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Overview

Figure 1: SYMBIONT project overview

SYMBIONT ranges from mathematics via computer
science to systems biology, with a balanced team
of researchers from those fields. At the present
stage the project has a clear focus on fundamen-
tal research on mathematical methods and proto-
types in software. Results are systematically bench-
marked against models from computational biology
databases. We summarize the motivation and aims
for the project, and report on some existing results.

Main Objectives

Figure 2: MAPK is an important signalling
network. Reduced models serve as test cases.

1. Solving high dimensional parametric models for
fixed points

2. Order reduction of ordinary differential equations

3. Improved techniques for parameter fitting with re-
spect to observed data

4. Applications in systems biology and medicine

Methods and Results
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Figure 3: Schematic view of HoCoQ—an algorithm for
computing Hopf bifurcations using convex coordinates and
quantifier elimination.

For polynomial or rational vector fields,
classical topics in the qualitative theory
of ordinary differential equations such
as the existence and stability of periodic
solutions and equilibria can be reduced
to real quantifier elimination problems.
These questions are important for chem-
ical reaction networks (CRN). However,
they turn out difficult for medium size
and large networks when using generic
methods. Based on ideas from Sto-
ichiometric Network Analysis (SNA)
specifically virtual substitution and reg-
ular chain techniques allow the symbolic
computation of Hopf bifurcation fixed
points. Some crucial structural features of CRN are used to derive corresponding heuristics for
quantifier elimination [2]. “Complex Balancing,” which is frequently encountered in CRNs, leads
to parameterized binomial systems. For solving such systems, we are using polynomial time solution
methods [4].

Model order reduction and qualitative dynamics

Figure 4: An instance where quasi-steady state reduction
provides incorrect results (Michaelis-Menten system with
small parameter k−1). The dashed line represents the con-
centration of product correctly, the dotted line represents the
quasi-steady state approximation.

Model order reduction often relies on
quasi-steady state phenomena that lead
to slow-fast variable decomposition.
This is related to the classical singu-
lar perturbation scheme due to Tikhonov
and Fenichel [3]. The aim is to de-
termine critical manifolds, i.e., parame-
ter values resulting in stationary points
with positive dimension. Figure 4 il-
lustrates typical results. In addition, we
use scaling and more generally Lie sym-
metries for variable and parameter non-
dimensionalisation and identification of
small parameters.

Figure 5: Computation of tropical equilibrations using Con-
straint Logic Programming in BIOCHAM-4.

Tropical geometry offers an alternative
framework. For polynomial ODEs, we
use tropical methods to rank monomial
terms according to their orders of mag-
nitude and to identify dominant terms.
When there is only one dominant term
or when the dominant terms all have the
same sign, the dynamics is fast and the
system tends rapidly towards a region in
phase space, where at least two domi-
nant terms of opposite signs are equili-
brated. We call a solution to the latter
problem a tropical equilibration, which
we can compute automatically (cf. [5] and Fig. 5). We show that tropical equilibrations can be al-
gorithmically grouped into branches and put into correspondence with metastable dynamic regimes
of chemical reaction networks (cf. Fig. 6a). Each tropical equilibration branch leads to a different
reduced model.

Figure 6: a) Flowchart indicating reconstruction and analysis of dynamical networks used as models for cell processes.
Static networks are directed graphs; Dynamic networks are systems of polynomial ODEs; Branches B1, . . . , B10 of
tropical equilibrations indicate metastable regimes; Transitions between metastable regimes form a non-deterministic
automaton. b) Tropical equilibration branches provide proxys for metastable regimes of large biochemical networks.

Parameter fitting
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Figure 7: Fitting of parameters (coefficients) of the Volterra–Kostitzin
integro-differential model, described as ṗ(t) = εp(t) − hp2(t) −
cp(t)

∫ t
o K(t− τ )p(τ ) dτ where p(t) denotes the number of bacteria.

We aim to develop sym-
bolic and numeric meth-
ods dedicated to the pa-
rameter estimation problem
for models formulated by
means of nonlinear integro-
differential equations (IDE).
In particular, we address the
computation of the model
input-output equation and
the numerical integration of
IDE systems (cf. [1] and
Fig. 7).

Applications in systems biology and medicine

Figure 8: A representation of critical transitions in biological systems. The
deviation of few “critical” parameters in the network (left) can shift the sys-
tem’s response resulting in the transition from “healthy” to “disease” state
(right).

SYMBIONT eventually
aims at investigating chal-
lenging models for systems
biology and medicine ap-
plying the various meth-
ods described here. It
will compute attractors,
dominant subsystems, and
metastable regimes as well
as tipping points and transi-
tions between such regimes
(cf. Fig. 6b, Fig. 8). Our
analysis could provide hints
about the onset of a disease
and support the mechanistic
understanding of the disease
process. For instance, network dynamic regimes are related to tumor cell phenotypes in the case of
TGF-β signalling [6].

Challenges
• A rigorous proof of the appearance of Hopf bifurcations, e.g., in the MAPK cascade

• Using hidden toric structures of steady states in combination with linear conservation constraints

• Model reduction for ODEs with sums of fractions

• Additional constraints (e.g. stability constraints) to the tropical equilibration branches

• Tipping points and dynamical regimes of large biological networks symbolically
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Join us!
We are seeking PhD students and postdoctoral researchers for our project. We also organize regular
workshops open for external researchers fostering collaborations. Find information on our website.
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