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On continuous boundary time-varying feedbacks for fixed-time
stabilization of coupled reaction-diffusion systems

Nicolás Espitia Andrey Polyakov Denis Efimov Wilfrid Perruquetti

Abstract— This paper considers the problem of finite-time
stabilization of coupled reaction-diffusion partial differential
equations by means of boundary time-varying feedbacks;
moreover, the time of convergence can be prescribed in the
design. The design of time-varying feedbacks is carried out
based on the backstepping approach. Selecting a suitable target
system with time varying-coefficients, the resulting kernel of the
backstepping transformation is time-varying which provides the
control feedback to be time-varying as well. The target system
turns out to be fixed-time stable and two cases for the control
design are pointed out in order to obtain either boundedness
or fixed-time convergence of the original system. A simulation
example is presented to illustrate the results.

I. INTRODUCTION

Finite-time concepts have been subject for many years in
the framework of linear and nonlinear ordinary differential
equations (see e.g. [11], [7], [3], [20], [12]). The need to
meet some performance, time constraints and precision has
motivated the stabilization and estimation in finite time.

For partial differential equations (PDEs), the problem
of finite-time stabilization and estimation has also become
an attractive research area. It is known that finite-time
convergence may be a natural phenomena in PDEs. For
instance, some nonlinear parabolic equations may face finite-
time extinction [10]. Finite-time extinction property can be
also realized for a system of conservation laws as reported
in [17]. Both examples are very motivating and illustrate
that finite-time property can either appear naturally or can
be established by means of control actions. Indeed, for
hyperbolic systems, some existing results on stabilization
in finite-time can be highlighted: see e.g. [1], [5] where
the backstepping method is employed to design boundary
controllers. For more general classes of infinite dimensional
systems, we point out homogeneity arguments and switching
control as in [19]. Besides this, for linear parabolic PDEs,
in particular heat equations, some recent results deal with
the null controllability and exact null controllability. This
analysis is actually related to the finite-time stabilization
problem as studied in [6] where time-varying feedbacks via
the backstepping approach are studied. It is worth mentioning
that backstepping method has been used as standard tool for
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dAscq, France. A. Polyakov and D. Efimov are with Non-A post team,
Inria Lille - Nord Europe, 40. av Halley, Villenueve dAscq, France, and
with ITMO University, Saint-Petersburg, Russia. Corresponding author:
nicolas.espitia-hoyos@inria.fr

design feedback laws for PDEs. Closed-form controllers for
scalar constant-parameter reaction-diffusion equations were
introduced in [21]. In [2] and [16] some generalizations
are presented for coupled reaction-diffusion systems with
constant parameters. More recently, [25] and [9] consider a
more general case of coupled reaction-diffusion systems with
spatially varying coefficients. Verification of well-posedness
issues of kernel transformation is also deeply studied.

Several physical systems are modeled by parabolic PDEs
with relevant applications. To mention a particular one: large
networks of multi-agent systems [13]. Indeed, the modeling
of multi-agent systems by a continuum model may be posed
in terms of diffusion parabolic equations. Furthermore, some
results on finite-time deployment of multi-agent systems
are reported in [14]. This motivates our work to developed
finite-time concepts and control strategies for coupled linear
parabolic PDEs.

This paper considers the problem of fixed-time stabiliza-
tion of coupled reaction-diffusion systems. Highly inspired
by [6], [18], [2] and [16], we propose continuous bound-
ary time-varying feedbacks for finite-time stabilization in
a prescribed time. Actually, this work borrows the idea
of prescribed time from [23] (for normal-form nonlinear
systems) by using time-varying feedbacks subject to scaling
of the states with blowing up functions.

The main contribution of our work relies then on the
use of boundary time-varying feedbacks obtained via the
backstepping transformation; whose kernels are time-varying
as well. To that end, a suitable target system is employed to
come up time-varying kernels subject to suitable blowing up
functions. We provide an explicit representation of kernel
solutions. Two cases are pointed out regarding the choice of
the blowing up function in order to obtain either boundedness
or fixed-time convergence of the original system.

This paper is organized as follows. In Section II, we
introduce some preliminaries on the backstepping approach
and the class of parabolic system. Section III provides
our approach towards fixed-time stabilization. Section IV
provides a numerical example to illustrate the main results.
Finally, conclusions and perspectives are given in Section V.
Due to space limitations, the proofs of most of the results
are omitted.

Notations: R+ will denote the set of nonnegative real
numbers. The set of all functions g : [0, 1] → Rn such
that

∫ 1

0
|g(x)|2dx < ∞ is denoted by L2((0, 1),Rn) and is

equipped with the norm ∥ · ∥L2((0,1),Rn). Given a real-valued
square matrix A, S[A] denotes its symmetric part S[A] =
(A + AT )/2 and σi(A) (i = 1, 2, ..., n) the corresponding



eigenvalues. σm(A), σM (A) denote the smallest and largest
eigenvalues, respectively. Γ(·) denotes the Gamma function.
Im(·), Jm(·) with m ∈ Z, denote the modified Bessel and
(nonmodified) Bessel functions of the first kind, respec-
tively. L(α)

m (·) denotes the generalized Laguerre polynomial.
1F1(a; b; p) denotes the (Kummer) confluent hypergeometric
function. Finally,

(
n
k

)
:= n!

k!(n−k)! , k = 1, 2, .., n denotes the
binomial coefficients.

II. PRELIMINARIES ON BACKSTEPPING BOUNDARY
CONTROL OF COUPLED REACTION-DIFFUSION SYSTEMS

In this section we briefly bring back some results on the
backstepping boundary control of coupled reaction-diffusion
systems. Consider the following unstable system [2], [16]:

ut(t, x) = Θuxx(t, x) + Λu(t, x) (1)

where u : R+ × [0, 1] → Rn is the system state with Θ ∈
Rn×n is a diagonal positive matrix of the form Θ = diag(θi),
θi > 0, for all i = 1, 2..., n. Λ ∈ Rn×n is a real-valued
matrix for coupling reaction terms.
This system is equipped with the following Dirichlet bound-
ary condition:

u(t, 0) = 0

u(t, 1) = U(t) (2)

and initial condition:

u(0, x) = u0(x) (3)

where U(t) ∈ Rn is the control input.
It is well-known that in open loop (U(t) = 0), the system

may not be stable due to the coupling term Λu(t, x) when-
ever S[Λ] has positive and sufficiently large eigenvalues. In
order to exponentially stabilize the system, the backstepping
method is considered by using an invertible Volterra integral
transformation, given as follows,

w(t, x) = u(t, x)−
∫ x

0

K(x, y)u(t, y)dy (4)

that converts the unstable linear coupled PDE system (1)-(3)
into a stable linear coupled reaction-diffusion system, usually
called target system:

wt(t, x) = Θwxx(t, x)− Cw(t, x) (5)

with boundary conditions

w(t, 0) = 0 (6)
w(t, 1) = 0 (7)

and initial condition:

w(0, x) := w0(x) = u0(x)−
∫ x

0

K(x, y)u0(y)dy (8)

where K(x, y) is a kernel matrix function in Rn×n and C ∈
Rn×n is designed to guarantee arbitrarily fast exponential
convergence. Hence, K and U are suitably chosen to realize
the transformation.

A. Kernel equations

Following the standard methodology in the backstepping
approach, it has been shown (see e.g. [2] for more details)
that by introducing (4) into (5)-(6), using the Leibniz differ-
entiation rule, integrating by parts and using the the boundary
conditions, the original system is transformed to the target
system with the kernel of the transformation (4) satisfying
the following PDE matrix system:

ΘKxx(x, y)−Kyy(x, y)Θ = K(x, y)Λ + CK(x, y) (9)

Ky(x, x)Θ + ΘKx(x, x) + Θ
d

dx
K(x, x) + Λ + C = 0 (10)

ΘK(x, x)−K(x, x)Θ = 0 (11)
K(x, 0) = 0 (12)

Kernel equations evolve in a triangular domain given by
T = {(x, y) ∈ R2 : 0 ≤ y ≤ x ≤ 1}. In addition, as pointed
out in [2], [16], relation (11) may be fulfilled either by
imposing that all coupled equations have the same diffusivity
value θi = θ, i = 1, 2, ..n, i.e. Θ = θIn×n; or by enforcing
the kernel matrix to have the form K(x, y) = k(x, y)In×n.
Although the latter option allows to simplify significantly
the PDE system (9)-(12) turning the problem into a scalar
solvability problem (as in [21]), it brings an additional
constraint on the choice of matrix C. Such a constraint is
the following:

C = −Λ + γ∗Θ (13)

where γ∗ is a scalar parameter.
Under the first scenario (equi-diffusivity coefficients), the

boundary value problem has a C∞ solution in the domain
T (see [16, Theorem 3.3]), given by

K(x, y) =−
∞∑

n=0

(x2 − y2)n(2y)

n!(n+ 1)!

(
1

4θ

)n+1

×
n∑

i=0

(
n

i

)
Ci(Λ + C)Λn−i

(14)

In the case of distinct-diffusivity coefficients and under (13),
the boundary value problem has a C∞ solution in the domain
T whose explicit representation (see [21]) is given by

K(x, y) = k(x, y)In×n,

k(x, y) = −yγ∗
I1

(√
γ∗(x2 − y2)

)
√
γ∗(x2 − y2)

(15)

where Im, with m ∈ Z, denotes the modified Bessel function
of the first kind.

The backstepping transformation, with x = 1, yields the
boundary control function in (2) as follows

U(t) =

∫ 1

0

K(1, y)u(t, y)dy (16)

where K is given either by (14) or (15) according to
the two aforementioned restrictions on the diffusivity and
kernel matrices, respectively. In both cases and since the
transformation (4) is invertible, the boundary control input
U(t) exponentially stabilizes system (1)-(3) (in L2-norm)



with a convergence rate governed by σm(S[C]) (see [2]).
Finally, without enter in full details, it is worth mentioning
that kernel equations for the inverse transformation can be
readily obtained by following the same procedure.

III. TIME-VARYING FEEDBACKS AND FIXED-TIME
STABILIZATION OF COUPLED REACTION-DIFFUSION

SYSTEMS

Let us consider the following coupled reaction-diffusion
system:

ut(t, x) = Θuxx(t, x) + Λu(t, x) (17)
u(t, 0) = 0 (18)
u(t, 1) = U(t) (19)

and initial condition:

u(0, x) = u0(x) (20)

where u : [0, T ) × [0, 1] → Rn is the system state with
T > 0 given, which will be called from now prescribed
time. In addition, U(t) ∈ Rn is the control input which will
be from now a time-varying feedback having the form

U(t) = K(t)u(t, ·) (21)

The operator K(t) is of the form

K(t)u(t, ·) =
∫ 1

0

K(1, y, t)u(t, y)dy (22)

The existence and uniqueness of classical solutions of
the coupled system (17)-(20) is assumed for initial condi-
tions u0 ∈ H2((0, 1),Rn) satisfying the zero order com-
patibility conditions u(0, 0) = 0 and u(0, 1) = U(0).
Without imposing compatibility condition, solutions u ∈
C0([0, T );L2((0, 1),Rn)) can be understood in the weak
sense (see [6]).

A. Backstepping transformation and kernel equations

We design a time-varying feedback via the backstepping
approach. We aim at steering the state of the system (17)-
(20) to 0 in a prescribed time T . Inspired by some finite-time
stability results for hyperbolic PDE systems e.g. [5], [1],
[8], where finite-time convergence is achieved by choosing
suitable target systems; in this work, we will slightly modify
the target system (5)-(6) in order to have convergence in the
prescribed time T .

The key ingredient in this framework is the use of time-
varying feedbacks. Consequently, the invertible Volterra in-
tegral transformation is chosen to depend on time. It is given
as follows,

w(t, x) = u(t, x)−
∫ x

0

K(x, y, t)u(t, y)dy (23)

rendering the kernel time-varying. The aim is to transform
the system (17)-(20) into the following target system:

wt(t, x) = Θwxx(t, x)− C(t)w(t, x) (24)
w(t, 0) = 0 (25)
w(t, 1) = 0 (26)

with initial condition:

w0(x) = u0(x)−
∫ x

0

K(x, y, 0)u0(y)dy (27)

Note that different to system (5)-(6), we have now that
in the right-hand side of this new target system, there is a
time-dependent matrix C(t) to be designed.

Following the standard method in the backstepping ap-
proach, it can be obtained that the kernel of the transforma-
tion (23) must satisfy the following PDE matrix system

ΘKxx(x, y, t)−Kyy(x, y, t)Θ = Kt(x, y, t)

+K(x, y, t)Λ + C(t)K(x, y, t) (28)

Ky(x, x, t)Θ + ΘKx(x, x, t) + Θ
d

dx
K(x, x, t)

= −(Λ + C(t)) (29)
ΘK(x, x, t)−K(x, x, t)Θ = 0 (30)

K(x, 0, t) = 0 (31)

defined on the domain T = {(x, y, t) ∈ R2 × [0, T ) : 0 ≤
y ≤ x ≤ 1}.

Remark 1: It is worth noticing that the right-hand side of
(28) contains the time derivative of the kernel. The scalar-
counterpart is similar to the one found in [22]; and in
more general cases with space- and time-varying reaction
parameter, one could follow [15], [26] and [4] for well-
posedness issues. ◦

The finite-time stabilization problem is now related to
the problem of solvability of kernel equations (28)-(31).
Solving them and choosing U(t) given in (22) we realize
the backstepping transformation.

Proposition 1: Let γ : [0, T ) → (0,∞) and k : T → R
satisfying the following scalar PDE:

kxx(x, y, t)− kyy(x, y, t) = γ(t)k(x, y, t) + 1
θkt(x, y, t)

(32)
k(x, 0, t) = 0 (33)

d

dx
k(x, x, t) = −1

2γ(t) (34)

If Θ = θIn×n, then the kernel matrix K(x, y, t) =
k(x, y, t)In×n, satisfies (28)-(31) provided that

C(t) = −Λ + γ(t)Θ (35)
Proof: It follows the same arguments of [2, Section

4]. Imposing (35) is instrumental for K(x, y, t) to meet the
critical constraint (30).
From (35), only the diagonal of C(t) contains time-varying
functions. As we will see, such a choice along with a suitable
characterization of γ will allow us the achievement of finite-
time stability result.

Remark 2: Note that we have assumed the equi-
diffusivity coefficients case and we have imposed a particular
restriction on the structure of the kernel. This is in fact with
the aim to obtain closed-form solutions of the time varying-
kernel which will allow an easier numerical tractability and



moreover, a qualitative analysis for obtaining bounds of the
kernel of the backstepping transformation. Nevertheless, it
is clear that the equi-diffusivity assumption is a strong limi-
tation. A generalization with distinct diffusivity coefficients
and even space-varying coefficients is much more involved
and requires further analysis in order to solve numerically
the kernel equations.

B. Solution of the PDE kernel

Let us choose γ in Proposition 1 to be the solution that
satisfies the following scalar nonlinear ordinary differential
equation:

γ̇(t) = 1+ϵ
γ0T

γ(2+ϵ)/(1+ϵ)(t), γ(0) = γ0 > 0 (36)

where ϵ ≥ 0 is a design parameter, T > 0 is given and is
going to be the prescribed time. It is straightforward to verify
that the solution to (36) is as follows:

γ(t) =
(γ0T )

1+ϵ

(T − t)1+ϵ
(37)

This solution is monotonically increasing and blows up at
time T .

Lemma 1: Let T > 0 be given. Under assumptions of
Proposition 1, and γ satisfying (36) with ϵ = 0, the problem
(28)-(31) has a well-posed C∞ solution on T , given by

K(x, y, t) = k(x, y, t)In×n,

k(x, y, t) = −y

2
γ(t)

Γ(N+1)

∞∑
n=0

(γ(t)(x2−y2))nΓ(N+n+1)
4nn!(n+1)!(N)n

(38)

with N = Tγ0θ. Moreover, it can be reformulated as follows:

k(x, y, t) = −y
2γ(t)e

γ(t)(x2−y2)
4N 1

NL
(1)
N−1

(
−γ(t)(x2−y2)

4N

)
(39)

where L
(1)
N−1(·) denotes a generalized Laguerre polynomial.

Proof: The proof essentially relies on [22, Section 5]
to obtain the power series solution (38). In order to obtain
(39), let us first briefly introduce the following Kummer
confluent hypergeometric function, a relevant property and
its connection with the generalized Laguerre polynomials
(see e.g. [24] for more details). The (Kummer) confluent
hypergeometric function 1F1(a; b; p) is defined as follows:

1F1(a; b; p) =

∞∑
k=0

(a)k
(b)k

pk

k!
(40)

where (a)k := a(a + 1)(a + 2) · · · (a + k − 1) = Γ(a+k)
Γ(a)

denotes the Pochhammer symbol or rising factorial. The
Kummer function has the following property:

ep1F1(a; b;−p) = 1F1(b− a; b; p) (41)

The generalized Laguerre polynomial expressed in terms of
(40) is

L
(α)
k (p) =

(
k + α

k

)
1F1(−k;α+ 1; p) (42)

Having established that, from (38) it is sufficient to set p =
γ(t)(x2−y2)

4N , a = N + 1 and b = 2 in (40). In addition, note
that (n+1)! = Γ(n+2). Hence, (38) is rewritten as follows

k(x, y, t) = −y
2γ(t)1F1

(
N + 1; 2; γ(t)(x2−y2)

4N

)
(43)

In light of (41), we get

k(x, y, t) = −y
2γ(t)e

γ(t)(x2−y2)
4N 1F1

(
1−N ; 2;−γ(t)(x2−y2)

4N

)
Finally, using (42) and by knowing that

(
(N−1)+α

N−1

)
=

Γ((N−1)+α+1)
Γ((N−1)+1)Γ(α+1) = N with α = 1, then

k(x, y, t) = −y
2γ(t)e

γ(t)(x2−y2)
4N 1

NL
(1)
N−1

(
−γ(t)(x2−y2)

4N

)
Corollary 1: If γ0 and T are selected such that N = 1

(in Lemma 1), then the problem (28)-(31) has a well-posed
C∞ solution on T , given by

K(x, y, t) = k(x, y, t)In×n,

k(x, y, t) = −y

2
γ(t)e

γ(t)(x2−y2)
4

(44)

We provide in the sequel a closed-form solution under a
blowing up function (36) with ϵ = 1. This choice is adequate
to obtain the fixed-time stability result as it is going to be
stated later on.

Theorem 1: Let T > 0 be given. Under assumptions of
Proposition 1, and γ satisfying (36) with ϵ = 1, the problem
(28)-(31) has a well-posed C∞ solution on T , given by

K(x, y, t) = k(x, y, t)In×n,

k(x, y, t) =− y

2
γ(t)

∞∑
n=0

(
√
γ(t)(x2 − y2))n

4n(Tγ0θ)n(n+ 1)!

× L(1)
n

(
−(Tγ0θ)

√
γ(t)

) (45)

C. Inverse transformation and kernel equations

The inverse transformation is given by

u(t, x) = w(t, x) +

∫ x

0

L(x, y, t)w(t, y)dy (46)

whose kernel L(x, y, t) satisfies the following PDE system

ΘLxx(x, y, t)− Lyy(x, y, t)Θ = Lt(x, y, t)

−ΛL(x, y, t)− L(x, y, t)C(t) (47)

Ly(x, x, t)Θ + ΘLx(x, x, t) + Θ
d

dx
L(x, x, t)

= −(Λ + C(t)) (48)
L(x, x, t)Θ−ΘL(x, x, t) = 0 (49)

L(x, 0, t) = 0 (50)

defined on the domain T = {(x, y, t) ∈ R2 × [0, T ) : 0 ≤
y ≤ x ≤ 1}.
The time-varying feedback (21) can be equivalently written
under the following form

U(t) = L(t)w(t, ·) (51)



The operator L(t) is of the form

L(t)w(t, ·) =
∫ 1

0

L(1, y, t)w(t, y)dy (52)

Proposition 2: Let γ : [0, T ) → (0,∞) and l : T → R
satisfying the following scalar PDE:

lxx(x, y, t)− lyy(x, y, t) = −γ(t)l(x, y, t) + 1
θ lt(x, y, t)

(53)
l(x, 0, t) = 0 (54)

d

dx
l(x, x, t) = −1

2γ(t) (55)

If Θ = θIn×n, then the kernel matrix L(x, y, t) =
l(x, y, t))In×n, satisfies (47)-(50) provided that

C(t) = −Λ + γ(t)Θ (56)

D. Solution of the PDE kernel

Lemma 2: Let T > 0 be given. Under assumptions of
Proposition 2, and γ satisfying (36) with ϵ = 0, the problem
(47)-(50) has a well-posed C∞ solution on T , given by

L(x, y, t) = l(x, y, t)In×n,

l(x, y, t) = −y

2
γ(t)

∞∑
n=0

(−1)n
(γ(t)(x2−y2))n

∏n
i=1(N−i)

4nn!(n+1)!(N)n

(57)

with N = Tγ0θ. Moreover, it can be reformulated as follows:

l(x, y, t) = −y
2γ(t)

1
NL

(1)
N−1

(
γ(t)(x2−y2)

4N

)
(58)

Proof: The proof follows the same reasoning as in the
proof of Lemma 1.

Corollary 2: If γ0 and T are selected such that N = 1
(in Lemma 2), then the problem (47)-(50) has a well-posed
C∞ solution on T , given by

L(x, y, t) = l(x, y, t)In×n,

l(x, y, t) = −y

2
γ(t)

(59)

Theorem 2: Let T > 0 be given. Under assumptions of
Proposition 2, and γ satisfying (36) with ϵ = 1, the problem
(47)-(50) has a well-posed C∞ solution on T , given by

L(x, y, t) = l(x, y, t)In×n,

l(x, y, t) =− y

2
γ(t)

∞∑
n=0

(
√
γ(t)(x2 − y2))n

4n(Tγ0θ)n(n+ 1)!

× L(1)
n

(
Tγ0θ

√
γ(t)

) (60)

E. Fixed-time control

The next lemma presents the condition to be fulfilled while
choosing γ0 in order to guarantee that the matrix S[C(t)] :=
(C(t)+CT (t))/2 is positive definite, for all t ∈ [0, T ). This
is in fact a less conservative condition than the one given
in [2] which would correspond, in our case, to the positive
definiteness of S[C(0)].

Lemma 3: Let C(t) be given by (35). If γ0 > 0 is such
that

γ0 >
σM (S[Λ])

θ
(61)

then for any t ∈ [0, T ), it holds that

S[C(t)] > 0 (62)

The following result just allows to state the boundedness of
the L2-norm of the closed-loop system (17)-(20) when the
degree of the blowing up function is set as ϵ = 0 and we
restrict N = 1. In such a case the controller is given by (21)
and kernel given by (44). For N ̸= 1, no conclusion on the
convergence can be provided.

Proposition 3: Let γ0, T > 0 be given. If γ0 is such that
condition (61) is satisfied and N = 1, then for the closed-
loop system (17)-(20), there exist M > 0 such that for for
any initial condition u0 ∈ L2((0, 1),R), it holds, for all
t ∈ [0, T ),

∥u(t, ·)∥L2((0,1),Rn) ≤ M∥u0∥L2((0,1),Rn) (63)

Let us state the main result of the paper for fixed-time
stabilization. The choice of the blowing up function has
been instrumental for this result (i.e. with ϵ = 1). As
aforementioned, with ϵ = 0, one may not guarantee fixed-
time convergence.

Theorem 3: Let γ0, T > 0 be given. If γ0 is such that
condition (61) (in Lemma 3) holds and

Tγ0θ >
1

2
(64)

then, the time-varying feedback

U(t) =

∫ 1

0

K(1, y, t)u(t, y)dy (65)

with K(1, y, t) as in (45) (at x = 1), stabilizes the system
(17)-(20) in a prescribed T , i.e. for any initial condition
u0 ∈ L2((0, 1),Rn), it holds

∥u(t, ·)∥L2((0,1),Rn) → 0 as t → T (66)

Moreover, U(t) remains bounded and |U(t)| → 0 as t → T .

IV. SIMULATIONS

We illustrate the results of Section III by considering a lin-
ear system of 3×3 reaction diffusion system with Θ = In×n,
Λ =

(
2 2 3
4 5 3
2 5 3

)
and initial conditions u1(0, x) = 20.25x(1−x),

u2(0, x) = 10.25x(1−x), u3(0, x) = 5.25x(1−x) satisfying
the zero order compatibility conditions. Note that, in open
loop (e.g. U(t) = 0), the system is unstable.

We select the blowing up function (36) with ϵ = 1. The
parameter γ0 is chosen to be γ0 = 3. The selected prescribed
time is T = 1. Hence condition (64) holds and Theorem 3
applies. Figure 1 shows the time evolution of L2- norm of
the closed-loop system plotted in logarithmic scale to better
illustrate that with time-varying feedbacks the closed-loop
system converges in a prescribe time given by T = 1. It can
be observed that the convergence to zero is faster than using
linear control for exponential stabilization (red-dashed line).

Figure 2 shows the time evolution of the components of
the control function U(t) (65) with kernel gains (45).
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Fig. 1. Evolution of the L2-norm of the closed-loop system (logarithmic
scale) with time-varying feedback (black line) for a prescribed time T = 1
and linear control feedback (red dashed line) for exponential stabilization.
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Fig. 2. Evolution of the control function U(t).

V. CONCLUSION

In this paper, we addressed continuous boundary time-
varying feedbacks towards fixed-time stabilization of coupled
reaction-diffusion systems. Closed-form kernels have been
obtained and under a suitable blowing up function, it is
possible to obtain a time-varying feedback stabilizing the
closed-loop system in a fixed-time.

A future direction line is dealing with solution approxi-
mations to time-varying kernel equations without imposing
structure on the kernels nor equi-diffuivity assumption as we
have done in this work and furthermore, with space varying
coefficients. It is going definitely be inspired by recent works
[25], [9]. Finally, fixed-time observers for coupled reaction-
diffusion equations, following e.g. [16] is currently under
investigation.
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