

Numerical method for impulse control of Piecewise Deterministic Markov Processes - application to maintenance optimization

Benoîte de Saporta, François Dufour, Huilong Zhang

▶ To cite this version:

Benoîte de Saporta, François Dufour, Huilong Zhang. Numerical method for impulse control of Piecewise Deterministic Markov Processes - application to maintenance optimization. XIV Colloque Franco-Roumain de Mathématiques Appliquées, Aug 2018, Bordeaux, France. hal-01891203

HAL Id: hal-01891203 https://hal.archives-ouvertes.fr/hal-01891203

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Numerical method for impulse control of Piecewise Deterministic Markov Processes

Benoîte de Saporta, François Dufour, Huilong Zhang Univ. Montpellier, Bordeaux INP, Univ. Bordeaux

XIV Colloque Franco-Roumain de Mathématiques Appliquées

Bordeaux

August 2018

Outline

Introduction Motivation Piecewise deterministic Markov processes Example

Impulse control Definition Quantization Discretization scheme

Numerical implementation

Conclusion and perspectives

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018 2/31

Maintenance optimization

Equipments

- with several components
- subject to random failures
- Choose the best interventions
 - when ?
 - what type : change or repair ?
- In order to optimize some criterion
 - minimize a cost: functioning, maintenance, ...
 - maximize a reward: availability,

Our approach

- propose a general model for the evolution of the equipment state based on PDMPs
- formalize the maintenance problem as an impulse control problem for PDMPs
- derive a numerical scheme to approximate the value function (with error bounds)
- compute the approximate optimal maintenance cost

Piecewise deterministic Markov processes

[Davis 93] General class of non-diffusion dynamic stochastic hybrid models: deterministic motion punctuated by random jumps.

Hybrid process $X_t = (m_t, x_t)$

- discrete mode $m_t \in \{1, 2, \ldots, p\}$
- Euclidean state variable $x_t \in \mathbb{R}^n$

Local characteristics for each mode m

- E_m open subset of \mathbb{R}^d
- ► Flow ϕ_m : $\mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ deterministic motion between jumps, one-parameter group of homeomorphisms
- ▶ Intensity λ_m : $\overline{E}_m \to \mathbb{R}_+$ intensity of random jumps
- ▶ Markov kernel Q_m on $(\overline{E}_m, \mathcal{B}(\overline{E}_m))$ selects the post-jump location

XIV Colloque Franco-Roumain de Mathématiques Appliquées

Starting point

 X_t follows the deterministic flow until the first jump time $T_1 = S_1$

 $X_t = (m, \phi_m(x, t)), \quad \mathbb{P}_{(m,x)}(S_1 > t) = \mathrm{e}^{-\int_0^t \lambda_m (\phi_m(x,s)) ds}$

Post-jump location (m_1, x_{T_1}) selected by the Markov kernel

 $Q_m(\phi_m(x, T_1), \cdot)$

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018

 X_t follows the flow until the next jump time $T_2 = T_1 + S_2$

$$X_{T_1+t} = \big(m_1, \phi_{m_1}(x_{T_1}, t)\big), \quad t < S_2$$

Post-jump location (m_2, x_{T_2}) selected by Markov kernel

 $Q_{m_1}(\phi_{m_1}(x_{T_1},S_2),\cdot)\ldots$

Embedded Markov chain

 $\{X_t\}$ strong Markov process [Davis 93]

Natural embedded Markov chain

- Z_0 starting point, $S_0 = 0$, $S_1 = T_1$
- ► Z_n new mode and location after *n*-th jump, $S_n = T_n T_{n-1}$, time between two jumps

Proposition

 (Z_n, S_n) is a discrete-time Markov chain Only source of randomness of the PDMP

XIV Colloque Franco-Roumain de Mathématiques Appliquées

Bordeaux

August 2018 7/31

Equipement model

Typical model with 4 components

 Component 1: 2 states - stable Exponential failed

 Component 2: 2 states - stable Weibull failed

 Components 3 and 4: 3 states

stable $\xrightarrow{\text{Weibull}} \text{degraded} \xrightarrow{\text{Exponential}} \text{failed}$

XIV Colloque Franco-Roumain de Mathématiques Appliquées

Equipement model

Typical model with 4 components

- $\blacktriangleright \text{ Component 1: 2 states stable } \xrightarrow{\text{Exponential}} \text{failed}$
- Component 2: 2 states stable $\xrightarrow{\text{Weibull}}$ failed
- Components 3 and 4: 3 states
 stable <u>Weibull</u> degraded <u>Exponential</u> failed

Possible maintenance operations

- Components 1 and 2: change
- Components 3 and 4: change , repair (only in stable or degraded states)

XIV Colloque Franco-Roumain de Mathématiques Appliquées

Global equipment state

The equipment is globally

- stable if the 4 components are stable
- degraded if at leat one component is degraded and the others are stable or degraded
- failed if at least one component is failed failed
- int the workshop if there is an ongoing maintenant operation of change or repair

PDMP model of the equipment

Euclidean variables

- functioning time of components 2, 3 and 4
- calendar time
- time spent in the workshop

Discrete variables

state of the components / maintenance operations

Other applications of PDMPs

Applications of PDMPs

Engineering systems, operations research, management science, economics, internet traffic, dependability and safety, neurosciences, biology, ...

- mode: nominal, failures, breakdown, environment, number of individuals, response to a treatment, ...
- Euclidean variable: pressure, temperature, time, size, potential, protein level, ...

Impulse control problem

Impulse control

Select

- intervention dates
- new starting point for the process at interventions

to minimize a cost function

- repair a component before failure
- change treatment before relapse

▶ ...

[CD 89], [Davis 93], [dSDZ 14], ...

Mathematical definition

Strategy $\mathcal{S} = (\tau_n, R_n)_{n \geq 1}$

- τ_n intervention times
- *R_n* new positions after intervention

Value function

$$\mathcal{J}^{\mathcal{S}}(x) = E_{x}^{\mathcal{S}} \left[\int_{0}^{\infty} e^{-\alpha s} f(Y_{s}) ds + \sum_{i=1}^{\infty} e^{-\alpha \tau_{i}} c(Y_{\tau_{i}}, Y_{\tau_{i}^{+}}) \right]$$
$$\mathcal{V}(x) = \inf_{\mathcal{S} \in \mathbb{S}} \mathcal{J}^{\mathcal{S}}(x)$$

- *f*, *c* cost functions, α discount factor
- Y_t controlled process, S set of admissible strategies

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018 13/31

Example of maintenance optimization

- τ_n: maintenance dates
- ▶ *R_n*: which components are to be changed/repaired

Value function

$$\mathcal{J}^{\mathcal{S}}(x) = E_{x}^{\mathcal{S}}\left[\int_{0}^{\infty} e^{-\alpha s} f(Y_{s}) ds + \sum_{i=1}^{\infty} e^{-\alpha \tau_{i}} c(Y_{\tau_{i}}, Y_{\tau_{i}^{+}})\right]$$
$$\mathcal{V}(x) = \inf_{\mathcal{S} \in \mathbb{S}} \mathcal{J}^{\mathcal{S}}(x)$$

f unavailability cost proportional to time spend in failed state *c* fixed cost for going to the workshop + repair < change costs *α* = 0 (finite horizon)

XIV Colloque Franco-Roumain de Mathématiques Appliquées

Definition

Dynamic programming

Costa, Davis, 1988

For any function $g \ge \text{cost}$ of the no-impulse strategy

▶
$$v_0 = g$$

▶ $v_n = \mathcal{L}(v_{n-1})$
 $v_n(x) \xrightarrow[n \to \infty]{} \mathcal{V}(x)$

XIV Colloque Franco-Roumain de Mathématiques Appliquées

15/31 August 2018

Dynamic programming operator

$$\begin{aligned} \mathcal{L}(w)(x) &= L(Mw, w)(x) \\ &= \left(\inf_{t \leq t^*(x)} \mathbb{E}_x \Big[F(x, t) + e^{-\alpha S_1} w(Z_1) \mathbb{1}_{\{S_1 < t \wedge t^*(x)\}} \right] \\ &+ e^{-\alpha t \wedge t^*(x)} Mw(\phi(x, t \wedge t^*(x)) \mathbb{1}_{\{S_1 \geq t \wedge t^*(x)\}} \Big] \right) \\ &\wedge \mathbb{E}_x \Big[F(x, t^*(x)) + e^{-\alpha S_1} w(Z_1) \Big] \end{aligned}$$

with

$$F(x,t) = \int_0^{t \wedge t^*(x)} e^{-\alpha s - \Lambda(x,s)} f(\phi(x,s)) ds$$

$$Mw(x) = \inf_{y \in \mathbb{U}} \{ c(x,y) + w(y) \}$$

XIV Colloque Franco-Roumain de Mathématiques Appliquées

Bordeaux

August 2018

Our aim

Propose a numerical method

- to compute an approximation of the value function
- with error bounds

Main difficulty

Discretization of the dynamic programming operator

Our approach

Discretize the underlying Markov chain (Z_n, S_n) by optimal quantization

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018 17/31

Quantization

Quantization of a random variable X

Approximate X by \widehat{X} taking finitely many values such that $\|X - \widehat{X}\|_p$ is minimum

- Find a finite weighted grid Γ with $|\Gamma| = K$
- Set $\widehat{X} = p_{\Gamma}(X)$ closest neighbor projection

Algorithms

There exist algorithms providing

- ►Γ
- law of \widehat{X}
- transition probabilities for quantization of Markov chains

Impulse control Quantization

Example: $\mathcal{N}(0, I_2)$:

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018 19/31

Impulse control Quantization

Example: $\mathcal{N}(0, I_2)$:

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018 19/31

Example: $\mathcal{N}(0, I_2)$:

Horizon and control set

• finite set \mathbb{U} of new starting points

▶ select horizon N such that $v_N(x) - \mathcal{V}(x)$ small enough

 \rightarrow numerical approximation of $v_N(x)$

Main idea

Replace the dynamic programming iteration of functions by an iteration of random variables

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018

Backward dynamic programming

Change of notation

For a well chosen function g and large enough N

$$\lor$$
 $v_N = g$

$$\triangleright$$
 $v_n = \mathcal{L}(v_{n+1})$

 $v_0(x) \simeq \mathcal{V}(x)$

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018 21/31

Dynamic programming

Markov property

$$\begin{aligned} v_{n}(Z_{n}) &= \mathcal{L}(Mv_{n+1}, v_{n+1})(Z_{n}) \\ &= \left(\inf_{t \leq t^{*}(Z_{n})} \mathbb{E} \Big[F(Z_{n}, t) + e^{-\alpha S_{n+1}} v_{n+1}(Z_{n+1}) \mathbb{1}_{\{S_{n+1} < t \wedge t^{*}(Z_{n})\}} \right. \\ &+ e^{-\alpha t \wedge t^{*}(Z_{n})} Mv_{n+1} \big(\phi(Z_{n}, t \wedge t^{*}(Z_{n})) \big) \mathbb{1}_{\{S_{n+1} \geq t \wedge t^{*}(Z_{n})\}} \mid Z_{n} \Big] \\ &\wedge \mathbb{E} \Big[F(Z_{n}, t^{*}(Z_{n})) + e^{-\alpha S_{n+1}} v_{n+1}(Z_{n+1}) \mid Z_{n} \Big] \end{aligned}$$

with

$$F(x,t) = \int_0^{t \wedge t^*(x)} e^{-\alpha s - \Lambda(x,s)} f(\phi(x,s)) ds$$
$$Mv_{n+1}(x) = \inf_{y \in \mathbb{U}} \{c(x,y) + v_{n+1}(y)\}$$

XIV Colloque Franco-Roumain de Mathématiques Appliquées

Bordeaux

August 2018

Recursion on random variables

$$v_n(Z_n)$$
 expression of $v_{n+1}(Z_{n+1})$, Z_n , S_{n+1}
+ $v_{n+1}(y)$ for all y in \mathbb{U}

Numerical scheme

- ► first compute recursively $\tilde{v}_n(y)$ approximation of $v_n(y)$ for all y in U
- ▶ then compute recursively $\hat{v}_n(\hat{Z}_n)$ approximation of $v_n(Z_n)$

Discretization

In the expression of operator $\ensuremath{\mathcal{L}}$ replace

- inf by min over a discretized grid
- ► Z_n , Z_{n+1} , S_{n+1} by their quantized approximation starting from $Z_0 \in \mathbb{U}$

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018 23/3

Recursion on random variables

$$v_n(Z_n)$$
 expression of $v_{n+1}(Z_{n+1})$, Z_n , S_{n+1}
+ $v_{n+1}(y)$ for all y in \mathbb{U}

Numerical scheme

- ► first compute recursively $\tilde{v}_n(y)$ approximation of $v_n(y)$ for all y in U
- ▶ then compute recursively $\hat{v}_n(\hat{Z}_n)$ approximation of $v_n(Z_n)$

Discretization

In the expression of operator $\ensuremath{\mathcal{L}}$ replace

- inf by min over a discretized grid
- ► Z_n , Z_{n+1} , S_{n+1} by their quantized approximation starting from $Z_0 = x$

Properties of the numerical scheme

- ▶ the quantized process has no Markov property \rightarrow a different approximation of \mathcal{L} for each time step and each starting point
- Under Lipschitz regularity assumption, convergence of the scheme with errors bounds depending on
 - \blacktriangleright the time discretization step inf \rightarrow min
 - the quantization error $(Z_n, S_n) \rightarrow (\widehat{Z}_n, \widehat{S}_n)$

Numerical implementation

Step 1: Exact simulation of the PDMP

Implementation of an exact simulator for reference strategies to serve as benchmark

	1	2	3	4	5
intervention	never	1 day	1 day	1 day degraded	1 day degraded
		failed	failed	or failed	or failed
C1 failed	nothing	change	change	change	change
C3 degraded	nothing	change	repair	change	repair
C3 failed	nothing	change	change	change	change
C2 failed	nothing	change	change	change	2+4
and C4 stable		2+4	2+4	2+4	2+4
C2 failed	nothing	change	change	change	change
and C4 degraded		2+4	2+4	2+4	2+4
C2 stable	nothing	change	repair	change	repair
and C4 degraded		2+4	4	2+4	4
C2 stable	nothing	change	change	change	change
and C4 failed		2+4	2+4	2+4	2+4
Mean cost	19680	11184	11114	11521	8359

XIV Colloque Franco-Roumain de Mathématiques Appliquées

Step 2 : Discretisation of the control st \mathbb{U}

Tests on strategy 5

		Number	relative
	Grid	of points	error
Finite control set \mathbb{U}	$3 \times 3 \times 3 \times 5$	419	0.1458
\rightarrow discretize the functioning times	$4\times 4\times 4\times 5$	627	0.1331
	$5\times5\times5\times5$	1055	0.1235
at interventions	$3\times3\times3\times11$	788	0.0962
\implies project the real times on the	$4\times 4\times 4\times 11$	1219	0.0819
	$5\times5\times5\times11$	1855	0.0730
grid feasibly	$6\times6\times6\times11$	2790	0.0672
	$7\times7\times7\times11$	3570	0.0634
• · · · · · · · · · · · · · · · · · · ·	$8\times8\times8\times11$	4647	0.0604
Compromise between precision and	$3\times 3\times 3\times 21$	1403	0.0775
computation time	$4\times 4\times 4\times 21$	2195	0.0626
computation time	$5\times5\times5\times21$	3423	0.0534
	$6\times6\times6\times21$	4900	0.0436
	$7\times7\times7\times21$	6489	0.0384
	$8\times8\times8\times21$	8399	0.0350

Numerical implementation

Step 3: Discretizing the embedded Markov chain

calibration on reference strategies

Compromise between precision and computation time

Number	Strategy	Strategy	Strategy	Strategy	Strategy
of points	1	2	3	4	5
50	19680	11145	11075	11485	8326
100	19680	11207	11134	11509	8367
200	19680	11173	11104	11531	8361
400	19680	11193	11124	11531	8366
1000	19680	11180	11109	11517	8355
Exact cost	19680	11184	11114	11521	8359

Step 4: Calibrating N the number of allowed jumps + interventions

Horizon N (number of iterations)

- 5 for Strategy 1
- up to 30 for Strategies 2 and 3 (mean 6)
- up to 25 for Strategiess 4 and 5 (mean 6)

Numerical implementation

Step 5: Approximation of the value function

Strategy	Strategy	Strategy	Strategy	Strategy	Approx.
1	2	3	4	5	Value function
19680	11184	11114	11521	8359	6720

- relative gain of 19.6% vs Strategy 5
- numerical validation of the algorithm with various starting points: consistent results

XIV Colloque Franco-Roumain de Mathématiques Appliquées

August 2018 29/31

Conclusion and perspectives

Numerical method to approximate the value function

- rigorously validated
- with general error bounds
- numerical demanding but viable in low dimensional examples

Conclusion and perspectives

Numerical method to approximate the value function

- rigorously validated
- with general error bounds
- numerical demanding but viable in low dimensional examples

Work in progress

 Approximation of an *e*-optimal strategy: numerical and theoretical study - PGMO grant 2018-2019

August 2018

References

[CD 89] O. COSTA, M. DAVIS Impulse control of piecewise-deterministic processes [Davis 93] M. DAVIS, Markov models and optimization [dSDG 17] B. DE SAPORTA, F. DUFOUR, A. GEERAERT Optimal strategies for impulse control of piecewise deterministic Markov processes [dSDZ 14] B. DE SAPORTA, F. DUFOUR, H. ZHANG Numerical methods for simulation and optimization of PDMPs: application to reliability

[P 98] G. PAGÈS A space quantization method for numerical integration [PPP 04] G. PAGÈS, H. PHAM, J. PRINTEMS An optimal Markovian quantization algorithm for multi-dimensional stochastic control problems