
HAL Id: hal-01893012
https://hal.inria.fr/hal-01893012

Submitted on 11 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Termination of Order-sorted Rewriting
Isabelle Gnaedig

To cite this version:
Isabelle Gnaedig. Termination of Order-sorted Rewriting. ALP 1992 - 3rd International Conference
on Algebraic and Logic Programming, Sep 1992, Volterra, Italy. pp.37 - 52, �10.1007/bfb0013818�.
�hal-01893012�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/163000023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01893012
https://hal.archives-ouvertes.fr

Termination
of

Order-sorted Rewriting ?

Isabelle GNAEDIG
INRIA Lorraine - CRIN CNRS

Technopôle de Nancy-Brabois - BP 101
54600 Villers-lès-Nancy FRANCE

Phone number: 83 59 30 13
E-mail: gnaedig@loria.fr

No Institute Given

Abstract. In this paper, the problem of termination of rewriting in order-sorted algebras
is addressed for the first time. Our goal is to perform termination proofs of programs for
executable specification languages like OBJ3. An extension of Lexicographic Path Ordering
is proposed, that gives a termination proof for order-sorted rewrite systems, that would not
terminate in the unsorted case. We mention also, that this extension provides a termination
tool for unsorted terminating systems, that usual orderings cannot handle.

1 Introduction

The significance of order-sorted algebras is constantly increasing. First, specification languages with
an algebraic semantics based on many-sorted algebras were developed, e.g. OBJ 1 [8], PLUSS [1]
or LARCH [9]. The sorted model is indeed more suitable than the homogeneous one to treat
computable objects in software problems, since programs manipulate several kinds of objects.

Switching from many-sorted models to order-sorted models allows inclusion of sorts, and in-
heritance of properties. In this approach, the set of sorts is partially ordered. The ordering on
sorts corresponds to domain inclusion in models. Operations and properties from a superset can
be applied to a subset, for example + on reals to integers. Executable specification languages like
OBJ3 [13] or TEL [14] have an algebraic semantics based on order-sorted algebras.

In OBJ3, order-sorted specifications have an operational semantics based on rewriting. Rewrit-
ing tools, well-known and well developed in homogeneous algebras, extend to order-sorted algebras
up to modifications concerning equivalence between equational deduction and rewriting, and also
confluence, decidability of local confluence and completion. However, the problem of termination,
also called strong normalisation [2], was never tackled in this specific framework although it is a
key for the operational semantics. Indeed, together with local confluence, it insures the existence
of normal forms. In addition, it is especially important in a completion procedure [6], and last but
not least, tools for proving termination of rewriting are, in this context, nothing but means for
ensuring termination of programs.

A first approach to termination of order-sorted rewriting consists in forgetting sorts of vari-
ables and ranks of operators. Overloaded operators are then considered as one operator. If a
rewrite system terminates on unsorted terms, so it is on order-sorted ones. It is the idea retained
in ELIOS OBJ , a version of OBJ3 enriched by an order-sorted completion procedure [5]. A
Lexicographic Path Ordering (LPO in short) [12] on unsorted terms is used in the implementation.

But such a method is not enough since there are systems that do not terminate if sorts are
forgotten; they instead terminate because of the sorts. Let us illustrate that by a natural example
given using an OBJ-like syntax.

? ——- The original publication is available at www.springerlink.com ——–
https://link.springer.com/chapter/10.1007/BFb0013818

This example defines a predicate is even over the integers. The idea is to define it over the
positive numbers first and to extend it to negative numbers by using the operation ”opposite”.

obj EVEN is

sorts Zero NzNeg Neg NzPos Pos Int Bool.

subsorts Zero < Neg < Int.

subsorts Zero < Pos < Int.

subsorts NzNeg < Neg.

subsorts NzPos < Pos.

op 0 :→ Zero.

op s : Pos→ NzPos.

op p : Neg → NzNeg.

op true :→ Bool.

op false :→ Bool.

op is even : Int→ Bool.

op is even : NzPos→ Bool.

op is even : NzNeg → Bool.

op opposite : NzNeg → NzPos.

rr is even(0)→ true. (1)

rr is even(s(0))→ false. (2)

rr (∀ x : Pos) is even(s(s(x)))→ is even(x). (3)

rr (∀ y : NzNeg) is even(y)→ is even(opposite(y)). (4)

rr opposite(p(0))→ s(0). (5)

rr (∀ y : NzNeg) opposite(p(y))→ s(opposite(y)). (6)

jbo

At run time, the set of rewrite rules is used to reduce expressions to their normal form. If the
set of rules is confluent and terminating, the normal forms always exist and are unique. In the case
of an expression of the form is even(s), the normal form is either true or false. Let us have a look
at the termination proof of this set of rules.

The rules (1), (2), (3), (5) and (6) can be oriented with a LPO using the following precedence:
”is even” > ”true”, ”is even” > ”false”, ”opposite” > ”s”. Equation (4) however, does not
terminate since it generates the infinite rewrite chain

is even(y)→ is even(opposite(y))→ is even(opposite(opposite(y)))...

However, using order-sorted arguments, we can see that the rule

is even(y)→ is even(opposite(y))

terminates. Indeed, in the left-hand-side, the argument of ”is even” is y of type NzNeg, whereas
opposite(y) is of type NzPos in the right-hand-side. So the left-hand-side can never match the
right-hand-side, as any subterm derived from this term, hence the rewrite system terminates.

This example shows that classical termination tools do not take into account the whole order-
sorted termination problem. Our aim is then to propose orderings that handle examples of the
previous kind, where the sorts play a main role. For that, we work on a disambiguated presentation
of the specification, where operators in terms are labeled by a rank.

Let us consider Equation (4) again, and label the operator ”is even” with a rank. With their
new label, the occurences of the operator ”is even” become different in the left-hand-side and in the
right-hand-side. With respect to the sort of its argument, the operator ”is even” is disambiguated;
its rank is ”is even” : NzNeg → Bool in the left-hand-side. Similarly, the top operator of the
right-hand-side has the rank ”is even” : NzPos → Bool. If now an LPO is used on the order-
sorted algebra, and if distinct operators have different ranks, the precedence ”is even” : NzNeg →
Bool > ”is even” : NzPos → Bool and ”is even” : NzNeg → Bool > ”opposite” leads to the
conclusion is evenNzNeg→Bool(y) >LPO is evenNzPos→Bool(opposite(y)). LPO has been singled
out from other existing orderings because it is both simple and covers a large number of standard
examples.

Note that the influence of the type structure on termination of rewrite systems is known and a
famous case is λ-calculus [10]. But typed λ-calculus has a hard and specific proof of termination,
and we propose here a method available for typed rewrite systems in general.

On the previous example, considering terms and operators without sort arguments corresponds
to the ambiguous presentation of the specification EV EN . As shown on this example, this presen-
tation is not adequate for termination of rules, since Rule (4) seems to be not terminating at this
level. When we give an unambiguous rank to operators (for example ”is even” : NzNeg → Bool
and ”is even” : NzPos→ Bool), we consider the disambiguated presentation of the specification.
There is enough information at this level to ensure termination of Rule (4).

Our aim is to establish rigorously this new LPO on disambiguated terms. This requires to
define precisely the concept of disambiguated presentation of order-sorted specifications. We first
have to define a rewriting relation on disambiguated terms, on which LPO will be applied in order
to prove termination. For that, we introduce the notion of minimal signature, which ensures that
the rank of any operator in a term remains the same, when the arguments of the operator are
changed by substitution, even if they get a smaller lowest sort. We then have to prove the algebraic
properties of the ordering: replacement property, subterm property, stability by substitution. We
finally give a termination theorem similar to Dershowitz’ one [3], based on Kruskal’s theorem on
the disambiguated set of terms.

In Section 2, the definitions related to order-sorted algebras and rewriting are recalled, as well
as results on disambiguated order-sorted algebras. The existence of a set of lowest disambiguations
of terms is pointed out, and a rewriting relation is defined. The definition of the disambiguated
presentation of an order-sorted specification is then given and it is shown that termination of a
disambiguated term rewriting system implies termination of the corresponding order-sorted one.
Section 3 establishes that our extension of LPO is a simplification ordering on the set of lowest
disambiguations of terms, provided the signature is minimal. Section 4 establishes the termination
theorem in this context. Section 5 gives examples. One of them illustrates that this extension also
provides a termination tool for unsorted terminating systems, that usual orderings cannot handle.

2 Order-sorted rewriting

In this section, we give basic notions on order-sorted algebras, following [7]. We recall the concept
of regularity for a signature, which ensures the existence of a free term algebra, and the existence
of a least sort for any term of the algebra.

Then, we introduce order-sorted rewriting, and the notion of sort-decreasing rewrite rules, which
is required when rewriting is used as an operational method in languages like OBJ3. Indeed, only
sort-decreasing order-sorted systems are complete with respect to deduction as defined in [7, 13,
6]. We also introduce the notion of lowest disambiguation of terms, and define a disambiguated
rewriting relation on them.

2.1 Signatures and carriers

Given an index set S, an S-sorted set A is a family of sets, one for each s ∈ S; we write {As|s ∈ S}.
Similarly, given two S-sorted sets A and B, an S-sorted function f : A→ B is an S-indexed family
f = {fs : As → Bs|s ∈ S}. Let us assume a fixed partially ordered set (S,≤), called the sort set.

An order-sorted signature is a triple (S,≤, Σ), where S is a sort set, Σ is an S∗×S -indexed
family {Σw,s|w ∈ S∗, s ∈ S} and (S,≤) is a partially ordered set. Elements of (sets in) Σ are called
operators. When the sort set S is clear, we write Σ for (S,Σ). Similarly, when the partially ordered
set (S,≤) is clear, we write Σ for (S,≤, Σ).

For operators, we write f : w → s or f : w, s ∈ Σ for f ∈ Σw,s to emphasize that f denotes
a function with arity w and co-arity (or value sort) s. The pair w → s is called rank of f . An
important special case is when w is λ, the empty string; then f ∈ Σλ,s denotes a constant of sort
s.

Note that the ordering ≤ on S extends to strings of the same length in S∗ by s1...sn ≤ s′1...s′n
iff si ≤ s′i for i = 1, ..., n; similarly, ≤ extends to pairs (w, s) ∈ S∗×S by (w, s) ≤ (w′, s′) iff w ≤ w′
and s ≤ s′ .

Let (S,≤, Σ) be an order-sorted signature. A (S,≤, Σ)-algebra A consists of a family {As|s ∈ S}
of subsets of A, called the carriers of A, and a function fA : Aw → As for each f ∈ Σw,s where
Aw = As1 × ...×Asn when w = s1...sn and Aw is a one point set when w = λ, such that:

1. s ≤ s′ in S implies As ⊆ As′ and
2. f ∈ Σw,s ∩ Σw′,s′ with s′ ≤ s and w′ ≤ w implies fA : Aw → As equals fA : Aw′ → As′ on
Aw′ .

We may write fw,sA instead of fA : Aw → As; moreover, the second condition means that we
can often omit the superscript w, s without ambiguity.

2.2 Order-sorted term algebra and rewriting

Following [7], we now give the definition of the order-sorted Σ-term algebra TΣ as the least
family {TΣ,s|s ∈ S} of sets satisfying the following conditions:

– Σλ,s ⊆ TΣ,s for s ∈ S;
– TΣ,s′ ⊆ TΣ,s if s′ ≤ s;
– if f ∈ Σw,s with w = s1...sn 6= λ and if ti ∈ TΣ,si then (the string) f(t1...tn) is in TΣ,s.

A term is an element of TΣ . Following [11], we denote by D(t) the set of occurrences of t i.e. the
domain of the term t viewed as a partial operation from N ∗ to Σ. We denote by t|ω the subterm
of t at position ω and by t[ω ← t′] the result of the replacement by t′ of t|ω at ω ∈ D(t).

We restrict to the class of regular signatures. Essentially, regularity asserts that overloaded
operations are consistent under restriction to subsorts, so that each well-formed expression on the
function symbols has a least sort.

When there is a finite set of sorts, regularity can be expressed in the following way. An order-
sorted signature Σ is regular iff for any w0 ∈ S∗ such that there is a f ∈ Σw,s with w0 ≤ w, there
is a least (w′, s′) ∈ S∗ × S such that f ∈ Σw′,s′ and w0 ≤ w′.

If the signature is regular, for any t ∈ TΣ , there is a least s ∈ S, called the lowest sort of t
and denoted LS(t), such that t ∈ TΣ,s. From now on, we assume that all order-sorted signatures
are regular.

An S-sorted variable set is an S-indexed family V = {Vs|s ∈ S} of disjoint sets. A variable
x of sort s is also denoted x : s. In this paper, variables are always sorted.

Given an order-sorted signature (S,≤, Σ) and a variable set V that is disjoint from Σ, (S,≤
, Σ(V)) is defined by Σ(V)λ,s = Σλ,s ∪ Vs and Σ(V)w,s = Σw,s for w 6= λ.

Note that if Σ is regular, so is Σ(V). We can now form TΣ(V) and then view it as a Σ-algebra;
let us denote this Σ-algebra by TΣ(V). V(t) denotes the set of variables of the term t. TΣ(V) is
the free Σ-algebra generated by V .

An order-sorted rewrite rule is a triple (X, l, r) where X is a variable set and l, r ∈ TΣ(X)
with LS(l) and LS(r) in the same connected component of (S,≤) and such that V(r) ⊆ V(l). We
will use the notation ((∀X)l → r). When the variable set X can be deduced from the context

(typically just the variables occurring in l and r, whose sorts can be uniquely determined or have
been previously declared), we allow it to be omitted, i.e., we allow unquantified rewrite rules.

For (S,≤, Σ) an order-sorted signature and X,Y two S-sorted variable sets, a substitution is
an S-sorted function σ : X → TΣ(Y), that can be extended in a unique manner into σ : TΣ(X)→
TΣ(Y).

Let R be a set of rewrite rules. Let us now define the order-sorted rewriting relation. A
match from a term t ∈ TΣ(X) to a term t′ ∈ TΣ(Y) is a substitution σ such that σt = t′.

A term t ∈ TΣ(Y) rewrites to t′ with a rewrite rule ((∀X)l→ r) in R at occurrence ω, which
is denoted t→R

Y t′ = t[ω ← σr] whenever

1. there is a match σ : X → TΣ(Y) from l to t at occurrence ω (σl = t|ω)
2. there is a sort s such that, for x a variable of sort s, t[ω ← x] is a well-formed term and
σl, σr ∈ TΣ,s(Y).

The symmetric reflexive transitive closure of→R
Y is called order-sorted replacement of equals by

equals. For the notion of order-sorted replacement of equals by equals to be correct and complete
with respect to order-sorted deduction, the term rewriting system has to be sort-decreasing [13].
An order-sorted term rewriting system R on TΣ(Y) is sort-decreasing iff ∀t, t′ ∈ TΣ(Y), t→R

Y t′

implies LS(t) ≥ LS(t′). If the set of sorts is finite or if each sort has a finite number of sorts below
it, a sufficient condition for sort-decreasingness of a term rewriting system is given by the following
theorem [13].

Theorem 1. An order-sorted term rewriting system R on TΣ(Y) is sort-decreasing if each rule
of R is, i.e., if for any rule ((∀X)l→ r) in R, for any substitution σ, we have LS(σl) ≥ LS(σr).

From now on, we assume that rewrite systems are sort-decreasing. Remark that, in this case,
the condition (2) of the definition of order-sorted rewriting is always fulfilled.

An order-sorted specification is a pair (Σ,R), where Σ is an order-sorted signature and R
is an order-sorted term rewriting system defined on TΣ(Y).

2.3 Disambiguations

As suggested in the introduction, we consider the termination problem at the disambiguated pre-
sentation level, whose semantics will be described here. We need to consider disambiguated terms,
which means that any operator in a term has to receive a rank. The idea of the ordering on terms
is based on a precedence on overloaded operators. As shown in the previous example, we want to
state ”is even” : NzNeg → Bool > ”is even” : NzPos→ Bool.

For the term is even(y), the operator ”is even” can be disambiguated in two forms: since the
sort of y is NzNeg, ”is even” can be labeled by NzNeg → Bool or by Int→ Bool.

The general idea is to exhibit for each S-order-sorted signature Σ a corresponding S-order-
sorted signature Σ] and a set M of axioms such that an order-sorted Σ-algebra is (up to an iso-
morphism) “essentially the same” as an order-sorted Σ]-algebra satisfying M . The disambiguation
process produces another order-sorted algebra and terms are reduced using order-sorted matchings
and rules whose left-hand sides are order-sorted terms, while their right-hand sides are kept in
disambiguated form.

Given an order-sorted signature Σ with a sort ordering (S,≤), the corresponding Σ] has the
ordering (S,≤) as well and a function symbol fw,s ∈ Σ]

w,s for each f ∈ Σw,s (including the case of
constants where w = λ), given by the morphism M defined using the following rewrite rules:

∀(f : s1...sn → s), (f : s′1...s
′
n → s′) ∈ Σ

si ≤ s′i for (0 ≤ i ≤ n) and s ≤ s′
⇒

(∀x1 : s1 ∈ X, ..., ∀xn : sn ∈ X), fs′1...s′n→s′(x1, ..., xn) 7→M fs1...sn→s(x1, ..., xn)

The term fs1...sn→s(x1, ..., xn) is called a disambiguation of the term f(x1, ..., xn).

Lemma 1. (Kirchner & all [13]) If Σ is regular and < is noetherian on S then M is terminating,
Church-Rosser and sort-decreasing.

Recall that, in this work, any signature is supposed to be regular. Let us introduce now a
particular disambiguation for any term of TΣ(Y), that is the lowest disambiguation. The lowest
disambiguation LD(t) of a term t ∈ TΣ(Y) is the M -normal form of any disambiguation of t.

Remark that by Lemma 1, LD(t) always exists and is unique for any term t ∈ TΣ(Y). The lowest
disambiguation can then be seen as a bijection of TΣ(Y) on the set of all lowest disambiguations
LD(TΣ(Y)), denoted from now on by LDT (Y). Note that the signature of LDT (Y) is Σ].

Let us now give the algorithm that computes in a bottom-up process the lowest disambiguation
of a term.

– If t is a variable x ∈ Xs, LD(t) = x.
– Else t = f(t1, ..., tn). LD(t) = fs′′1 ...s′′n→s′′(LD(t1), ..., LD(tn)) = t0, where fs′′1 ...s′′n→s′′ is the

smallest operator such that LS(ti) ≤ s′′i .

The previous smallest operator always exists since the signature Σ is supposed to be regular.
Note that the lowest sort of t LS(t) is s′′. Moreover, any term t = fs1...sn→s(t1...tn) of LDT (Y)
has a unique sort S(t) = s.

Definition 1. Let SPEC be an order-sorted specification, whose signature Σ is regular, and whose
term rewriting system is R = (li → ri, i ∈ [1..n]) on TΣ(Y). Its disambiguated presentation
is the order-sorted specification whose signature is Σ], whose term rewriting system is LD(R) =
(LD(lhsi)→ LD(rhsi), i ∈ [1..n]) on LDT (Y).

For proving termination of the term rewriting system of an order-sorted specification, we will
prove termination of the corresponding term rewriting system in its disambiguated presentation.
We will state for that that the order-sorted rewriting relation is included in the corresponding
disambiguated rewriting relation, we give now the definition of.

Let us first define the substitution on LDT (Y), which requires some care as shown on the
following example. Let Σ0 be the signature:

sorts Nat Int.

subsorts Nat < Int.

op + : Nat Nat→ Nat.

op + : Int Int→ Int.

var x : Int.

var y : Nat.

The terms t = x +Int Int→Int y and t′ = y +Nat Nat→Nat y are in LD(TΣ0
(Y)). Let σ be the

substitution σ : x 7→ y +Nat Nat→Nat y. We have σt = (y +Nat Nat→Nat y) +Int Int→Int y,
which is not in LD(TΣ0(Y)). For the instantiated term to be in LD(TΣ0(Y)), the top symbol
+Int Int→Int has to be replaced by +Nat Nat→Nat. So the substitution is not an internal operation
on LD(TΣ0

(Y)).
A substitution applied to a term replaces variables by terms of smaller sorts. So for the substi-

tution to be internal in the set of terms in lowest disambiguated form LDT (Y), the rank of any
operator has to remain the same, when the arguments of the operator are instantiated in a smaller
lowest sort. For this requirement, we give a sufficient condition on the signature: the minimality
defined below.

Definition 2. An order-sorted signature Σ is minimal if and only if for each f : w → s in Σ, if
f : w′ → s′ is in Σ, then w′ = w or w′ is incomparable with w. In the same way, Σ] is minimal
if and only if for each fw→s in Σ], if fw′→s′ is in Σ], then w′ = w or w′ is incomparable with w.

Obviously, Σ] is minimal if and only if Σ is minimal. From now on, signatures Σ are supposed
to be minimal.

To become minimal, the signature of the example EV EN has to be transformed. The operator
”is even” has three possible ranks: Int → Bool, NzNeg → Bool and NzPos → Bool such that
Int > NzNeg (and Int > NzPos), which contradicts the minimality condition. Minimality is
obtained if the rank Int→ Bool of ”is even” is removed. But ”is even” is no more defined for 0.
In order to restore a full domain for ”is even”, one adds the rank Zero → Bool. Thus, the term
is even(x) where the sort of x is Int is no more well-defined. We then have to split Rule (3) in

(∀ x : NzPos) is even(s(s(x)))→ is even(x)

and

is even(s(s(0)))→ is even(0).

The specification with a signature in minimal form is then (the differences with the previous
specification EV EN are bold-faced below):

obj MINIMAL EVEN is

sorts Zero NzNeg Neg NzPos Pos Int Bool.

subsorts Zero < Neg < Int.

subsorts Zero < Pos < Int.

subsorts NzNeg < Neg.

subsorts NzPos < Pos.

op 0 :→ Zero.

op s : Pos→ NzPos.

op p : Neg → NzNeg.

op true :→ Bool.

op false :→ Bool.

op is even : Zero→ Bool.

op is even : NzPos→ Bool.

op is even : NzNeg → Bool.

op opposite : NzNeg → NzPos.

rr is even(0)→ true. (1)

rr is even(s(0))→ false. (2)

rr (∀ x : NzPos) is even(s(s(x)))→ is even(x). (3)

rr is even(s(s(0)))→ is even(0). (4)

rr (∀ y : NzNeg) is even(y)→ is even(opposite(y)). (5)

rr opposite(p(0))→ s(0). (6)

rr (∀y : NzNeg) opposite(p(y))→ s(opposite(y)). (7)

jbo

When the signature is finite (i.e. when the set of sorts is finite, the set of operators is finite
and the set of ranks of any operator is finite), the problem of transforming a signature into a
minimal one is decidable. We are now finishing designing algorithms for automatically performing
this transformation, as well as the transformation of corresponding rewrite rules.

Definition 3. If Σ is a minimal signature, a substitution on LDT (Y) is an S-sorted function
σ : X → LDT (Y), that can be extended in a unique way into σ : LDT (X)→ LDT (Y).

Definition 4. Disambiguated rewriting: Let R be a rewrite system defined on LDT (Y). A
term t ∈ LDT (Y) rewrites to t′ with a rewrite rule ((∀X)l → r) in R at occurrence ω, which is
denoted t ↪→R

Y t′ = t[ω ← σr] whenever

1. there is a match σ : X → LDT (Y) from l to t at occurrence ω (a substitution σ such that
σl = t|ω)

2. t[ω ← σr] is a well-formed term of LDT(Y).

Note that this definition is different from order-sorted rewriting on disambiguations developed in
OBJ3 [13]. Sort-decreasingness can be defined on LDT (Y) in the following way.

Definition 5. A term rewriting system R on LDT (Y) is sort-decreasing if each rule of R is,
i.e., if for any rule ((∀X)l→ r) in R, for any substitution σ of LDT (Y), we have S(σl) ≥ S(σr).

Remark that when the system R is sort-decreasing on LDT (Y), then (1)⇒ (2) in the definition
of disambiguated rewriting.

A lemma is now given, which avoids the need to ensure sort-decreasingness of disambiguated
term rewriting systems, when they are deduced from sort-decreasing order-sorted ones.

Lemma 2. Let R be an order-sorted set of rules (li → ri, i ∈ [1..n]) on TΣ(Y). If R is sort-
decreasing on TΣ(Y), then (LD(li)→ LD(ri), i ∈ [1..n]) is sort-decreasing on LDT (Y).

Proofs are omitted for lack of space. The reader can find them in [4].
The following theorem is a key of our termination proof method. It asserts that an order-sorted

rewriting relation is included in the disambiguated relation, which is built from it. For proving
termination of an order-sorted term rewriting system R on TΣ(Y), it then becomes enough to
prove termination of its disambiguated form LD(R) on LDT (Y).

Theorem 2. Let R be an order-sorted term rewriting system and t and t′ two terms of TΣ(Y).
Then t→R t′ implies LD(t) ↪→LD(R) LD(t′).

Proof. It lies on the fact that Σ is minimal and R is sort-decreasing. For a complete proof, see [4].
The signature of MINIMAL EV EN is regular, and its rules are sort-decreasing. Its disam-

biguated presentation is (the differences with the previous specification MINIMAL EV EN are
bold-faced):

obj UNAMBIGUOUS MINIMAL EVEN is

sorts Zero NzNeg Neg NzPos Pos Int Bool.

subsorts Zero < Neg < Int.

subsorts Zero < Pos < Int.

subsorts NzNeg < Neg.

subsorts NzPos < Pos.

op 0→Zero :→ Zero.

op sPos→NzPos : Pos→ NzPos.

op pNeg→NzNeg : Neg → NzNeg.

op true→Bool :→ Bool.

op false→Bool :→ Bool.

op is evenZero→Bool : Zero→ Bool.

op is evenNzPos→Bool : NzPos→ Bool.

op is evenNzNeg→Bool : NzNeg → Bool.

op oppositeNzNeg→NzPos : NzNeg → NzPos.

rr is evenZero→Bool(0→Zero)→ true→Bool. (1)

rr is evenNzPos→Bool(sPos→NzPos(0→Zero))→ false→Bool. (2)

rr (∀ x : NzPos) is evenNzPos→Bool(sPos→NzPos(sPos→NzPos(x)))

→ is evenNzPos→Bool(x). (3)

rr is evenNzPos→Bool(sPos→NzPos(sPos→NzPos(0)))

→ is evenZero→Bool(0). (4)

rr (∀ y : NzNeg) is evenNzNeg→Bool(y)

→ is evenNzPos→Bool(oppositeNzNeg→NzPos(y)). (5)

rr oppositeNzNeg→NzPos(pNeg→NzNeg(0→Zero))→ sPos→NzPos(0→Zero). (6)

rr (∀y : NzNeg) oppositeNzNeg→NzPos(pNeg→NzNeg(y))

→ sPos→NzPos(oppositeNzNeg→NzPos(y)). (7)

jbo

For more readability, ranks are omitted in unambiguous operators (non overloaded operators).
The previous set of rules is then written:

rr is evenZero→Bool(0)→ true. (1)

rr is evenNzPos→Bool(s(0))→ false. (2)

rr (∀ x : NzPos) is evenNzPos→Bool(s(s(x)))→ is evenNzPos→Bool(x). (3)

rr is evenNzPos→Bool(s(s(0)))→ is evenZero→Bool(0). (4)

rr (∀ y : NzNeg) is evenNzNeg→Bool(y)

→ is evenNzPos→Bool(opposite(y)). (5)

rr opposite(p(0))→ s(0). (6)

rr (∀y : NzNeg) opposite(p(y))→ s(opposite(y)). (7)

Hence, for proving the termination of the term rewriting system of the specification MINIMAL -
EVEN, it is sufficient to prove the termination of the term rewriting system of the specification
UNAMBIGUOUS MINIMAL EVEN.

3 Extended LPO is a simplification ordering

We are now ready to define our new ordering on LDT (Y) called Order-sorted Ordering (OSO in
short). As suggested by the example in Section 1, it is an extension of LPO [12].

Definition 6. Lexicographic Path Ordering (LPO): Let be >Σ a partial ordering on Σ called
precedence. The LPO on TΣ(Y) is defined by: t = f(t1...tm) >LPO t′ = g(t′1...t

′
n) iff:

1. f = g and t1...tm >lexLPO t′1...t
′
n and for each j ∈ [1..n], t >LPO t′j (>lexLPO is the lexicographic

extension of >LPO) or else

2. f >Σ g and for each j ∈ [1..n], t >LPO t′j or else

3. there exists i ∈ [1..m] such that ti >LPO t′ or ti = t′

Definition 7. The Order-sorted Ordering OSO is the LPO on LDT (Y).

The precedence for OSO is denoted by >Σ] , provided the signature of LDT (Y) is Σ]. We
now aim to prove that OSO is a simplification ordering on LDT (Y), i.e., it has the replacement
property, the subterm property and is stable by substitution. These three notions will be recalled
in the following. Note that the deletion property [2] is not needed since the operators have fixed
arity in LDT (Y).

Definition 8. Stability by substitution: An ordering > on LDT (Y) is stable by substitution
iff for each t and t′ in LDT (Y), for each substitution σ of LDT (Y): t > t′ ⇒ σt > σt′.

Proposition 1. Let us extend the precedence on Σ] to Σ] ∪ Y in such a way that:

(Var 1) x ./ y for x, y ∈ Y (where ./ means ’not comparable with’)
(Var 2) x ./ fs1...sm→s for x ∈ Y and fs1...sm→s ∈ Σ].

If in addition, Σ] is minimal, then the OSO on LDT (Y) is stable by substitution.

Proof. The proof is by structural induction on LDT (Y). The minimality of the signature is here a
key property.

Let us now ensure the replacement property. We assume from now on that (Var 1) and (Var 2)
are fulfilled for any precedence defining OSO.

Proposition 2. The OSO has the replacement property on LDT (Y), which means that for any t
and t′ of LDT (Y), then t >OSO t′ implies hw→s(..t..) >OSO hw→s(..t

′..) for any context hw→s(.. ..)
such that hw→s(..t..) and hw→s(..t

′..) are in LDT (Y).

Proof. By hypothesis, t >OSO t′. Then, ..t.. >lexOSO ..t′.. by definition of the lexicographic ordering.
Let us use Case 1 of the definition of OSO to conclude that hw→s(..t..) >OSO hw→s(..t

′..).

Proposition 3. The OSO is a strict ordering and has the subterm property.

We thus can state the following theorem.

Theorem 3. If Σ] is minimal, the OSO is a simplification ordering on LDT (Y).

4 Termination theorem

Recall the first termination theorem of [2], which our work is based on.

Theorem 4 (Dershowitz). A finite rewriting system R over a set of terms T is terminating if
there exists a simplification ordering > on T such that for each rule l→ r of R, we have l > r.

Let us now establish that this theorem can be extended to LDT (Y).

Theorem 5. A finite rewriting system R on the set LDT (Y), whose signature Σ] is minimal, is
terminating if there exists a simplification ordering > on LDT (Y) such that for each rule l→ r of
R, we have l > r.

The proof of this theorem is based on Kruskal’s theorem, on the embedding lemma, and on the
fact that if g > d for each rule g → d of R, then t ↪→R t′ implies t > t′. The proof of Kruskal’s
theorem is using general reasoning on term sequences and extracted subterm subsequences. It thus
doesn’t depend of the set of terms it is applied on. Hence, we claim that it is available on order-
sorted term algebras. Both last properties, however, have to be carefully examined, because of the
sort mechanism on terms.

Definition 9. The homeomorphic embedding relation D on terms in LDT (Y) is defined by: t =
fs1,s2...sm→s(t1...tm) D t′ = gs′1,s′2...s′m→s′(t

′
1...t

′
n) iff:

1. fs1,s2...sm→s = gs′1,s′2...s′m→s′ and for each i ∈ [1..m], ti D t′i or else

2. there exists i ∈ [1..m] such that ti D t′

Lemma 3. (Embedding lemma) Let t and t′ be terms in LDT (Y) and let Σ] be minimal. If
tD t′, then t ≥ t′ in any simplification ordering > over LDT (Y) (t ≥ t′ means that t > t′ or t = t′

).

Proof. The proof is by induction on the size (number of occurences of operators) of t.

Lemma 4. Let > be a simplification ordering on LDT (Y) and let Σ] be minimal. If l > r for any
rule l→ r of a term rewriting system R, then t ↪→R t

′ implies t > t′.

Proof. It requires sort-decreasingness of R on LDT (Y). Since we only consider sort-decreasing
order-sorted rewriting systems on TΣ(Y), their disambiguated form are sort-decreasing on LDT (Y),
by Lemma 2. Minimality is a key property for this proof as well as for the proof of Lemma 3.

Proof of Theorem 5: Let us suppose the existency of an infinite rewrite chain for R: t1 ↪→
t2 ↪→ ... ↪→ tn ↪→ By Kruskal’s Theorem, there exists i ≤ j such that ti E tj , and ti ≤ tj by
Embedding Lemma. On the other hand, we get t1 > t2 ... > tn > ... by Lemma 4. Then ti > tj
by transitivity of >, which contradicts the asymmetry of >. �

5 Examples

We are now ready to prove termination of the rule system of the specification ”UNAMBIGU -
OUS MINIMAL EV EN”. With the precedence

is evenZero→Bool >Σ] true, is evenNzPos→Bool >Σ] false,

is evenNzPos→Bool >Σ] is evenZero→Bool, is evenNzNeg→Bool >Σ] is evenNzPos→Bool,

is evenNzNeg→Bool >Σ] opposite, opposite >Σ] s,

one gets:

is evenZero→Bool(0) >OSO true,

is evenNzPos→Bool(s(0)) >OSO false,

is evenNzPos→Bool(s(s(x))) >OSO is evenNzPos→Bool(x),

is evenNzPos→Bool(s(s(0))) >OSO is evenZero→Bool(0),

is evenNzNeg→Bool(y) >OSO is evenNzPos→Bool(opposite(y)),

opposite(p(0)) >OSO s(0),

opposite(p(y)) >OSO s(opposite(y)).

By Theorem 3 and Theorem 5, the rule system is terminating. Hence, the rule system ofMINIMAL -
EV EN is terminating, by Theorem 2.

Let us now look at a second example. We give a specification of the equality on naturals.

obj NAT EQUALITY is

sorts Zero NzNat Nat Bool.

subsorts Zero < Nat.

subsorts Nznat < Nat.

op 0 :→ Zero.

op true :→ Bool.

op false :→ Bool.

op s : Nat→ NzNat.

op equal : NzNat NzNat→ Bool.

op equal : Zero Zero→ Bool.

op equal : Nznat Zero→ Bool.

op equal : Zero NzNat→ Bool.

rr (∀ x : NzNat) equal(x, x)→ true (1)

rr equal(0, 0)→ true. (2)

rr (∀ x, x′ : NzNat) equal(s(x), s(x′))→ equal(x, x′). (3)

rr (∀ x : NzNat) equal(s(x), s(0))→ equal(x, 0). (4)

rr (∀ x : NzNat) equal(s(0), s(x))→ equal(0, x). (5)

rr equal(s(0), s(0))→ equal(0, 0). (6)

rr (∀ y : NzNat) equal(y, 0)→ equal(0, y). (7)

rr (∀ x : NzNat) equal(x, s(x))→ false. (8)

rr equal(0, s(0))→ false. (9)

jbo

In the unsorted case, Rule (7) would not terminate: it corresponds to the commutativity of the
operation ”equal” with a null argument. But if y is of sort NzNat, then the left-hand side cannot
match the right-hand side, hence the rule is terminating. With an appropriate precedence (see [4]),
OSO gives a termination proof for the above rewrite system.

Let us now illustrate that our method treats termination cases, that no known ordering could
take into account till now.

Consider the rule f(0, 1, x) → f(x, x, x), extracted from a counter-example of Toyama to the
termination of the direct sum of term rewriting systems [15]. It is clearly terminating but its
termination cannot be proved with known unsorted orderings. We will see that OSO gives a
termination proof for this rule, when typing it without lack of generality.

Let s be the most general sort. Let Zero be the sort of the constant 0, One the sort of constant
1 and N01 the sort of any term except 0 and 1. To express the operator f of the term f(0, 1, x),
one needs the three typed operators:

f : Zero One Zero→ s, f : Zero One One→ s, f : Zero One N01→ s.

To express the operator f of the term f(x, x, x), one needs the three typed operators:

f : Zero Zero Zero→ s, f : One One One→ s, f : N01 N01 N01→ s.

Hence the initial untyped rule is splitted in the three following forms:

f(0, 1, 0)→ f(0, 0, 0)

f(0, 1, 1)→ f(1, 1, 1)

(∀ x : N01) f(0, 1, x)→ f(x, x, x)

The complete specification equivalent to the initial rule is then:

obj ZERO−ONE is

sorts Zero One N01 s.

subsorts Zero,One,N01 < s.

op 0 :→ Zero.

op 1 :→ One.

op f : Zero One Zero→ s.

op f : Zero One One→ s.

op f : Zero One N01→ s.

op f : Zero Zero Zero→ s.

op f : One One One→ s.

op f : N01 N01 N01→ s.

rr : f(0, 1, 0)→ f(0, 0, 0). (1)

rr : f(0, 1, 1)→ f(1, 1, 1). (2)

rr : (∀ x : N01) f(0, 1, x)→ f(x, x, x). (3)

jbo

Note that its signature is regular and minimal. Its rules are sort-decreasing. Its disambiguated
presentation is:

obj DISAMBIGUATED− ZERO−ONE is

sorts Zero One N01 s.

subsorts Zero,One,N01 < s.

op 0 :→ Zero.

op 1 :→ One.

op fZero One Zero→s : Zero One Zero→ s.

op fZero One One→s : Zero One One→ s.

op fZero One N01→s : Zero One N01→ s.

op fZero Zero Zero→s : Zero Zero Zero→ s.

op fOne One One→s : One One One→ s.

op fN01 N01 N01→s : N01 N01 N01→ s.

rr : fZeroOneZero→s(0, 1, 0)→ fZeroZeroZero→s(0, 0, 0). (1)

rr : fZeroOneOne→s(0, 1, 1)→ fOneOneOne→s(1, 1, 1). (2)

rr : (∀ x : N01) fZeroOneN01→s(0, 1, x)→ fN01N01N01→s(x, x, x). (3)

jbo

Thus, with the precedence:

fZeroOneZero→s >Σ] fZeroZeroZero→s

fZeroOneOne→s >Σ] fOneOneOne→s

fZeroOneN01→s >Σ] fN01N01N01→s

we have li >OSO ri for the three rules li → ri, i ∈ [1, 2, 3]. Hence the term rewriting system of
DISAMBIGUATED−ZERO−ONE terminates. Thus, the term rewriting system of ZERO−
ONE also terminates.

6 Conclusion

In this work, we have given a tool for proving termination of order-sorted rewriting, focusing
especially on cases where rules are terminating because of sorts arguments (that is, they would

not terminate in the unsorted case). An extension of Lexicographical Path Ordering was proposed,
the Order Sorted Ordering, to prove termination of rewriting on disambiguated sets of terms.
It has then been shown that for proving termination of an order-sorted term rewriting system,
it is sufficient to prove termination of its corresponding disambiguated term rewriting system.
A sufficient condition on the signature was assumed: the minimality, to define a disambiguated
rewriting relation and to establish the validity of this extension. Thus, we have proved termination
of examples, that could not be handled by any existing ordering. We will soon be able to propose
algorithms for automatically transforming a signature into a minimal one, and for automatically
adapting the corresponding set of rules.

Acknowledgments

We would like to thank Pierre Lescanne for his support and fruitful discussions, and Hélène Kirchner
for carefully reading a previous version of this paper.

References

1. G. Bernot, M. Bidoit, and C. Choppy. Abstract data types with exception handling: an initial approach
based on a distinction between exceptions and errors. Theoretical Computer Science, 46:13–45, 1986.

2. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17:279–301, 1982.
3. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1 & 2):69–116, 1987.
4. I. Gnaedig. Termination of rewriting in order-sorted algebras. Technical Report 91-R-108, Centre de

Recherche en Informatique de Nancy, 1991.
5. I. Gnaedig. ELIOS-OBJ: Theorem proving in a specification language. In B. Krieg-Brückner, editor,

Proceedings of the 4th European Symposium on Programming, volume 582 of Lecture Notes in Computer
Science, pages 182–199. Springer-Verlag, February 1992.

6. I. Gnaedig, Claude Kirchner, and Hélène Kirchner. Equational completion in order-sorted algebras.
Theoretical Computer Science, 72:169–202, 1990.

7. J. A. Goguen and J. Meseguer. Order-sorted algebra I: Partial and overloaded operations, errors and
inheritance. Technical report, SRI International, Computer Science Lab, 1988. Given as lecture at a
Seminar on Types, Carnegie-Mellon University, June 1983.

8. J. A. Goguen, J. Meseguer, and D. Plaisted. Programming with parameterized abstract objects in
OBJ. Theory And Practice of Software Technology, pages 163–193, 1982.

9. John V. Guttag, James J. Horning, and J. M. Wing. Larch in five easy pieces. Technical report, Digital
Systems Research Center, 1985.

10. J. Roger Hindley and Johnathan P. Seldin. Introduction to Combinators and Lambda-calculus. Cam-
bridge University, 1986.

11. G. Huet and D. Oppen. Equations and rewrite rules: A survey. In R. V. Book, editor, Formal Language
Theory: Perspectives and Open Problems, pages 349–405. Academic Press inc., 1980.

12. S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path ordering. Inria, Rocquencourt,
1982.

13. Claude Kirchner, Hélène Kirchner, and J. Meseguer. Operational semantics of OBJ-3. In Proceedings
of 15th International Colloquium on Automata, Languages and Programming, volume 317 of Lecture
Notes in Computer Science, pages 287–301. Springer-Verlag, 1988.

14. G. Smolka. Tel (version 0.9), report and user manual. SEKI report SR-87-11, Universität Kaiserslautern
(Germany), 1988.

15. Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems. Journal of
the ACM, 34(1):128–143, January 1986.

