ∈ Z}.

Lemma 1 ([103, 157]). Let Z, Z ′ be zones over C and r ⊆ C. Then Z↑,
Z[r], and Z ∩ Z ′ are also zones over C.
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Definition 5. The zone automaton associated with a timed automaton A =
(L, `0, C,Σ, I, E) is the transition system JAKZ = (S, s0, Σ ∪ {δ}, T ) given as
follows:

S =
{

(`, Z)
∣∣ ` ∈ L,Z ⊆ RC≥0 is a zone

}
s0 =

(
`0, Jv0K

)
T =

{
(`, Z)

δ
 
(
`, Z↑ ∩ JI(`)KC

)}
∪
{

(`, Z)
a
 
(
`′, (Z ∩ JϕKC)[r] ∩ JI(`′)KC

) ∣∣ ` ϕ,a,r−−−→ `′ ∈ E
}

Analogously to Prop. 1, we have:

Proposition 2 ([157]). A location ` in a timed automaton A = (L, `0, F, C,
Σ, I, E) is reachable if and only if there is a zone Z ⊆ RC≥0 for which (`, Z)
is reachable in JAKZ .

A priori, however, the zone automaton defined above is infinite, hence
another, finite, abstraction is needed. This is provided by normalization using
region equivalence ∼=M : for a maximal constant M , the normalization of a zone
Z ⊆ RC≥0 is the set {v : C → R≥0 | ∃v′ ∈ Z : v ∼=M v′}. The normalization of
a zone is not in general a zone, hence in practice other normalization operators
are used (see Sect. 7.3).

The normalized zone automaton is defined analogously to the zone automa-
ton defined above, and in case the timed automaton to be verified does not
contain diagonal clock constraints of the form x−y ./ k, Prop. 2 also holds for
the normalized zone automaton. Hence we can obtain a reachability algorithm
by applying any search strategy (depth-first, breadth-first, or another) on the
normalized zone automaton.

For timed automata that contain diagonal clock constraints x − y ./ k,
however, it can be shown [38, 48] that normalization as defined above does
not give rise to a sound and complete characterization of forward reachability.
Instead, one can apply a refined normalization which depends on the difference
constraints used in the timed automaton, see [38].

7.2 Symbolic Datastructures

A zone, given by a conjunction of elementary clock constraints, may be
represented using a directed weighted graph, where the nodes correspond to

the clocks in C together with an extra “zero” clock x0, and an edge xi
k−→ xj

corresponds to a constraint xi − xj ≤ k (if there is more than one upper
bound on xi− xj , k is the minimum of all these constraints’ right-hand sides).
The extra clock x0 is fixed at value 0, so that a constraint xi ≤ k can be
represented as xi − x0 ≤ k. Lower bounds on xi − xj are represented as
(possibly negative) upper bounds on xj − xi, and strict bounds xi − xj < k
are represented by adding a flag to the corresponding edge.
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The weighted graph in turn may be represented by its adjacency matrix,
which in this context is known as a difference-bound matrix or DBM. The above
technique was introduced in [87] (the main ideas were already present in [43]).
Figure 12 gives an illustration of an extended clock constraint together with
its representation as a difference-bound matrix. Note that the clock constraint
contains superfluous information.

Z =



x1 ≤ 3

x1 − x2 ≤ 10

x1 − x2 ≥ 4

x1 − x3 ≤ 2

x3 − x2 ≤ 2

x3 ≥ −5 x0 x3

x2x1

5

2

−4

10

2
3

Fig. 12 Graph representation of extended clock constraint

On zones represented using DBMs, efficient (in time cubic in the number
of clocks in C) algorithms are available for computing delays, resets and
intersections. For reachability checking, other necessary operations inclusion
checking whether Z ⊆ Z ′, and emptiness checking, Z = ∅; these can also be
computed efficiently using DBMs.

For these computations, a canonical representation obtained as the shortest-
path closure of the DBM graph is used. Another useful canonical form is the
shortest-path reduction described in [120]. Whereas the shortest-path closure
form gives all derived constraints, the shortest-path reduced form provides a
memory-efficient representation, containing only a minimal set of constraints.
Figure 13 shows the two canonical forms of the DBM of Fig. 12. Given the
shortest-path closure of the DBM graph, the shortest-path reduced form is
obtained by partitioning the set of clocks according to zero cycles in the DBM
graph; in the DBM of Fig. 13, {x1, x2, x3} constitutes one such class, and
{x0} is another one. The reduced form is now obtained by maintaining a
minimal set of constraints for each class, essentially a simple cycle of the
clocks of the class, and only keeping constraints between representatives of
different classes, here x1 and x0.

To combat state-space explosion in zone graphs, several optimizations are
used. One such approach is to detect whether a state (`, Z) reached through
the algorithm is contained in another state (`, Z ′) which has already been
explored. In this case, exploration of (`, Z) will be unnecessary.

Another such optimization is to work with unions of zones. If states (`, Z)
and (`, Z ′) are found to reachable during the analysis, then we know that
altogether the state (`, Z ∪ Z ′) is reachable. Unfortunately, unions of zones
are not generally themselves zones, so cannot be efficiently represented using
DBMs.
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Shortest-path closure
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Fig. 13 Canonical representations

For representing unions of zones, or federations as they are called in this
context, a data structure inspired by decision diagrams called clock difference
diagrams or CDDs is used [121]. However, no efficient algorithms are known to
compute delays or resets of federations using CDDs, so in practice reachability
analysis using CDDs is done by extracting the zones from the CDD and
performing the operations on them one by one.

Other promising data structures in this context are numerical decision dia-
grams [24], difference decision diagrams [132], clock-restriction diagrams [154],
max-plus polyhedra [5], constraint matrix diagrams [88], and time-darts [111];
generally, the design of efficient data structures for symbolic exploration of
timed automata is a field of active research.

7.3 Practical Efficiency

Symbolic, zone-based exploration of the (reachable) state-space of timed
automata using the DBM data structure is key to their analysis. However, a
number of additional algorithmic techniques have been developed for gaining
efficiency in practice. In the following we indicate a number of these.

As described in Sect. 7.1, normalization of zones with respect to the maxi-
mum constant M appearing in the given timed automata ensures finiteness of
the zone graph and hence termination of algorithms searching the zone graph.
Here, a practical problem is that the normalization of a zone is in general not
a zone itself, but rather a finite union of such. However, given a representation
of the zone as a shortest-path-closed DBM, a syntactic extrapolation operation
that removes bounds that are larger than the maximum constant may be easily
performed: any upper bound constraint of the form xi− xj < k where k > M
is removed, and any lower bound of the form xi − xj > k where k < −M
is replaced by xi − xj > −M . Clearly, under extrapolation, only a finite
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number of DBMs will be encountered, ensuring termination. Furthermore,
the correctness is based on the fact that extrapolation of a zone (based on its
DBM representation) is included in its normalization, as shown in [29,48].

Coarser, yet complete, notions of extrapolation have been obtained by
performing the operation with respect to clock- and location-dependent maxi-
mum constants [29] and further differentiating the maximum constant used
in upper or lower bound comparisons [30,31]. In fact, this last extrapolation
yields performance comparable to that of the overapproximate convex hull
abstraction [81].

Several of the algorithmic problems presented in this chapter—e.g., reacha-
bility, model checking, and equivalence checking, as well as notions of optimal
reachability and controllability, which will be described in later sections—
have a fixed-point characterization. Though easy to implement, this leads to
backwards iterative algorithms, requiring one to consider and classify states
which are possibly not even reachable. Thus, for most problems, so-called
on-the-fly algorithms have been devised, where the satisfaction of the given
property by the initial state is attempted to be concluded in as local a fashion
as possible, only exploring the state space when needed. For the analysis of
timed-automata-based models, such on-the-fly algorithms have been proposed
for instance for reachability [120, 157], liveness checking [147, 151], model
checking with respect to TCTL [47], time-abstract bisimulation checking [149],
and controller synthesis for timed game automata [69].

Despite the above efforts in applying aggressive (yet complete) abstractions,
the analysis of timed-automata-based models suffers from the state-space
explosion problem. Thus, complementary techniques have been proposed and
implemented for reducing space consumption at the expense of time perfor-
mance [35, 120]. Also, various AI-inspired techniques have been developed
for efficient guidance of the symbolic exploration of timed automata towards
specified error states [114–116]. Similarly, the technique of symmetry reduction
has been developed and implemented for networks of timed automata with
several symmetric components, potentially yielding an exponential gain in per-
formance [96]. Moreover, so-called time-convexity analysis provides significant
performance improvement [153].

Finally, several attempts have been made to extend the technique of partial-
order reduction to networks of timed automata. In contrast to the proved
effect in the finite-state setting, early attempts [37, 131] did not show any
improvement in performance compared with regular symbolic exploration.
In fact, being a strong synchronizer in a timed-automata network, time
reduces the number of independent transitions, which are key for partial-order
reduction to have effect. In later work [36,125,126], it was found that the union
of all zones reached by different interleavings of the same set of transitions is
convex, providing the basis of substantial improvement.

Also, bounded model-checking techniques have been developed for timed
automata using difference logics, though with a limited performance improve-
ment [76,77].
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7.4 Tools and Applications

Timed automata and their extensions have been applied to the modeling,
analysis and optimization of numerous real-time applications. In this section
we give a few examples, not aiming at being exhaustive but rather to illustrate
the wide range of application domains.

A variety of mature tools are available which provide important computer-
aided support for applications. Well-known tools include UppAal [122],
Kronos [158], RED [155] and HyTech [99]. A larger number of other tools
related to the analysis of timed automata have emerged over the years including
Else [159], Rabbit [44], Verics [84], and TAME [22] as well as tools for analyzing
other timed formalisms based on translation to timed automata including
Times [21] (task automata), Moby [145] (PLC programs), SART [45] (Safety
Critical Java), ART [93] (task graphs), Romeo [91] and TAPALL [68] (Time
and Timed-arc Petri Nets), and VeSTA [112] (component integration checking).

The timed-automata formalism is now routinely applied to the modeling and
analysis of real-time control programs, including a wide class of Programmable
Logic Controller (PLC) control programs [85,127] and timing analysis and code
generation of vehicle control software [150]. The timed-automata approach
has also demonstrated its viability in the timing analysis of certain classes of
asynchronous circuits [60].

Similarly, numerous real-time communication protocols have been analyzed
using timed automata technology, often with inconsistencies being revealed:
e.g., using real-time model checking, the cause of a ten-year-old bug in the
IR-link protocol used by Bang & Olufsen was identified and corrected [95].
Most recently, real-time model checking has been applied to the clock synchro-
nization algorithm currently used in a wireless sensor network that has been
developed by the Dutch company CHESS [144]. Here it is shown that in certain
cases a static, fully synchronized network may eventually become unsynchro-
nized if the current algorithm is used, even in a setting with infinitesimal
clock drifts.

During the last few years, timed automata modeling of multitasking appli-
cations running under real-time operating systems has received substantial
research effort. Here the goals are multiple: to obtain less-pessimistic worst-case
response time analysis compared with classical methods for single-processor
systems [156]; to relax the constraints of period task arrival times of classi-
cal scheduling theory to task arrival patterns that can be described using
timed automata [90]; to allow for schedulability analysis of tasks in terms
of concurrent objects executing on multiprocessor or distributed platforms
(e.g., MPSoC) [61,80,109].

Just as symbolic reachability checking of finite-state models has led to
very efficient planning and scheduling algorithms, reachability checking for
(priced) timed automata has demonstrated competitive and complementary
performance with respect to classical approaches such as MIPL on opti-
mal scheduling problems involving real-time constraints, e.g., job-shop and
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task-graph scheduling [1, 32] and aircraft landing problems [119]. In fact a
translation of the variant PDDL3 of PDDL (Planning Domain Definition
Language) into priced timed automata has been made [86] allowing optimal
planning questions to be answered by cost-optimal reachability checking. In-
dustrial applications include planning a wafer scanner from the semiconductor
industry [97] and computation of optimal paper paths for printers [108].

Most recently, computation of winning strategies for timed games has been
applied to controller synthesis for embedded systems, including synthesis of
most general non-preemptive online schedulers for real-time systems with
sporadic tasks [6], synthesis of climate control for pig shed provided by the
company Skov [110], and automatic synthesis of robust and near-optimal
controllers for industrial hydraulic pumps [71].

8 Weighted Timed Automata

Time is not the only quantity one may want to measure when checking an
embedded system: one may need to keep track of the battery charge or of the
level of oil in a tank. Hybrid automata [98, 100] extend timed automata with
extra variables that can help measure such quantities. Unfortunately, reacha-
bility is undecidable for these models, even with two-slope hybrid variables.
Weighted timed automata [20,33] is an intermediary model, extending timed
automata with hybrid observer variables: these variables cannot appear in the
guards of the automaton, but they can be used, for example, for optimization
purposes. The special case where the observer is a stopwatch (computing
the accumulated delay in some locations) was already introduced and solved
in [11].

Formally, a weighted timed automaton is a pair (A,w) where A is a timed
automaton and w labels the locations and edges of A with an integer (or
a vector of integers for automata with multiple observer variables). For a
transition t, w(t) is the value by which the value of the observer variable
is increased, while for a location `, w(`) is the rate by which the variable
increases w.r.t. time (in other words, the observer variable p follows the
differential equation dp/dt = w(`)).

The semantics of a weighted timed automaton (A,w) is that of the un-
derlying timed automaton A. Each run of A is decorated with the value
of the observer variable. Figure 14 shows an example of a weighted timed
automaton3, and a run of this automaton. This run reaches the rightmost
location within 3 time units, and with a total weight of 19.7.

3 Notice that the labeling in the second location is a clock invariant (enforcing that no

time will elapse in that location). The rate of p is not given in that location as no time
will elapse anyway.
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Fig. 14 Example of a weighted timed automaton

8.1 Cost-Optimal Schedules

Natural questions on this family of models include optimal reachability of a
given location, or optimal mean-cost of infinite runs. Formally, the associated
decision problems respectively ask whether the target location can be reached
with total weight less than a given threshold, and whether there is an infinite
run along which the average weight is less than the given bound.

These problems turn out to be decidable. The main technique used in
the algorithms is a refinement of the region equivalence of Sect. 3 called
corner-point equivalence [50]. Intuitively, for these two optimization problems,
optimal schedules will amount to staying as long as possible in interesting
locations. Corner-point regions extend classical regions with an extra corner
of this region, i.e., an integer valuation that belongs to the closure of the
region. A corner-point (r, c) represents a clock valuation v that is close to
the corner c but lies within the region r. The corner-point automaton is the
weighted automaton C'M = (S, s0, Σ, T ) where S ⊆ L × R × {0, ...,M}C
is the set of states (writing R for the set of regions), with three kinds of
transitions:

• action transitions: there is a transition from (`, R, c) to (`′, R′, c′) if there
is a transition t = (`, ϕ, a, r, `′) in A such that R ⊆ JϕKC , with R′ = R[r]
and c′ = c[r]. The weight of this transition is w(t).

• ε-delay transitions: these are transitions from (`, R, c) to (`, R′, c), where
R′ is the immediate time-successor of R sharing corner c. Such a transition
corresponds to a very small delay, and its corresponding weight is set
to zero.

• 1-delay transitions: these are transitions from (`, R, c) to (`, R, c′), where
c′ = c + 1. This corresponds to spending (almost) one time unit in re-
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gion (`, R). Notice that such a transition is only available if c and c+ 1 are
corners of R. The weight of this transition is w(`).

Figure 15 displays two sequences of delay transitions in the corner-point
automaton; while both sequences depart from the same region and visit the
same sequence of locations, the accumulated weight evolves very differently
along the two sequences—which explains why we have to refine regions.
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Fig. 15 Two different runs in the corner-point abstraction

The corner-point automaton enjoys the following properties: if there is a
run from some location ` to some location `′ with total weight m in a given
weighted timed automaton, then there is a run from (`,0,0) to some (`′, R, c)
with total weight at most m in the corresponding corner-point automaton; in
other words, running through corner-points is always better when trying to
optimize the value of the total weight. Conversely, for any positive ε, if there
is a run from (`,0,0) to some (`′, R, c) with weight m in the corner-point
automaton, then there is a run in the original weighted timed automaton
from ` (with initial valuation 0) to `′, with total weight at most m+ ε.

This statement can be extended in various ways, so as to handle optimiza-
tion of the ratio between two variables along finite or infinite runs. In the
end:

Theorem 20 ([50]). The optimal-reachability and the optimal-ratio problems
are PSPACE-complete.

Other related problems have been considered in the literature, such as condi-
tional optimal reachability on multi-weighted timed automata [123]. The aim
in this setting is to minimize the value of one variable under some conditions
on the other variables. We refer to [123], where the problem is shown to be
decidable.
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8.2 Weighted Temporal Logics

Unfortunately, the encouraging results above do not extend to richer properties
that could be expressed in weighted extensions of classical temporal logics4.
While this is not surprising for linear-time temporal logics (as these logics
are already mostly undecidable in the timed setting), this also holds for
weighted extensions of CTL, be it with modalities decorated with weight
constraints (writing E♦≤10 T to express that T can be reached within total
cost less than 10), or with explicit constraints as atomic formulas (writing
E♦ (T ∧ c ≤ 10) to express the same property) [49,63]. Undecidability can be
proved by encoding the halting problem for a two-counter machine, where
each counter is encoded by a clock of the timed automaton. The central
trick in the reduction is the ability to multiply the value of a clock by some
constant (while preserving the value of the other clocks). This is achieved by
the automaton depicted in Fig. 16, in which we enforce the condition that
location T must be reachable from S with total cost exactly 1: indeed, the
total cost accumulated from S to T is precisely 1 + 2x0 − y0, where x0 and y0
are the values of clocks x and y in S. This provides us with a way of doubling
the value of clock x, by letting clock y play the role of x afterwards. Using
this module, it is easy to build a complete reduction involving four clocks,
which can be further improved to only three clocks.
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ṗ = 1

z=1

z:=0
`5
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ṗ=0

z=1

z:=0

Fig. 16 Module for testing whether y = 2x

Theorem 21 ([49,63]). WCTL model checking is undecidable (on weighted
timed automata with at least three clocks).

Notice that the standard restriction to non-punctual constraints in the logic
does not help, as the above reduction can be carried out using only inequality
constraints. One way of recovering decidability is to restrict to one-clock
weighted timed automata. These automata enjoy several special properties
which allow us to prove that refining regions to a small granularity (in
O(C−h(ϕ)) where C is the maximal rate in the automaton and h(ϕ) is the
temporal height of the formula being checked) provides a correct finite-state
abstraction on which ϕ can be checked. It follows:

4 Even if we restrict to nonnegative weights, which is what we assume in this subsection

on temporal logics.
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Theorem 22 ([57]). WCTL model checking is PSPACE-complete on one-clock
weighted timed automata.

8.3 Energy Constraints

Recently, weighted timed automata have been pushed one step closer to
hybrid automata, with the introduction of energy constraints [55,74]. These
constraints aim at modeling, for example, autonomous robots, which often
must take care of their battery charge level, and ensure that they never
run out of energy. This is modeled with weighted timed automata, with the
constraint that the accumulated value of the variable must never drop below 0
(or any lower bound). The same problem can of course be considered with an
additional upper-bound constraint. Notice that this is a departure from the
motto that the cost variable is an observer. Figure 17 displays an example
of a weighted timed automaton, together with the evolution of the variable
along one particular run. This corresponds to a feasible (prefix of a) run, as
the variable remains between the lower bound L and upper bound U .
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Fig. 17 A weighted timed automaton under energy constraints

Only a few results have been obtained so far. Let us begin with the untimed
case [55]: for lower-bound constraints, the problem still amounts to optimizing
the accumulated cost, with the extra energy constraint. In that setting, the
Bellman–Ford algorithm can be used to compute the maximal accumulated
cost that can be achieved from the initial state, with the extra energy con-
straint. This provides a polynomial-time algorithm for solving reachability
under lower-bound constraints. In case we also have an upper-bound con-
straint, the problem can be solved in exponential time by augmenting the
state space with the explicit value of the variable.

ri−1 ri
pi−1

≥ bi−1
ri+1

pi

≥ bi

Fig. 18 A linear weighted automaton

In the timed setting, the
only known positive results
concern one-clock weighted
timed automata under lower-
bound constraints [54]. The
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central technique is the com-
putation of an optimal sched-
ule through a finite linear au-
tomaton (i.e., visiting all its locations with a fixed, linear order), such as the
one depicted in Fig. 18. Notice that along such runs, we allow lower-bound
constraints (written ≥ bi) on each transition. Along such a path, one can
prove that the optimal policy is to spend no time in a location ri if

• either ri−1 > ri (in which case it is more profitable to spend time in
location ri−1);

• or ri+1 ≥ ri and bi−1 + pi−1 ≥ bi (in which case it is possible to directly
jump to the more profitable location ri+1).

If any of these conditions is fulfilled, location ri can be dropped, and replaced
by a transition from ri−1 to ri+1 with weight pi−1 + pi+1 and cost-constraint
≥ max(bi−1, bi− pi−1). This provides us with a linear automaton along which
the rates are increasing. The optimal policy along such a path can be proved
to be to exit a location as soon as the cost constraint ≥ bi is fulfilled. This
gives a way of computing the optimal achievable energy level at the end of the
path as a function of the initial credit. This extends to one-clock automata
by composing such functions. In the end:

Theorem 23 ([54]). Optimal reachability is decidable in one-clock weighted
timed automata under lower-bound constraints.

Unfortunately, this algorithm does not extend to n-clock automata: indeed,
one can easily come up with a small module to increase or decrease the value
of the cost variable by the value of a clock (see Fig. 16), thus providing a way
of checking linear constraints between several clocks. As a consequence:

Theorem 24 ([58]). Optimal reachability is undecidable in four-clock weigh-
ted timed automata under lower-bound constraints.

Weighted timed automata under energy constraints are a very recent
and active topic with many open problems. Several directions are currently
being explored, such as the extension to exponential variables, where the
variable follows the differential equation dp/dt = w(`) · p, or the inclusion of
imprecisions in clock values or variable growth.

9 Timed Games

Games provide a nice framework for modeling and reasoning about the
interactions between various agents (a reactive system and its environment,
several components, etc.). We refer to Chap. 25gamesynth for details about
games and their use for synthesizing correct models.

We consider two-player timed games, in which transitions are partitioned
into controllable and uncontrollable (i.e., under the control of an environment).
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The problem is then to synthesize a strategy telling when to take which
(enabled) controllable transitions in order that a given objective is guaranteed
regardless of the behavior of the environment.

Definition 6. A timed game is a tuple G = (L, `0, C,Σc, Σu, I, E) with
Σc ∩Σu = ∅ for which the tuple AG = (L, `0, C,Σ = Σc ∪ Σu, I, E) is a
timed automaton. We require this automaton to be deterministic (so that
from any state, an action in Σ corresponds to a unique transition). Edges
with actions in Σc are said to be controllable, those with actions in Σu are
uncontrollable.

We shall again assume a set F of accepting locations to be given for the
rest of this section. A strategy in a timed game G provides instructions as to
which controllable edge to take, or whether to wait, in a given state. Hence it
is a mapping σ from finite runs of the underlying timed automaton AG to
Σc ∪ {δ}, where δ /∈ Σ, such that for any run ρ = (`0, v0)→ · · · → (`k, vk),

• if σ(ρ) = δ, then (`, v)
d−→ (`, v + d) is a transition in JAGK for some d > 0,

and
• if σ(ρ) = a, then (`, v)

a−→ (`′, v′) is a transition in JAGK.

An outcome of a strategy is any run which adheres to its instructions. Such
an outcome is said to be maximal if it stops in an accepting location, or if
no controllable actions are available at its end. An underlying assumption is
that uncontrollable actions cannot be forced, hence a maximal outcome which
does not end in a final location may “get stuck” in a non-final location. The
aim of reachability games is to find strategies all of whose maximal outcomes
end in an accepting location; the aim of safety games is to find strategies all
of whose (not necessarily maximal) outcomes avoid accepting locations:

Definition 7. A strategy is said to be winning for the reachability game if
any of its maximal outcomes is an accepting run. It is said to be winning for
the safety game if none of its outcomes are accepting.

`1 `2 `3 `4

`5 `6

x ≤ 1

c1

x < 1

u3 c3

x > 1 u1 x ≥ 2 c2

x < 1, u2, x := 0

x ≤ 1, c4

Fig. 19 A timed game with one clock. Controllable edges (with actions from Σc) are solid,
uncontrollable edges (with actions from Σu) are dashed
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Example 5. Figure 19 provides a simple example of a timed game. Here,
Σc = {c1, c2, c3, c4} and Σ2 = {u1, u2, u3}, and the controllable edges are
drawn with solid lines, the uncontrollable ones with dashed lines. The following
memoryless strategy is winning for the reachability game:

σ(`1, v) =

{
δ if v(x) 6= 1

c1 if v(x) = 1
σ(`2, v) =

{
δ if v(x) < 2

c2 if v(x) ≥ 2

σ(`3, v) =

{
δ if v(x) < 1

c3 if v(x) ≥ 1
σ(`4, v) =

{
δ if v(x) 6= 1

c4 if v(x) = 1

Theorem 25 ([25, 26,65,128]). The (time-optimal) reachability and safety
games are decidable for timed games. They are EXPTIME-complete.

A key ingredient in the proof of the above theorem is the fact that for
reachability as well as safety games, it is sufficient to consider memoryless
strategies, which only observe the last configuration of a run. This is not
the case for other, more subtle, control objectives (e.g., counting properties
modulo some N) as well as for the synthesis of winning strategies under
partial observability. The other ingredient is the region abstraction: if there
is a winning strategy, then there is one that only depends on the current
region. This provides an exponential-time algorithm, which can be proved to
be optimal.

A problem with the above approach is that the safety game can be won by
preventing time from diverging. In order to rule out such behaviors, a solution
was proposed in [82]; it uses a more symmetric presentation of games, in
which both players have a strategy which proposes at the same time the
amount of time this player wants to delay, and the transition she wants to
take afterwards. At each step, the player with the shortest delay is chosen
and her choice is performed. With this definition, if time converges along an
outcome, then the player(s) who have applied their choices infinitely many
times must have proposed converging sequences of delays. By adding a fairness
requirement to the winning condition, we can declare this kind of behavior
losing. Deciding the existence of winning strategies for reachability and safety
objectives remains EXPTIME-complete in this context.

The field of timed games is a very active research area. From the region-
based decidability results, efficient on-the-fly algorithms have been devel-
oped [69, 148] and implemented in UppAal. In [70] these algorithms have
been extended to timed games under partial observability. Research has also
been conducted towards the synthesis of optimal winning strategies for reach-
ability games on weighted timed games. In [8, 51] computability of optimal
strategies is shown under a certain condition of strong cost non-Zenoness,
requiring that the total weight diverges at a given minimum rate per time.
Later undecidability results [49, 64] show that for weighted timed games with
three or more clocks, this condition (or a similar one) is necessary. It is proved
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in [59] that optimal reachability strategies are computable for one-clock weigh-
ted timed games, though there is an unsettled (large) gap between the known
lower bound complexity P and an upper bound of 3-EXPTIME, which was
recently lowered to EXPTIME [94, 142].

We conclude this section by illustrating how timed games can be used to
decide timed bisimilarity of two states of a timed automaton. This provides a
simple proof of Theorem 4, which we explain on a small example: consider
the states of Fig. 20. That two states (p, v) and (q, w) (where v and w are two

p

p′1

p′2

g1,a,
Y1:=

0

g2 ,a,Y2 :=0

q q′
g,a,Y :=0

Fig. 20 Two states of a timed automaton

p,q

(z=0)

(z=0)

(z=0)

Bad

g1,a,
Y1:=

0,z:=0

g2 ,a,Y2 :=0,z:=0

g,a,Y :=0,z:=0

p′1,q
′

p′2,q
′

g∧(z=0),a,Y

g1∧(z
=0),a

,Y1

g∧(z=0),a,Y

g2∧(z=0),a,Y2

(z=0)∧¬g,a

Fig. 21 Timed bisimilarity as a timed game

valuations of the same set of clocks C) are timed bisimilar means that any
transition from either state can be mimicked from the other one, ending up in
states that are again bisimilar. We can see this as a game on the product of
two copies of the automaton (see Fig. 21): from the joint state ((p, q), (v, w)),
the first player chooses to apply one transition from one of the states (p, v)
and (q, w), and the second player has to respond (immediately) with an
appropriate move from the other state. The second player has a strategy
to always avoid the Bad state if, and only if, the starting states are timed
bisimilar. This provides an exponential-time algorithm for checking timed
bisimilarity [10].
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10 Ongoing and Future Challenges

In this chapter, we have surveyed timed automata and the theoretical devel-
opments that have led to their being widely accepted as a model for modeling
and reasoning about real-time systems. Many developments are still ongoing:
we briefly list here some important topics which we think are among the
important avenues to be explored during the coming years:

• Robustness (in the timed setting) and implementability [83, 92, 139,143]
address the problem of reconciling the semantics of timed automata (with
real-valued clocks) with the models they represent (which usually run at a
finite frequency).

• Statistical model checking consists in checking several runs of the model
against a given property, and compute statistics to get an estimate of the
correctness of the model. The approach has recently been studied and
implemented in the setting of stochastic timed automata, where it provides
interesting results, even for problems that are otherwise undecidable [79].

• Games on timed automata have received a lot of attention over the last
ten years, as they are a convenient formalism for the automated synthesis
of real-time systems. Recent extensions to non-zero-sum games [62,113],
where the players have their own objectives, open a rich and promising
area of research for synthesizing complex systems.
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3. Yasmina Abdeddäım and Oded Maler. Preemptive job-shop scheduling using stop-
watch automata. In Joost-Pieter Katoen and Perdita Stevens, editors, Intl. Conf.

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 2280 of Lecture Notes in Computer Science, pages 113–126. Springer, 2002.

4. Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine, and James Worrell. Decidabil-
ity and complexity results for timed automata via channel machines. In Lúıs Caires,
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147. Stavros Tripakis. Checking timed Büchi automata emptiness on simulation graphs.
ACM Transactions on Computational Logic, 10(3), 2009.

148. Stavros Tripakis and Karine Altisen. On-the-fly controller synthesis for discrete and

dense-time systems. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, edi-
tors, World Congress on Formal Methods (FM), volume 1708 of Lecture Notes in

Computer Science, pages 233–252. Springer, 1999.

149. Stavros Tripakis and Sergio Yovine. Analysis of timed systems using time-abstracting
bisimulations. Formal Methods in System Design (FMSD), 18(1):25–68, 2001.

150. Stavros Tripakis and Sergio Yovine. Timing analysis and code generation of vehicle
control software using Taxys. In Klaus Havelund and Grigore Roşu, editors, Inter-
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