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A Refined Mean Field Approximation for Synchronous
Population Processes

Nicolas Gast (Inria) Diego Latella (CNR-ISTI) Mieke Massink (CNR-ISTI)

ABSTRACT
Mean field approximation is a popular method to study the
behaviour of stochastic models composed of a large number
of interacting objects. When the objects are asynchronous,
the mean field approximation of a population model can be
expressed as an ordinary differential equation. When the
objects are synchronous the mean field approximation is a
discrete time dynamical system. In this paper, we focus on
the latter. We show that, similarly to the asynchronous case,
the mean field approximation of a synchronous population
can be refined by a term in 1/N . Our result holds for finite
time-horizon and steady-state. We provide two examples
that illustrate the approach and its limit.

1. INTRODUCTION
The idea behind mean field approximation is to replace

the study of the original stochastic system by the one of a,
much simpler, deterministic dynamical system. Mean field
approximation can be applied to a variety of systems [11]; it
can be shown to be asymptotically optimal as the number
of objects in the system goes to infinity [9, 3, 1] and is often
very accurate also for systems of moderate size, composed
of N ≈ 100 objects.
The mean field approximation of a given model is con-

structed by considering the limit of the original stochastic
model as the number of objectsN goes to infinity. There can
be two types of limits. The first type arises when the dynam-
ics of the objects are asynchronous. In this case the mean
field approximation is given by a continuous time dynamical
system (often a system of ordinary differential equations) –
this is the most studied case e.g. [9, 1, 2]. The second
type arises when the objects are synchronous. In this case
the mean field approximation is a discrete time dynamical
system [3, 5]. We focus on the latter.
In this paper, we consider a variant of the (synchronous)

population models considered in [3, 5, 10]. Each object
evolves in a finite state-space and M (N)

i (t) denotes the pro-
portion of objects in a state i at time t. The classical result
of [3] states if M (N)(0) = m, then for any time t the vector
M (N)(t) converges almost surely as N grows to a determin-
istic quantity µ(t) that satisfies the recurrence equation

µ(t+ 1) = µ(t)K(µ(t)) (1)

with µ(0) = m. Our contribution consists in computing
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the rate of convergence : We show that there exists a time-
dependent vector V (t) such that

E
[
M (N)(t)

]
= µ(t) +

1

N
V (t) + o

(
1

N

)
. (2)

We show that V (t) satisfies a linear dynamical system that
involves the first and second derivative of the function Φ :
m 7→ mK(m). Moreover, when Φ has a unique fixed point
µ(∞) that is globally exponentially stable, then the same
result holds for the steady-state.
We call the quantity µ(t) +V (t)/N the refined mean field

approximation. As opposed to the classical mean field ap-
proximation, it depends on the system size N . We use two
examples to show that :
• If the mean field approximation has a unique attractor
that is exponentially stable, then our refined model is
more accurate than the classical approximation uni-
formly in t ∈ R ∪ {∞}.
• When the mean field approximation does not have an
exponentially stable attractor, the improved accuracy
only holds for a finite time horizon.

Our results extend the recent results of [7]. The authors of
[7] study the steady-state of asynchronous stochastic models
(that therefore have a continuous-time mean field approxi-
mation). There are two differences in our work : First we
focus on synchronous objects; Second we obtain results also
for the transient regime. Note that the results of [7] and the
one of the current paper follow from a series of recent results
concerning the rate of convergence of stochastic models to
their mean field approximation [4, 8, 12].
An extended version of the current paper has been ac-

cepted for publication in [6]. This paper and the simulations
it contained are fully reproducible : https://github.com/
ngast/RefinedMeanField_SynchronousPopulation.

2. MODEL AND RESULTS
We consider a system of N identical interacting objects;

(N is called the size of the system). Each object evolves
in a finite state space and the time is slotted. The vector
M (N)(t) denotes the occupancy measure at time t : M (N)

j (t)
is the fraction of objects in state j at t.
At each time step t ∈ N, each object performs a local

transition. The transition probabilities of an object state
depend on the current local state of the object and may
depend also on M (N)(t). We denote by Kij(m) the proba-
bility for the object to jump from state i to state j in the
system given that M (N)(t) = m. We assume that, given the
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occupancy measure, the transitions made by the objects are
independent. Our model is identical to the one of [3] up to
the fact that the authors of [3] add a continuous resource to
the model and allow object transition matrix K to depend
also on the size N of the system. The results presented in
this paper could be easily extended to the more general case.
The classical result (Theorem 4.1 of [3]) shows that if

M (N)(0) converges almost surely to the deterministic limit
µ(0) as N goes to infinity, then for any time t > 0, M (N)(t)
converges almost surely to µ(t) defined in Equation (1).

2.1 First Main Result : Transient Behaviour
Let Φt be the function defined recursively by Φ1(m) =

mK(m) and Φt+1(m) = Φ1(Φt(m)). We denote by (DΦ1)(m)
and (D2Φ1)(m) the first and second derivative of the func-
tion Φ1 evaluated in m.

Theorem 1. Assume that the function Φ1 is twice dif-
ferentiable and that M (N)(0) converges weakly to µ(0). Let
At and Bt be respectively the n×n matrix At = (DΦ1)(µ(t))
and the n× n× n tensor Bt = (D2Φ1)(µ(t)). Then

lim
N→∞

NE
[
M (N)(t)− Φt(M

(N)(0))
]

= Vt,

where Vt is a vector and Wt is an n× n matrix defined by

Vt+1 = AtVt + 1
2
Bt ·Wt

Wt+1 = Γ(µ(t)) +AtWtA
T
t ,

(3)

with V0 = 0, W0 = 0 and Γ(m) is the following n×n matrix:

Γjj(m) =
∑n

i=1miKij(m)(1−Kij(m))
Γjk(m) = −

∑n
i=1miKij(m)Kik(m)

The main idea is to consider a Taylor expansion of E[h(Φ1(m))]
around Φ1(m) for any function h (see [6]).

2.2 Second Main Result : Steady-State
Mean field approximation can also be used to characterise

the steady-state behaviour of a population model when the
mean field approximation has a unique attractor. Here, we
show how to refine this model when the mean field has an
exponentially stable attractor, i.e. a point µ(∞) such that

• µ(∞) is an attractor: For anym : limt→∞ Φt(m) = µ(∞).

• µ(∞) is exponentially stable : there exists a, b > 0 s.t. for
all m in a neighbourhood of µ(∞) : ‖Φt(m)− µ(∞)‖ ≤
ae−bt‖m− µ(∞)‖.

Theorem 2. Assume that M (N) has a unique station-
ary distribution (for each N), that the function Φ1 is twice
differentiable and that the flow has a unique exponentially
stable attractor µ(∞). Then there exists a n× 1 vector V∞
and a n× n matrix W∞ such that the constants Vt and Wt

defined in Theorem 1 satisfy:

lim
t→∞

Vt = V∞ and lim
t→∞

Wt = W∞

Moreover

(i) W∞ is the unique solution of the discrete-time Lyapunov
equation:

A∞WAT
∞ −W + Γ(µ(∞)) = 0

and V∞ = 1
2
(I − A∞)−1B∞W∞ with A∞ = DΦ1(µ(∞)),

B∞ = D2Φ1(µ(∞)) and I is the identity matrix.

(ii) We can exchange the limits :

lim
N→∞

lim
t→∞

N
(
E[M (N)(t)]− Φt(M

(N)(0))
)

= lim
t→∞

lim
N→∞

N
(
E[M (N)(t)]− Φt(M

(N)(0))
)

= V∞.

3. FIRST EXAMPLE : SEIR
In this section we provide a simple example that illustrates

the results for the refined mean field model of the simple
computer epidemic SEIR example presented in [2]. Each
object in the model consists of four local states: Susceptible
(S), Exposed (E), Infected (I) (and active) and Recovered
(R).
Its discrete time evolution is given by the following prob-

ability transition matrix K in which mS , mE , mI and mR

denote the fraction of objects in the system that are in local
state S, E, I and R:

K(m) =


1− (αe + αimI ) αe + αimI 0 0

0 1− αa αa 0
0 0 1− αr αr

αl 0 0 1− αl


In other words, a susceptible becomes exposed with prob-
ability (αe + αimI) – i.e., αe denotes the external and αi

the internal infection probability –; An exposed node acti-
vates his infection with probability αa; An infected recovers
with probability αr; and αl is the probability to loose the
protection against infection.
To give an idea of how the refined mean field approxima-

tion improves the accuracy compared to the classical mean
field approximation, we plot in Figure 1 the difference be-
tween the two approximations with respect to the simula-
tion : On the left panel, we plot E[M (N)(t)]− µ(t); On the
right panel we plot E[M (N)(t)] − (µ(t) + V (t)/N) (in both
cases for N = 10). The expectation was computed by using
an average of 50,000 runs of a stochastic simulation of the
model. The values of the parameters are : αe = 0.01, αi =
0.08, αr = 0.02, αl = 0.01 and αa = 0.04. and the initial
state was MS(0) = 1 and ME(0) = MI(0) = MR(0) = 0.
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Figure 1: SEIR model: Quantification of the error
of the mean field or refined mean field approxima-
tion (N = 10).

We observe that the refined mean field approximation
(right panel) is an order of magnitude closer to the value
obtained by simulation. This figure illustrates that Theo-
rem 1 is not just valid asymptotically, but actually it refines
the classical mean field approximation for relatively small
values of N . In this case, the system has a unique attractor
and the refined approximation can be used for estimating
the steady-state expected values (see Table 1).



State S E I R
Simulation (N = 10) 0.191 0.115 0.231 0.462

Refined mean field (N = 10) 0.189 0.116 0.232 0.464
Mean field (N = 10) 0.164 0.119 0.239 0.478

Table 1: SEIR model: Comparison of the accuracy
of the mean field and refined mean field approxi-
mation for the steady-state proportion of objects in
states S, E, I or R.

4. ACCURACY VERSUS TIME
In the previous example, the mean field limit has an expo-

nentially stable attractor, which implies that the accuracy
of the mean field approximation is uniform in time (Theo-
rem 2(ii)). Here, we show that this is no longer the case if
the model does not have an exponentially stable attractor.
We consider a system with N objects in which each object

is in state 0 or 1. An object in state 1 goes to state 0 with
probability 1 and an object in state 0 goes to 1 with proba-
bility αm0, where α ∈ (0, 1) is a parameter. The transition
matrix K is therefore

K(m) =

[
1− αm0 αm0

1 0

]
The function m 7→ mK(m) has a unique fixed point whose
first component is µ0(∞) = (

√
1 + 4α− 1)/(2α). This fixed

point is exponentially stable if and only if α < 0.75.
In Figure 2 and Figure 3, we plot the mean field µ(t)

and refined mean field approximation µ(t) +V (t)/N as well
an exact value of E[M(t)] for N = 10 and N = 30. The
initial value is m(0) = 0.7. The exact value of E[M(t)] was
computed by a numerical method that uses the fact that the
system with N objects can be described by a Markov chain
with N + 1 states.
These figures show that the refined approximation always

improves the accuracy compared to the classical mean field
approximation for small values of t, both for α = 0.6 and
α = 0.75. The situation for large values of t is quite differ-
ent. On the one hand, when the fixed point is exponentially
stable (α = 0.6, Figure 2), the refined approximation is very
accurate for all values of t. On the other hand, when the
fixed point is not exponentially stable (α = 0.75, Figure 3),
the refined approximation seems to be unstable and is not
a good approximation of E[M(t)] for values of t that are
too large compared to N (t > 7 for N = 10 or t > 12 for
N = 30).
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Figure 2: Exponentially stable case (α = 0.6).
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Figure 3: Non-exponentially stable case (α = 0.75).

5. CONCLUSION AND EXTENSIONS
In this paper, we have shown that it is possible to adapt

the refined mean field approximation proposed in [7] to the
case of synchronous population processes, both for transient
and steady-state state. This approximation is more accurate
than the classical mean field approximation in many cases.
Yet, when the mean field approximation does not have an
exponentially stable attractor, this new approximation must
be handle with care. We are currently working on extend-
ing this methodology to study the transient regime of asyn-
chronous population processes, in which case Equation (3)
can be replaced by an ordinary differential equation.
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