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Abstract—Cloud computing depends on communication mech-
anisms implying location transparency. Transparency is tied
to the cost of ensuring scalability and an acceptable request
responses associated to the locality. Current implementations, as
in the case of OpenStack, mostly follow a centralized paradigm
but they lack the required service agility that can be obtained in
decentralized approaches.

In an edge scenario, the communicating entities of an applica-
tion can be dispersed. In this context, we focus our study on the
inter-process communication of OpenStack when its agents are
geo-distributed. More precisely, we are interested in the different
Remote Procedure Calls (RPCs) implementations of OpenStack
and their behaviours with regards to three classical communica-
tion patterns: anycast, unicast and multicast. We discuss how the
communication middleware can align with the geo-distribution of
the RPC agents regarding two key factors: scalability and locality.
We reached up to ten thousands communicating agents, and
results show that a router-based deployment offers a better trade-
off between locality and load-balancing. Broker-based suffers
from its centralized model which impact the achieved locality
and scalability.

Index Terms—Edge computing, Remote Procedure Calls, Mes-
sage Oriented Middeware, Grid’5000, OpenStack, reproducible
research

I. INTRODUCTION

Telecommunication operators currently push towards novel
application deployments that benefit from the distributed na-
ture of the infrastructures. A classical model for such in-
frastructures considers many sites (i.e., computing resources
and storage capacity) along the path from the core to the
edge of the network. Few milliseconds of latency may be
registered between the core and the closest sites while long-
haul communication may occur at the edge of the network.
In this context, cloud-based applications can potentially be
deployed across different geographically distributed sites. In
a standard approach, parts of the application requiring low-
latency interaction with the end user can be placed close to
the edge while the others can be placed closer to the core.

OpenStack! is largely used to build and manage cloud
computing platforms. Nevertheless, the original design of
OpenStack targets the case where a small number of large
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sites is the norm. In the aforementioned model, OpenStack
would need to operate a large number of small sites. Hence,
OpenStack control-plane agents (responsible for managing the
virtual resources) need to be scaled-out and shifted into geo-
graphically dispersed locations. This new deployment model
for OpenStack raises different challenges. First, the scalability
of the internal management system. OpenStack is designed in
an elastic manner: most agents can be replicated for load-
sharing purpose. Elasticity defers the scalability challenge
to the underlying database and communication middleware.
Second, the geo-distribution of agents needs to be taken into
account. It is an opportunity to provide a certain level of
locality to the end-user. On the one hand, users expect low-
latency access to their application meaning the data path
created for an application must remain as local as possible.
On the other hand, the control traffic can also benefit from
locality by keeping states (e.g., database) and inter-process
communication also as local as possible. Thus, locality can
reduce the completion time of requests by minimizing long-
haul communication.

OpenStack control traffic provides a high-level Remote
Procedure Call (RPC) abstraction and endorses different im-
plementations: centralized broker-based implementations sit
next to more decentralized brokerless or hybrid approaches
such as those described in the AMQP 1.0 standard [1].

This paper presents an evaluation of the RPC layer of
OpenStack in a geo-distributed context. The study focus more
precisely on:

o Scalability. What is the impact of having a massive
number of communicating agents on the application and
the underlying message bus?

o Locality. What is the impact of the geo-distribution of
the communicating agents, and how can it be mitigated?

The contribution of this paper is an extensive experimental
evaluation of RPC and bus agents deployment in two different
configurations: centralized and decentralized. This contribu-
tion is aligned to the efforts of the professional community of
harnessing current deployment capabilities to edge infrastruc-
tures [2], [3].



The rest of the paper is structured as follow: Section II
reviews the main criteria of the evaluation. Section III de-
scribes the metrics we focus on, and the framework we built
to perform reproducible and automatized benchmarks in a
geo-distributed context. Experimental results are presented and
discussed in sections IV, and V. Finally, the paper ends with
a conclusion and outlines future directions.

II. EXPERIMENTAL MODEL

Classical unicast RPCs (i.e., point-to-point) require a tight
spatial coupling [4] of the client and the server (they must
know each other) and a strong synchronisation (server should
be listening for incoming communication). On a message
oriented middleware (MOM), clients and servers may also de-
clare their communication interest through an abstract target.
This target allows agents to decouple the messaging entities
using higher-level communication patterns like anycast and
multicast. OpenStack agents use concurrently those three RPC
patterns. They serve us as a reference for designing three
evaluation scenarios:

e Anycast Scenario (AS) when a request is delivered to
only one server interested in the target.

o Unicast Scenario (US) when a request is delivered in a
point-to-point fashion.

o Multicast Scenario (MS) when a request is replicated
and sent to all servers interested in the target.

The identification of above scenarios is the first step to break
up the complexity of the evaluation. Indeed, as described in the
next sections, there are different parameters that can influence
a scenario’s behaviour. We provide some background for each
identified parameter, and we also state our choices for the
evaluation.

A. Agents geo-distribution

RPC agents and bus agents may be deployed on geo-
graphically distant locations. This geo-distribution can force
the messages exchange by communicating entities to travel
over long-haul links. The different network characteristics of
those links [5] can result in a degradation of the application
performance, or worse, application failures. The former may
be mainly due to the introduction of latency in message
transfers, and the latter may be the consequence of packet
loss that cannot be handled by the application or the underlying
protocol (e.g., TCP). In this paper we mainly focus on studying
the impact of the geo-distribution of the agents on AS. Indeed
in this scenario, the bus usually load balance the requests on
the available servers. This strategy could be optimized to take
into account the actual distance between the communicating
entities. In US and MS the bus has to transfer the requests to
a predefined set of agents, this defers any optimization to the
initial agents placement.

B. Scenarios size

We evaluate the scalability by increasing the size of the
scenario in terms of RPC agents, and the resulting number of
transferred messages. We define the size in a different way for

each scenario. The size of AS corresponds to the number of
RPC clients and RPC servers. The size of US is the number
of targets. Therefore, it increases proportionally the number of
RPC agents: one client and one server for each target. Finally,
the size of MS is only the number of RPC servers receiving
the messages. In a realistic deployment there are more clients
than servers. That is the case in AS while they are equal in
US. Note that in MS only one client is considered.

C. RPCs flavours

A synchronous call blocks the client until the return value
goes back to the client application. In some situations, block-
ing the client control flow is not required and the return value
is backtracked to the client application once it is ready. For this
reason asynchronous calls are often exposed in RPC libraries.
The fire-and-forget pattern is a special type of asynchronous
call where the client does not even need to receive the return
value of the function. OpenStack specifies different RPC types
including rpc-call and rpc-cast. The rpc-call is
synchronous and the rpc-cast is fire-and-forget. Both types
also differ on the delivery guarantee: rpc—call follows the
at-least-once semantics whereas rpc-cast only offers the
at-most-once. Moreover, a rpc—cast is likely dropped in
case of congested traffic.

In our evaluation, RPCs flavours are tested separately.
In OpenStack AS and US support both rpc-call
and rpc-cast. MS only supports a special version of
rpc—-cast, namely rpc-fanout, to broadcast asyn-
chronously a request to a set of servers. Note that the calling is
more sensitive to the geo-distribution of the agents than casting
because it needs waiting the server response. As a result, it
pays twice the latency of the link between the client and the
server. Additionally, more resources need being provisioned
on the message bus to handle calls (e.g., return channel), so
calls may consume more resources.

D. Bus topology

The aforementioned RPCs flavours can be implemented on
different backends using different drivers. Most of the time,
operators rely on a broker-based backend (e.g., RabbitMQ?) as
they are robust, and battle-tested drivers based on the AMPQ
0.9-x standard [6]. Nevertheless, the AMQP 1.0 [1] defines
routers as new type of intermediary. OpenStack supports both
backends to implement the previously described patterns. In
the following we discuss the deployment strategies imple-
mented in our study.

Broker-based message bus: A broker is a general purpose
MOM acting as an intermediary between the messaging en-
tities. A broker stores (in a queue) and forwards messages,
allowing a spatial and temporal decoupling between commu-
nicating agents. But in the context of RPCs communication,
this decoupling is questionable as clients and servers must be
synchronised. For scalability reasons, brokers can be cluster-
ized into a big logical broker. RPC clients and servers interact

Zhttps://rabbitmg.com



Fig. 1: Bus agent configurations. Centralized (left) where agents are intercon-
nected through a LAN and they are connected to RPC agents using a WAN;
decentralized (right) where agents are interconnected through a WAN and they
are connected to the RPC agents using a LAN. In both cases RPC clients (C)
and RPC servers (S) are located in the edge.

with this logical broker while the load is distributed among
different bus agents. In our study we refer to RabbitMQ,
the de facto standard in OpenStack, as the reference broker
implementation.

Router-based message bus: Routers can be organized in
a custom topology and dynamically computes routes for mes-
sages. They are stateless and do not store messages. Therefore,
routers require producers and consumers to be temporally
coupled. Similarly to brokers, a router mesh can be extended
by adding new routers and links to the original ones. We use
Apache qgpid-dispatch-router? as the reference implementation
in our study.

In our evaluation, we consider two bus configurations: a
RabbitMQ cluster, and a complete mesh of qpid-dispatch-
routers. In order to embrace the edge requirements in terms
of geo-distribution of the agents, we consider two possible
deployments for the bus agents shown in Fig. 1:

o Centralized deployment. The bus agents are deployed in
the same latency domain (e.g., the same location with
LAN connectivity). In this deployment long links are
found between the RPC agents and the bus agents.

o Decentralized deployment. In order to reach a better lo-
cality, the bus agents are pushed closer to the RPC agents.
Therefore, links between bus agents become longer in
comparison to the previous case.

Note that RabbitMQ proposes federation as an alternative
deployment model. This model has limited support for mes-
sage routing and requires to statically configure the messages
path accross the different brokers. These limitations make this
model not applicable to the RPC implementation of OpenStack
and thus is not considered in the current study.

ITII. TOOLS AND METRICS
We have developed the Ombt orchestrator,* an application
to evaluate the performance of communication agents and RPC

3https:/qpid.apache.org/components/dispatch-router/
“https://github.com/msimonin/ombt-orchestrator

agents in synthetic edge configurations. Ombt orchestrator is
based on two tools: Ombt and EnOSlib. The Oslo messaging
benchmarking tool® (Ombt) uses the library of OpenStack for
messaging® to measure the latency and throughput of RPC and
notification transactions. EnOSlib [7] is a high level library for
deploying and executing applications, and collecting results in
a distributed fashion.

Ombt orchestrator eases the management of the parameters
described in section II. First, the geo-distribution of agents
is emulated by means of traffic control capabilities offered
by the Linux kernel’s network stack. Second, given a size,
it deploys any of the three scenarios. Moreover, clusters of
brokers of any size and complex topologies of routers are
supported. Experimental campaigns can be performed in an
automatic manner across a (large) infrastructure with thou-
sands of cores on various testbeds. Alongside the agents, a
dedicated controller is deployed assessing system metrics by
means of additional tools: Telegraf and InfluxDB.’

In fact, we identify two types of metrics: those from the
application layer and those coming from the system. The
leveraged applications provide metrics such as latency distri-
bution and message rate. These metrics can be analyzed along
with the potential execution errors raised by the applications.
It is important to note that we differentiate two types of
latency: the round-trip latency (a.k.a. RTT latency) and the
one-way latency. The former is associated with RPCs of type
rpc-call and it is the time taken from the client application
to send the request and receive the answer from the server. It is
measured exclusively on the client side. The latter is associated
with RPCs of type rpc—cast and corresponds to the time
for a request to go from the client application to the server
application. Latency is thus measured both in the client and
server application. In this case, a strict time synchronisation is
required between the RPC agents. In terms of implementation
that synchronisation is done with a dedicated NTP cluster.
For the system metrics, we are specially interested in CPU
and RAM consumption, active TCP connections and network
traffic for all agents.

IV. RESULTS

Following subsections present the common experimental
setup and results. We performed two set of experiments based
on centralized and decentralized deployments of the bus agents
as shown in Fig. 1.

A. Setup

All the experiments ran on the Paravance® cluster of
Grid’5000 [8] composed of 72 physical nodes, each having
16 cores and 128 GB RAM. Qpid-dispatch-router 1.0.1 and
RabbitMQ 3.7.4 were deployed. Oslo messaging 5.35.0 was
used as RPC library on Debian 9.3. The release version of
ombt orchestrator was 1.1.1. This testing framework allows
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running experimental campaigns in a fully automated manner.
A campaign corresponds to a set of combined parameters. For
each generated combination a benchmark is run and several
metrics are collected. For instance, Table I shows a set of
parameters where 12 (2 call typesx 6 bus configurations) com-
binations of common parameters are combined with 6 agents
configurations for each scenario, resulting in 72 combinations
of parameters per campaign. Each combination is calibrated
to run within 5 minutes with a timeout of double that time.
If the timeout is triggered an execution is marked as failed
becoming our service-level agreement (SLA). For the sake
of conciseness in this paper, we only present a subset of all
evaluated combinations.

B. Centralized deployment

In this set of experiments we consider a bus deployed in
a centralized way (see Fig. 1 left). Bus agents are located in
the core infrastructure. Two different experiments have been
performed: a plain scalability study, and a variation in which
RPC agents are pushed to the edge of the network.

1) Scalability study: The goal here is to observe the im-
pact of an increasing number of RPC agents (or the targets
depending the scenario) requests on the communication bus.

Parameters: Table 1 shows all parameters considered for
these experiments. An execution campaign is associated to
each scenario: AS, US, and MS. We consider a LAN connec-
tivity between the bus and the RPC agents. In AS, the number
of clients is increased to reach 10K. In parallel, the inter-
request delay (pause parameter) is set to maintain a constant
request rate on the message bus to 10K/s. 20K messages per
second on the bus are generated (requests and return values are
accounted for 2 messages) in rpc—-call cases. This message
rate is the estimated load of the periodic tasks (i.e., heartbeat)
of 80K compute nodes deployment in OpenStack. Each client
sends 300 messages (300K messages sent in total) to attain the
same benchmark duration. Twenty servers are set to keep up all
the request load. Then in US, the number of targets evolves
as in the previous scenario to have a constant request rate
and benchmark duration. Finally, in MS an increasing number
of servers is set and only rpc-fanout calls are evaluated.
Note that, in this last scenario, one request sent by the client
generates 10K requests sent to all servers.

Results: Fig. 2 shows the boxplot for the three scenarios.
Each one has a specific behaviour summarized as follows.

In AS, executions for configurations with only one bus agent
never completed for more than 6K clients for brokers and
8K for routers as shown in Fig. 2a. It is due to the default
maximum system limit of open file descriptors (16384) or the
SLA. This effect is partially verified with the number of TCP
connections in Table II. The driver implementation for brokers
requires twice the number of connections than routers (i.e.,
one to send and another to receive). Concerning memory and
processors consumption metrics. Brokers require a lot more
resources compared to routers with ratios going from at least
9 to 17 times in case of RAM, and from at least 8 to 27 in case
of CPU cores. Brokers have higher latencies for both messages

Parameter Values
Anycast
Clients 1000 2000 4000 6000 8000 10000
Servers 20 20 20 20 20 20
Pause 0.1 0.2 0.4 0.6 0.8 1.0
Messages 300000 300000 300000 300000 300000 300000
Unicast
Targets 1000 2000 4000 6000 8000 10000
Pause 0.1 0.2 0.4 0.6 0.8 1.0
Messages 300000 300000 300000 300000 300000 300000
Multicast
Servers 1000 2000 4000 6000 8000 10000
Pause 1.0 1.0 1.0 1.0 1.0 1.0
Messages 100 100 100 100 100 100
Common
Call type rpc-call, rpc-cast
Bus conf. 1 broker, 1 router, 3 brokers, 3 routers, 5 brokers, 5 routers

TABLE I: Parameters of the centralized bus experiments. A campaign involves
the combination of call types and bus configurations for each of six sets of
number of clients, number of servers, pause between requests to the server
and number of messages for the patterns AS US, and MS (72 combinations).

types. In order to account a complete communication between
agents, rpc—call requires at least twice the time. In general,
both bus agents perform in the same way. The only difference
is brokers report a bigger latency when the number of clients
increases.

In US, results of both call types are more similar than
AS (Fig. 2b). Since each target is assigned to one client and
one server, the number of connected agents is twice the num-
ber of targets. Additionally, no extra queuing (in the broker
case) nor buffering (in the router case) is expected for any
target. Nevertheless, the single bus configuration suffers the
same limitation as AS. The system metrics are not presented
here but they follow the tendency of the AS scenario.

Finally, in MS (Fig. 2c), we observe that both bus agents
support the communication pattern in all configurations. Note

Metric  Bus conf. Clients
1000 2000 4000 6000 8000 10000
1 broker 7735 14444 21470 28268
1 router 519 1286 1937 23888 3906
RAM 3 brokers 6935 15463 23426 30445 36725 40854
(MB) 3 routers 400 826 1547 2286 3713 4326
S brokers 9583 18468 28095 32659 39779 45060
5 routers 616 1187 1712 2824 3885 4565
1 broker 24 22 21 21
1 router 1 1 2 2 2
CPU 3 brokers 27 40 37 47 51 53
cores 3 routers 1 2 2 2 3 6
5 brokers 27 37 49 49 54 57
5 routers 2 2 2 4 3 4
1 broker 2632 4632 8628 12628
1 router 1033 2030 4025 6025 8025
TCP 3 brokers 2612 4639 8637 12638 16643 20638
conn. 3 routers 1046 2047 4040 6035 8038 10040
S brokers 2655 4656 8656 12656 16658 20656
5 routers 1051 2070 4057 6048 8047 10048

TABLE II: Results of the anycast scenario. System metrics for rpc-call
call type. Maximum values obtained during the benchmark for memory usage,
number of processors and TCP connections.
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Fig. 2: Comparative results of latency for different configurations of bus implementations and number of agents.

that servers do not require any response from the clients to of latency is still present.
accomplish the message communication, so there are less ac- 2) Locality study:
tive TCP connections compared to the two previous scenarios.
Although, the difference between brokers and routers in terms

Relying on a packet lossless network
or a nonexistent latency is not realistic scenario in an edge
configuration. The goal of this second experiment is to evaluate



Parameter Values
Paired

Clients 100 250 1000
Servers 20 20 20
Pause 0.1 0.1 0.1
Messages 150000 375000 1500000

Combined
Delay (ms) 0, 5, 10, 25, 50, 100
Loss (%) 0,0.1,05, 1
Call type rpc-call, rpc-cast
Bus conf. 3 brokers, 3 routers

TABLE III: Parameters of anycast scenario. A campaign includes latency and
packet loss to the call type for and bus configuration. These parameters are
combined with each set of paired parameters: number of clients, number of
servers, pause between request to the server and number of messages (288
combinations).

the RPC agents behaviour deployed at the edge under influence
of a link delay and packet loss.

Parameters: Table III shows all parameters considered for
the experiment. The delay and loss rate correspond to the
network emulated between the RPC agents and the bus agents.
The number of servers remains constant whereas the number
of clients increases to generate different load on the bus.
For all campaigns a cluster of three brokers and a complete
mesh of three routers are considered. The results with more
agents does not provide newer elements for discussion. Those
results, verified in preliminary tests, are not included here.
Only rpc—call messages were evaluated because the results
of rpc-cast in the previous experiment did not show a clear
difference between brokers and routers. That behaviour was
also verified during the preliminary tests with delay and packet
loss.

Results: Fig. 3 shows the boxplots of the message latency
while varying the link delay, loss rate, and number of clients
for both bus implementations (broker and router). We noticed
the absence of application errors during all campaigns. It
means that the underlying protocols or applications such as
TCP or Oslo messaging manage properly the loss of packets.
We also observed the introduction of packet loss only increases
the inter-quartile range (IQR) because of retries of packet
transmission. Latency in all cases is registered as expected
according the parameters configuration.

In summary, a centralized deployment of buses may fit well
in an edge environment paying the additional latency, slightly
bigger with brokers. This configuration is appropriate in most
situations where the bus configuration is transparent to the
RPC agents because they work as a sole entity beyond the
number of configured instances. Routers support better the
request message load before crashing because of overload but
the magnitude in both configurations remains the same. In
contrast, in a centralized configuration there is no benefit of
locality between RPC agents since all communications transit
the core of the infrastructure where buses are located.

C. Decentralized deployment

In this experiment we consider a bus deployed in a de-
centralized way (see Fig. 1 right). Bus agents are shifted

closer to the edge where RPC clients and RPC servers are
deployed. This time, the goal is to observe the impact of the
geo-distribution of all actors on the benchmarks completion
while decentralizing the communication bus.

Parameters: Table III details all parameters considered for
the experiment. The delay and the loss values are only applied
between bus agents unlike Section IV-B2. RPC agents and bus
agents are considered in the same latency domain.

Results: Fig. 4 shows, similarly to precedent experiment,
boxplots of the message latency while varying the execution
parameters. We first observe missing results corresponding to a
violation of the SLA. Under the influence of delay and packet
loss the broker internal communication became very unstable
making broker agents crash. Conversely, no timeout violation
was observed with routers. In such deployment the brokers
scalability is greatly impacted by the presence of delay and
loss. For instance, with no loss and high latency, only a limited
number of clients were supported (less than 250 for 50 ms).
In the same way, the impact on the scalability was bigger with
higher loss. Routers did not suffer those problems: low latency
(and thus high throughput) was always achieved. Note that,
in this experiment, latency remains lower than the imposed
between bus agents.

Indeed, a router assigns a message cost to each possible link
that leads to a server. The router then sends the message on
the path achieving the least cost. Initially the cost associated
to a remote server is higher than the cost associated to local
servers. As the cost associated to a server increases with its
load, some messages may be offloaded to remote locations. In
proportion non-local delivery was rare in our experiments. As
a rough estimate, an imposed message rate of 100 message per
second leads to 90% of local delivery. This drops to 66% for
1000 messages per second. In summary, the routing strategy
makes the load-balancing locality aware. This explains why, in
most cases, the latency perceived by the application is lower
than the actual latency between the bus agents.

Figure 5 (left) provides a more detailed distribution of the
latency found in brokers. The anycast target implementation
in RabbitMQ leverages a single queue located in a specific
bus agent (the agent where the first server was connected).
A request from a client to a server can follow one of the
three paths identified in same figure (right) leading to the three
modes observed in the latency distribution. As a consequence,
locality using a cluster of brokers only occurs for a small
portion of messages. For higher loss, TCP re-emission may
occurs leading to another modes to appear in addition to the
three main identified.

In conclusion, decentralizing a cluster of brokers is only
possible under small latency constraints as scalability is greatly
impacted by bad network conditions. In decentralized scenar-
ios, routers mitigate the effect of the geo-distribution of RPC
agents by achieving a locality-aware load balancing. Messages
can thus flow directly from the clients to the local servers.
Additionally, as suggested by system metrics of the Table II
also verified in this case, routers are lightweight and fit better
the capacity constraints of micro datacenters at the edge.
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V. RELATED WORK

To the best of our knowledge, very few experimental studies
have been conducted on MOM in a cloud context. In [9],
and more recently in [10] the study of scalability focuses on
raw messages throughput, latency and resource consumption.
Those studies stick to a single datacenter use case. Even if
our study is limited to OpenStack, it fills a gap by evaluating
high level construction such as RPC and by evaluating the
impact of having a massive number of geo-distributed agents.
As observed in the previous sections, locality plays a key
role in various domains. First, scalability by enabling parallel
transaction handling among different bus-agents. This leads
to decentralize the messages distribution while increasing the
overall throughput of the application. Second, reliability by

better isolating potential failures domains. A bus-agent is not
impacted by a remote network failure since it can deliver
message locally. This assumes RPC clients and RPC servers
to be co-located. Co-location may not be a general config-
uration, so in such cases a centralized bus deployment may
be considered. However, in the OpenStack, stateless agents
(e.g., APIs) are usually load-balanced, and stateful agents (e.g.,
L3 agents) can be replicated following a leader/slaves design.
As a consequence, many geographically distant sites can be
equipped with all core services of OpenStack and internal
RPC traffic can take advantage of the bus locality. This effect
is transparent to the application and may be referred as an
implicit locality. Alongside RPC traffic, OpenStack agents use
HTTP requests between other agents, and execute database
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accesses. Leveraging locality during HTTP requests would
require to modify the service discovery of OpenStack in order
to be also locality aware. However, achieving implicit states
locality during databases transactions is still an open research
topic [11].

VI. CONCLUSION

In this paper, we have studied two different implementations
of the Remote Procedure Calls available in OpenStack: a
broker-based approach (RabbitMQ) and a router-based ap-
proach (Qpid-Dispatch-Router). From the scalability perspec-
tive, brokers can be expanded (e.g clustering) by adding new
bus agents to cope with an increasing number of connected
agents. This allows to distribute the incoming connections and
the associated resources consumption among different servers.
Nevertheless, under high request rate, message distribution can
suffer from bad locality which limits the scalability in this
area even in a centralized deployment (e.g RabbitMQ anycast
request rate is bound). This locality effect is amplified in a geo-
distributed context where it plays a critical role. In this context,
the implicit locality achieved by a router mesh contribute to
a better scalability because distinct bus-agents can parallelize
message handling.

More generally, there is a manifest need of making current
geo-distributed infrastructures evolve towards local awareness
models minimizing the developing and deployment impact.
The road to this edgification is not a mere adaptation of current
building blocks like communication buses, as it concerns
low-level aspects of applications such as messages and data.
Implicit locality is a first step in this direction since application
code does not require modifications to be applied. In order
have a better comprehension, other evaluations are required,
namely, configurations with network partitions, fault tolerance.

Our prospective work includes to transpose these results to
a fully functional OpenStack and enable locality for the HTTP
traffic and database access.
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