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ABSTRACT
In 1988, Weispfenning published a seminal paper introducing a sub-

stitution technique for quantifier elimination in the linear theories

of ordered and valued fields. The original focus was on complexity

bounds including the important result that the decision problem

for Tarski Algebra is bounded from below by a double exponential

function. Soon after, Weispfenning’s group began to implement

substitution techniques in software in order to study their poten-

tial applicability to real world problems. Today virtual substitution

has become an established computational tool, which greatly com-

plements cylindrical algebraic decomposition. There are powerful

implementations and applications with a current focus on satisfia-

bility modulo theory solving and qualitative analysis of biological

networks.
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1 REAL QUANTIFIER ELIMINATION
The following formal statement φ over the reals asks whether or

not one can find for all x ∈ R some y ∈ R such that a certain

polynomial p ∈ Z[a,b, x ,y] is strictly positive while another such

polynomial q is not positive:

φ Û= ∀x∃y(p > 0 ∧ q ≤ 0), (1)

where p Û= x2 + xy + b and q Û= x + ay2 + b. We have to expect

that the validity of φ depends on the choices of real values for the

parameters a and b. A solution is probably not easy to see right

away. It gets easier when considering ¬φ, which is equivalent to
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∃x∀y(p ≤ 0 ∨ q > 0). When a ≥ 0, we can choose x = −b + 1 to
satisfy q > 0. When b ≤ 0, we can choose x = 0 to satisfy p ≤ 0.

Thus a ≥ 0 ∨ b ≤ 0 implies ¬φ. Equivalently, φ implies

φ ′ Û= a < 0 ∧ b > 0.

Vice versa, it is not too hard to see that φ ′ also implies φ.
Formally, we are considering interpreted first-order logic with

equality over a finite language L = (0, 1,+,−, ·,=, ≤, <,,) where
all symbols have their usual interpretations over the reals. We

assume w.l.o.g. that L-formulas are in prenex normal form

φ Û= Qnxn . . .Q1x1ψ , Qi ∈ {∃,∀}, ψ quantifier-free.

If all variables occurring inψ are quantified, in other words, if there

are no parameters, φ is called an L-sentence.
Given a first-order L-formula φ, real quantifier elimination (QE)

computes a quantifier-free L-formula φ ′ such that

R |= φ ←→ φ ′.

When applying quantifier elimination to a sentence φ, the obtained
quantifier-free formula φ ′ will not contain any variables and can be

straightforwardly evaluated to either “true” or “false.” This way, real

quantifier elimination establishes in particular a decision procedure.

2 HISTORY AND SCIENTIFIC CONTEXT
The first real quantifier elimination procedure was developed by

Tarski around 1930 [65] but, due to the war, published only in

1948 [66]. Tarski’s procedure is not elementary recursive. As early

as 1954, concluding remarks in a technical report by Davis to the

US Army on an implementation of a corresponding procedure

for Presburger arithmetic point at a surprisingly early interest in

software implementations also of real quantifier elimination [16].

During the 1970s, Collins developed the first elementary recur-

sive real quantifier elimination procedure [10], which was based on

cylindrical algebraic decomposition (CAD). An implementation by

Arnon was available around 1980 [3]. CAD has undergone many

improvements since and establishes an active research area until

today [7, 11, 43, 44]. The method is double exponential, more pre-

cisely double exponential in the number of all occurring variables

[6]. A robust implementation is available in the interactive system

Qepcad B, originally by Hong and now developed by Brown [5].

From the mid 1980s to the early 1990s there was a strong interest

in the asymptotic worst-case time complexity of the real decision

problem. In 1988, Davenport–Heintz [15] andWeispfenning [69] in-

dependently showed that it is doubly exponential. Weispfenning’s

article actually brought even stronger results: First, it showed that

the decision problem is doubly exponential already for linear for-

mulas, where there are no products between variables. Next, con-

sidering finer complexity parameters than the input word length it
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showed that the problem for linear formulas is doubly exponential

only in the number of quantifier alternations. Finally, it came with

a corresponding quantifier elimination procedure, where the idea

is for the elimination of an existential quantifier to formally substi-

tute sufficiently many test terms derived from parametric zeros of

polynomials contained in the input formula.

Subsequent research on complexity by Grigoriev, Renegar, Basu–

Pollack–Roy, and others developed entirely new real quantifier

elimination procedures with strong theoretical results taking into

consideration even finer complexity parameters like polynomial

degrees or coefficient sizes [4, 30, 48].

Virtual substitution was implemented by Weispfenning’s stu-

dents in the computer logic system Redlog [20, 23, 55, 56], which

developed into an established tool with about 400 citations in the

scientific literature pointing at quite a number of successful ap-

plications, mostly in the sciences. Such implementations require

powerful heuristics, which by themselves establish significant re-

search in symbolic computation [17, 18, 21, 25, 33, 35, 51, 58–60].

As the above-mentioned complexity results suggest, the focus is on

problems with few quantifier alternations and with parameters.

We are going to discuss the development of virtual substitution

from a linear method to higher degrees, which went surprisingly

slow. This was caused by several factors. First, motivated by the suc-

cess with real quantifier elimination, there was a focus on research

on virtual substitution for various other theories, which we will

address in Section 8. Second, from a practical point of view, plenty

of meaningful problems have been solved with a degree bound of

only 2. Third, on the one hand, the question for higher degrees had

been theoretically answered already in 1997 [71], and, on the other

hand, there was a strong belief that with higher degrees practical

implementations would be outperformed by CAD. Recent work by

Košta and his accompanying implementation paint a more positive

picture [34].

3 THE LINEAR CASE FOR THE REALS
We start with Weispfenning’s original result from 1988 [69]. Elim-

ination takes place in an extended language L′ = L ∪ {inv} with
a unary function symbol inv for multiplicative inverses. In order

to avoid partial functions, one defines in the L′-structure R that

inv(0) = 0. Notice that, e.g., 2a2b inv(2a3) = ab inv(a2) but one can-
not further reduce to lowest terms without a case distinction on

the vanishing of a. An L′-formula φ is called a linear in x1, . . . , xn
if it contains no products or multiplicative inverses of the xi . Coef-
ficients of the xi are arbitrary L′-terms in the parameters. We use

± as a shorthand for listing multiple terms.

Theorem 3.1 (Linear real QE; Weispfenning, 1988). Letψ be
a quantifier-free L′-formula linear in variables x1, . . . , xn . Write the
set of atomic formulas occurring inψ as

Ψ = { ajx1 + bj ϱj 0 | j ∈ J },

where J is a finite index set, aj , bj are L′-terms not containing x1, and
ϱj are relations from L′.

Sk(x1,Ψ) =
{
−bj inv(aj )±1,−bj inv(2aj )−bk inv(2ak )

�� j ,k ∈ J }.
Then the following holds:

(i) Fix real interpretations for all variables except x1. Then for each
interpretation of x1 in R there is at least one t ∈ Sk(x1,Ψ)
such that all atomic formulas in Ψ evaluate identically for the
considered interpretation of x1 and t :

R |= ∀x1
∨

t ∈Sk(x1 ,Ψ)

∧
ψ ∈Ψ

(
ψ ←→ ψ [x1/t]

)
.

(ii) This allows quantifier elimination of the innermost quantifier
Q1x1 from Qnxn . . .Q1x1ψ :

R |= ∃x1ψ ←→
∨

t ∈Sk(x1 ,Ψ)

ψ [x1/t]

R |= ∀x1ψ ←→
∧

t ∈Sk(x1 ,Ψ)

ψ [x1/t].

(iii) The elimination results on the right hand sides of the bi-impli-
cations in (ii) are linear in x2, . . . , xn . Hence the theorem can be
iteratively applied to Q2x2, . . . , Qnxn . □

For j = k we have in particular −bj inv(aj ) ∈ Sk(x1,Ψ). The set
Sk(x1,Ψ) is called a Skolem set, where Theorem 3.1(i) is the defining

property of Skolem sets.

Consider the application of Theorem 3.1 for the elimination of

several subsequent existential quantifiers. We can exploit the com-

patibility of existential quantifiers with logical disjunction to move

subsequent quantifiers inside the disjunctions after each elimina-

tion step:

∃x2∃x1ψ ←→ ∃x2
∨
t
ψ [x1/t] ←→

∨
t
∃x2ψ [x1/t].

The same works with universal quantifiers and conjunctions. This

observation has been made for Presburger arithmetic already by

Reddy–Loveland in 1978 [47]. In our situation we obtain # Sk(x1,Ψ)
many independent elimination steps for ∃x2, where Skolem sets

will be smaller and, more important, the terms of each Skolem set

must be substituted only into the corresponding member of the

disjunction. Whenever there is a quantifier alternation, i.e., a change
between ∃ and ∀ in the prenex block, we will encounter ∀ in front

of a disjunction or ∃ in front of a conjunction, and our optimization

is not applicable.

Theorem 3.2 (Complexity, Weispfenning 1988). Consider a
prenex linear formula φ Û= Qnxn . . .Q1x1ψ . Let a be the number of
quantifier alternations, and let b be the longest occurring sequence
of quantifiers without alternation. Denote by T(length(φ)) the time
asymptotically required for the elimination of all quantifiers from φ
using Theorem 3.1 as described. Then the following holds:
(i) T(length(φ)) = 2 ↑ 2 ↑ O(length(φ)). This bound is tight in the

sense that the corresponding time complexity of the problem is
bounded from below by a function in 2 ↑ 2 ↑ Ω(length(φ)).

(ii) If a is bounded, then T(length(φ)) = 2 ↑ O(length(φ)).
(iii) Assume that both a and b are bounded, say a ≤ α and b ≤ β .

Then T(length(φ)) = length(φ) ↑
(
(α + 1)O(β)α+1

)
. This ap-

plies in particular if n is bounded.

Proof. The proof of the upper bounds is based on the follow-

ing observations. For a term t = a0 +
∑n
i=1 aixi define rank(t) =

max
n
i=0 length(ai ), which naturally extends to sets of atomic formu-

las. Then rank(Sk(x1,Ψ)) = O(rank(Ψ)), # Sk(x1,Ψ) = O(#Ψ
2), and
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Sk(x1,Ψ) can be constructed in polynomial time. The result on the

lower bound requires more extensive means and is only mentioned

here for its importance. □

The existential decision problem had been shown to be in NP by

von zur Gathen–Sieveking already in 1976 [67]. Fourier–Motzkin

elimination [29, 45] is double exponential even without quantifier

alternation. However, the single exponential complexity comes at

a price. On input of a conjunction of atomic formulas, Fourier–

Motzkin elimination preserves that form, while Theorem 3.1 pro-

duces a disjunction of conjunctions of atomic formulas (DNF). With

amore algebraic choice of words, on input of a system of constraints,

the theorem introduces unnecessary case distinctions.

Notice that Theorem 3.1 uses regular term substitution. The the-

orem was soon implemented in order to study its practical perfor-

mance [9]. Two problems became apparent. First, although hardly

relevant from the point of view of theoretical complexity bounds,

the quadratic growth of the Skolem sets with the arithmetic means,

which have the purpose to cover open intervals, significantly slowed

down computation times and increased result sizes. Second, results

contained nested occurrences of inv, hiding case distinctions and

making them hard to understand for human readers.

For the first problem one moved to another extension language

L′′ = L′ ∪ {ε}, where ε is a constant for a positive infinitesimal,

and used −bj inv(aj ) ± ε instead of −bj inv(2aj ) − bk inv(2ak ). The
results then contained also ε , which made the second problem even

worse. It turned out that both inv and ε can be equivalently removed

introducing suitable quantifier-free case distinctions. The question

was then whether to remove those symbols from the final result in

a post-processing step, or as early as possible during elimination.

The early elimination performed way better than post-processing,

and lifting this observation from an implementation detail to the

mathematical level was the birth of virtual substitution.
Virtual substitution does not map terms to terms but atomic

formulas to quantifier-free formulas. This relaxation is surprisingly

strong. It not only solves both above-mentioned problems but, as we

shall see soon, allows to generalize the method from the linear case

to arbitrary higher degree bounds. From now on, our language is

the original language L without any extensions. As an example, we

give the virtual substitution of a quotient, which is not an L-term,

into a linear weak inequality. The quotient comes in a pair with

a guard guaranteeing that it is defined in R. This pair is called a

test point. We substitute formally and then multiply by the positive

square of the denominator:

(αx1 + β ≤ 0)
[
x1

// (
a , 0,−ba

) ]
Û= a , 0 ∧ −αab + βa2 ≤ 0.

Virtual substitution of t − ε treats the virtual substitution of t as a
black-box and takes into consideration the derivative of the targeted

polynomial:

(ax1 + b < 0)[x1//(χ , t − ε)] Û=

(ax1 + b < 0)[x1//(χ , t)] ∨
(
(ax1 + b = 0)[x1//(χ , t)] ∧ a > 0

)
.

A complete set of virtual substitutions for the linear case can be

found in [41].

Since ∀x1ψ is equivalent to ¬∃x1¬ψ , we assume w.l.o.g. that

Q1 = ∃ from now on. A positive quantifier-free L-formula is an ∧-

∨-combination of atomic L-formulas. L-formulas can be efficiently

made positive by moving logical negations ¬ inside via de Morgan’s

laws and then eliminating them in front of atomic formulas by

adapting relations and signs of terms. Language allowing this, like

our L, are called closed under negation.

Theorem 3.3 (Improved linear real QE; Loos–Weispfenning,

1993). Letψ be a positive quantifier-free L-formula linear in variables
x1, . . . , xn . Write the set of atomic formulas occurring inψ as

Ψ =
4⋃

k=1

{ ajx1 + bj ϱk 0 | j ∈ Jk },

where Jk are finite index sets, aj ,bj are L-terms not containing x1, and

(ϱ1, . . . , ϱ4) Û= (=, ≤, <,,) are relations from L. Denote Sj = −
bj
aj

and define

E(x1,Ψ) =
{
(true,∞)

}
∪{

(aj , 0, Sj )
�� j ∈ J1 ∪ J2 } ∪ {

(aj , 0, Sj − ε)
�� j ∈ J3 ∪ J4 }.

Then E(x1,Ψ) allows quantifier elimination of an innermost existen-
tial quantifier ∃x1 from Qnxn . . .Q2x2∃x1ψ via virtual substitution:

R |= ∃x1ψ ←→
∨

t ∈E(x1 ,Ψ)

ψ [x1//t].

The elimination result on the right hand side of the bi-implication is
linear in x2, . . . , xn so that the theorem can be iteratively applied to
∃x2, . . . , ∃xn .

Proof. Fix a real interpretation ι for all variables except x1, and
consider the set S = { r ∈ R | R, ι ∪ {x1 = r } |= ψ } of satisfying
values with respect to ι for x1. If S = ∅, then there is nothing to

prove. Otherwise E(x1,Ψ)must contain at least one test term t such
that R, ι |= ψ [x1//t]. If S is unbounded from above, then we have

t = ∞. Assume now that sup S = s ∈ R. If s ∈ S , then s = Sj with
j ∈ J1 ∪ J2, and we have (true, s) ∈ E(x1,Ψ). If s < S , then s = Sj
with j ∈ J3 ∪ J4, and we have (true, s − ε) ∈ E(x1,Ψ). □

To illustrate the limitation to positive formulas, consider the non-

positive L-formula ∃xψ withψ Û= ¬(x , 0). Elimination would fail

with E(x1,Ψ) = {(1 , 0,−ε), (true,∞)} from the theorem, because

ψ holds for x = 0, which is not simulated by either of the two

elements of E. This also shows that E(x1,Ψ) is not a Skolem set.

4 THE QUADRATIC CASE FOR THE REALS
An L-formula φ is quadratic in x1 if all occurring terms can be

written as t = ax2
1
+ bx1 + c , where the coefficients a, b, c are

polynomials not containing x1. We discuss the virtual substitution

of one root of such a quadratic polynomial t into an equation g = 0.

Univariate division with remainder yields

g = qt + αx1 + β , (2)

where α and β do not contain x1. Since we are considering a root
of t , we can as well substitute into the linear remainder:

(αx1 + β = 0)
[
x
// (

a , 0 ∧ −∆ < 0, −b+
√
∆

2a
) ]
Û= (3)

a , 0 ∧ −∆ < 0 ∧ (−αb + 2βa)2 = α2∆ ∧ (−αb + 2βa)α ≤ 0.

To understand this substitution consider the formal substitution

α
−b +

√
∆

2a
+ β =

(−αb + 2βa) + α
√
∆

2a
.
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The L-formula in (3) expresses that the two summands of the numer-

ator have equal absolute values and that their signs are opposite or

both zero. A complete set of virtual substitutions for the quadratic

case can be found in [71].

Theorem 4.1 (Quadratic real QE; Weispfenning, 1997). Letψ
be a positive quantifier-free L-formula at most quadratic in x1. Write
the set of atomic formulas occurring inψ as

Ψ =
4⋃

k=1

{ ajx
2

1
+ bjx1 + c j ϱk 0 | j ∈ Jk },

where Jk are finite index sets, aj , bj , c j are L-terms not containing x1,
and (ϱ1, . . . , ϱ4) Û= (=, ≤, <,,) are relations fromL. Denote Sj = −

c j
bj
,

∆j = b
2 − 4ac , R±j =

−bj±
√
∆j

2aj , and define

E(x1,Ψ) =
{
(true,∞)

}
∪{

(aj , 0 ∧ −∆j ≤ 0,R±j ), (aj = 0 ∧ bj , 0, Sj )
�� j ∈ J1 ∪ J2 } ∪{

(aj , 0 ∧ −∆j ≤ 0,R±j − ε),

(aj = 0 ∧ bj , 0, Sj − ε)
�� j ∈ J3 ∪ J4 }.

Then E(x1,Ψ) allows quantifier elimination of an innermost existen-
tial quantifier ∃x1 from Qnxn . . .Q2x2∃x1ψ via virtual substitution:

R |= ∃x1ψ ←→
∨

t ∈E(x1 ,Ψ)

ψ [x1//t]. □

The proof is analogous to the proof of Theorem 3.3. However,

there is no guarantee that Theorem 4.1 can be iterated. In Equa-

tion (3) above one can see that degrees are doubled within α , β , a,
b, which can all contain x2, . . . , xn . Applying the theorem to the

inner ∃y of our introductory example (1) we obtain in the output,

e.g., ab2 + 2abx2 + ax4 + bx2 + x3, which is not quadratic in the

universally quantified x anymore. When applying suitable simpli-

fication heuristics during elimination, input formulas modelling

real world situations, in contrast to random input, are surprisingly

well-behaved concerning the increase of degrees.

Against this background, theoretical complexity results would

have to weigh efficiency against incompleteness. Practical comput-

ing times appear compatible with Theorem 3.2 also in the quadratic

case.

5 HIGHER DEGREES FOR THE REALS
The real type of a polynomial is the finite sequence of the signs as-

sumed from−∞ to∞. For instance,x2
1
−2 has real type (1, 0,−1, 0, 1),

because both its leading coefficient and its discriminant ∆ are posi-

tive. For a generic quadratic polynomial ajx
2

1
+ bjx1 + c j there are

6 possible real types when aj does not vanish plus 2 possible real

types when aj does vanish. The former are characterized by the

signs of aj and ∆j , and the latter are characterized by the sign of bj .
With this intuition we replace E(x1,Ψ) from Theorem 4.1 with the

following variant, which establishes a case distinction on real types

omitting two of them with ∆j < 0, where there are no real roots:

E ′(x1,Ψ) =
{
(true,∞)

}
∪ (4){

(−aj < 0 ∧ −∆j < 0,R±j ), (−aj < 0 ∧ ∆j = 0,R+j ),

(aj < 0 ∧ −∆j < 0,R±j ), (aj < 0 ∧ ∆j = 0,R+j ),

(aj = 0 ∧ −bj < 0, Sj ), (aj = 0 ∧ bj < 0, Sj )
�� j ∈ J1 ∪ J2 } ∪

"the same with R±j − ε , R
+
j − ε , and Sj − ε for j ∈ J3 ∪ J4".

We will now discuss a degree bound of 3 in such generality

that our constructions work for arbitrary degree bounds. The first

ingredient is the real types. There are still only finitely many of

them, for whichwe need quantifier-free descriptions. To understand

that this is possible consider a generic polynomial f = ax3
1
+ bx2

1
+

cx1+d and, e.g., the real type (−1, 0, 1, 0, 1). One can easily construct

a first-order formula with parameters a, . . . , d stating that f has

that real type, viz. τ Û= ∃r1∃r2∀x1ξ , where

ξ Û= r1 < r2 ∧ (x1 < r1 −→ f < 0) ∧ (r1 < x1 < r2 −→ 0 < f ) ∧

(x1 = r2 −→ f = 0) ∧ (r2 < x1 −→ 0 < f ).

Since Tarski gave us real quantifier elimination in 1948, we know

that there is an equivalent quantifier-free description τ ′. The sec-
ond ingredient is the representation of the roots. They are simply

numbered from left to right, like (τ ′, 1) and (τ ′, 2) in our example.

The third ingredient are the virtual substitutions. Recall from

our discussion of (2) in the previous section that using division with

remainder we must explain virtual substitution only into atomic

formulas g ϱ 0, where g = αx2
1
+ βx1 + γ is of degree less than our

bound 3. There are only finitely many such atomic formulas. Here

is an example with our generic polynomials f and g:

(g < 0)[x1//(f , τ
′, 1)] Û= τ ′ ∧ σ ′,

where σ ′ is a quantifier-free equivalent of the first-order description
σ Û= ∃r1∃r2∀x1(ξ ∧ g[x1/r1] < 0).

Virtual substitutions for generic polynomials can be used for

arbitrary polynomials as follows. Let f ∗, g∗ be polynomials of x1-
degree 3 and 2, respectively. The coefficients of x3

1
, . . . , x0

1
in f ∗ and

g∗ are multivariate polynomials not containing x1. Let τ
′[f /f ∗]

and σ ′[f /f ∗,g/g∗] denote the substitution of the coefficients of f ∗

for a, . . . , d and the coefficients of g∗ for α , . . . , γ . Then

(g∗ < 0)[x1//(f
∗, τ ′, 1)] Û= τ ′[f /f ∗] ∧ σ ′[f /f ∗,g/g∗].

Theorem 5.1 (Real QE for degree bound B; Košta 2016). Let
ψ be a positive quantifier-free L-formula of degree at most B in x1.
Write the set of atomic formulas occurring inψ as

Ψ =
4⋃

k=1

{ fj (x1, . . . xn , y) ϱk 0 | j ∈ Jk },

where Jk are finite index sets and (ϱ1, . . . , ϱ4) Û= (=, ≤, <,,) are
relations from L. Let T be a finite table of quantifier-free descriptions
of real types for generic polynomials up to degree B. For a type τ ∈ T
let µ(τ ) be the number of distinct real roots. Let Σ = {σϱ ,b ,τ ,r } for

ϱ ∈ {=, ≤, <,,}, 1 ≤ b ≤ B − 1, τ ∈ T , 1 ≤ r ≤ µ(τ )

be another finite table. Each σϱ ,b ,τ ,r is a quantifier-free description
of the virtual substitution of the r -th root of a generic polynomial f
of type τ into g ϱ 0, where g is another generic polynomial of degree
b. Define

E(x1,ψ ) =
{
(true,∞)

}
∪

⋃
j ∈J1∪J2

⋃
τ ∈T

⋃
1≤r ≤µ(τ )

(fj , τ , r )

∪
⋃

j ∈J3∪J4

⋃
τ ∈T

⋃
1≤r ≤µ(τ )

(fj , τ , r ) − ε .
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Then E(x1,Ψ) allows quantifier elimination of an innermost existen-
tial quantifier ∃x1 from Qnxn . . .Q2x2∃x1ψ via virtual substitution:

R |= ∃x1ψ ←→
∨

t ∈E(x1 ,Ψ)

ψ [x1//t]. □

The problem is, of course, to find suitable quantifier-free tables

T and Σ. Furthermore, recall that with Equation (4) we have intro-

duced case distinctions that were not necessary in Theorem 4.1.

Accordingly, we actually want to find substitution formulas in Σ
that work for several combinations of real types τ and root indices

r simultaneously. This is known as clustering.
Košta has given such tables for B = 3, including clustering, and

provided a generic implementation of Theorem 5.1, where T and Σ
exist as isolated tables in software so that the implementation can

be instantiated for arbitrary degree bounds without any further

programming [34]. Having effectively separated logic from real

algebraic geometry, the development of useful tables for higher

degrees is now a challenging task for the entire community in the

spirit of [40], where every progress will have considerable impact

for application scenarios of real quantifier elimination.

6 ALGORITHMS AND APPLICATIONS
There are comprehensive experiences with implementations and

practical computations for various domains, where the reals clearly

dominate. Such computations are feasible only in combination with

fast and strong heuristics. In the first place there is simplification of

quantifier-free formulas, where the central method in use is still the

deep simplification from 1997, which is based on the combination of

additive smart simplification with implicit theory construction dur-

ing recursion [21]. Black-box/white-box simplification [8] appears

very interesting. It would be important to study how to integrate

this with the current simplification framework.

Another aspect are heuristics for degree reductions. Those are
equivalence transformations heuristically working against the in-

crease of degrees with non-linear real virtual substitution, specifi-

cally polynomial factorization and degree shifts [25, 34, 35].

Modern implementations of virtual substitution do not naively

compute elimination sets from sets of atomic formulas. Instead

structural elimination sets are based on prime constituents and co-
prime constituents. Those are arbitrary subformulas with finitely

or co-finitely many solutions, respectively. Virtual substitutions

are not applied to the original quantifier free formulaψ but before

condensing is used to pruneψ based on the origin withinψ of the

test point to be substituted [34].

For an overview of applications see, e.g., [19, 25–28, 52, 53, 57–

62, 68] and citations of the Redlog standard reference [20], e.g., on

Google Scholar.

7 IMPACT BEYOND COMPUTER ALGEBRA
Virtual substitution for the reals is well known in the satisfiability

modulo theories (SMT) community. There it is typically employed

in combination with DPLL(T) [46] as a component of theory solvers

for linear and non-linear real arithmetic [1, 2, 13, 14]. Independently,

Redlog took part in the SMT-COMP 2017 competition and won the

section for non-linear real arithmetic using plain virtual substitution

with CAD as a fallback option when exceeding the degree bound.

8 OTHER DOMAINS
Already in 1988, Weispfenning discussed Skolem sets for the linear

theory of discretely valued fields [69]. In 1995, an improved version

using positive formulas and virtual substitutionwas implemented in

Redlog [50]. In 1999, deep simplification for discretely valued fields

was developed and implemented [22]. In 2000, discrete valuations

were supplemented with divisibility predicates and virtual substi-

tution was introduced also for the linear theory of non-discretely

valued fields [54]. In 2001, the methods and implementations for

discretely valued fields were used as a component within a solver

for parametric systems of linear congruences [24].

In 2002, virtual substitution was applied to term algebras over

suitably expanded finite functional first-order languages [63], equiv-

alent to Malcev’s relational expansions [42]. The complexity is in

the 4th class of the Grzegorcyk hierarchy [31], which is in a sense

optimal, since the problem is provably not elementary recursive.

The method is implemented in Redlog [32].

In 2003, virtual substitution was applied to parametric quantified
Boolean formulas (parametric QBF), i.e., propositional logic with
existential and universal quantifiers over propositional variables

[49]. The elimination sets are simply {true, false}, representing the

entire finite domain. With the size of the elimination sets in O(1)
the overall complexity is single exponential even with unbounded

quantifier alternation. The approach and the complexity result work

for all finite domains where all domain elements can be expressed as

terms. This rather naive approach to propositional reasoning turns

out surprisingly strong when combined with a propositional variant

of the deep simplification. For certain QBF benchmarks this com-

bination turned out even superior to adaptions of context-driven

clause learning (CDCL) to QBF [64]. There is an implementation in

Redlog [49].

During 2005–2009, there was considerable research on virtual

substitution for Presburger Arithmetic with several extensions.

Most of this work has been implemented in Redlog [36–39]. In ret-

rospect, earlier work by Weispfenning [70] in this area and maybe

even Cooper’s work [12] already resembled virtual substitution to

some extent.
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