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Abstract. Particulate matter, a.k.a. particle pollution, is a complex mixture of small particles
and liquid droplets that are present in the air. Once inhaled, these particles can affect the heart
and lungs and cause serious health problems. A recent study, based on geographically referenced
datasets of pollutant emissions has shown that non-exhaust related pollution is at present
dominant and increasing. Emissions from paved roads are poorly estimated due to the lack of
knowledge about the resuspension process. Recent literature works have attempted to provide
a reliable framework for the estimation of emission factors. Estimations are obtained by linear
regression with a single-valued discriminant for the acceptance/rejection of the experimental
dataset based on the evaluation of the r-squared coefficient. In this paper, we explore alternative
methods to evaluate the “quality” of the data and consequently discriminate whether a given
sample can be accepted to provide estimation of the emission factors. Uncertainties are
characterised both in the data and in the statistical model. Measurements are expressed with
interval-valued datapoints to include the experiment precision directly within the estimation
process. Alternative fitting techniques that avoid the use a single-valued discriminant are also
explored for an inclusive estimation of the emission factors.

1. Motivations for the study
Road transport emissions are a major contributor to ambient particulate matter (PM)
concentrations and have been recognised as a cause of life threatening health effects [1]. Motor
vehicle emissions, which represent a main source of urban pollutant emissions, can be divided
into two main categories depending on their source: exhaust (engine) emissions and non-
exhaust emissions. Exhaust emissions result from incomplete fuel combustion and lubricant
volatilisation that occur during the combustion process. Non-exhaust emissions arise from
brakes, tires, general vehicle wear and resuspension due to traffic-induced turbulence [2]. The
London Atmospheric Emissions Inventory [3] database of geographically referenced datasets of
pollutants emissions and sources in Greater London envisages that non-exhaust related PM
emissions are at present dominant and the situation is going to worsen if countermeasures are
not taken.
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It is expected that the progressive transition towards the electric mobility, and the consequent
increasing vehicle weight, may produce higher emissions of non-exhaust PM, and therefore higher
deposition of dust on the roads [4].

2. Uncertainty estimation
The proper assessment of emissions, especially non-exhaust related, for the quantification of
emission factors is a difficult task and, at present, there is still no standardised testing protocol
and/or measurement method. Uncertainty comes in different forms and affects the experiment
setting, the measurements, and the model used to obtain the emission factors. Particularly
uncertain is the on-road testing and measurement of emitted dust particles in real driving
conditions, in contrast to laboratory testing, which measurements are performed under controlled
conditions. This is due to the continuously changing factors, like flow conditions, driving
dynamics, fine dust particles from other sources, etc.

The lack of a unified procedure for the assessment of road-dust emissions makes the
experiment setting vary depending on the country, road and air conditions, e.g. state of
pavement, temperature, humidity, rainfall, climate, etc. Several approaches have been proposed
in the literature, however lacking a unified framework. Strong assumptions are usually made
to quantify the mass of pollutant obtained during the experiments. The assumptions mainly
entail:

• the physical model used to quantify the emission flux of particles;

• the statistical model used to estimate the emission factors.

In this study the focus is on the second assumption, the statistical model.
The PM10 emission factors are obtained by means of a specific sampler utilised by Orza et

al. [7] that measures the micro-scale vertical profiles of particle concentration. PM10 values are
obtained by fitting the physical model of dust mass balance to the experimental data.

3. Current practice for the estimation of road emissions
Emission factors are estimated using the micro-scale vertical profiles of particle matter
concentrations [7]. The technique estimated the horizontal aeolian sediment fluxes. The sampler
consists of a number of cylindrical canisters of fixed height and diameter (usually 6cm height
and 14 cm diameter). The canisters are vertically arranged and spaced by 1 cm.

The samplers are exposed to ambient air for passive collection of particulate matter [6].

3.1. Physical model for dust deposition flux
The terminal concentration c divided by the area of deposition and the sampling time provides
the deposition flux J which can then be converted to emission rate [5].

The approach makes use of a simple model based on mass balance of dust deposited on the
road surface. Let M be the mass of road dust per unit area at a time t, and J the dust deposition
flux. Accepting that road dust removal (i.e. emission flux) is a continuous process described by
an unknown function of M, denoted by f(M), the time evolution of M must obey:

dM

dt
= J − f(M) (1)

Two additional assumptions are made: (i) J is constant in time, and (ii) f(M) increases
monotonically with M. Indeed, these hypotheses are often tacitly assumed.

If it is assumed that, at a certain time, the value of M is such that f(M) less than J, at the
next (infinitely close) time, M will increase as will f(M), so that the difference J e f(M) will
become smaller. In an infinite succession of such events, f(M) will progressively augment as its
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magnitude balances with J, and dM/dt approaches zero. As a result, in a sufficiently long time,
an equilibrium value of M will be reached.

3.2. Regression analysis for parameter estimation
The regression is performed by fitting the exponential model of Eq. 2 to the data as shown in
Figure 1. The obtained parameters a, b and c are then used to estimate the emission factors.

k(x) = a e−b x + c (2)

Figure 1. Augmented interval dataset.

Experimental data are often scattered and associated with limited precision. The coefficient
of determination, r2, a.k.a. r-squared coefficient (see Eq. 3) from the fitting procedure is used
to judge the acceptability of a given sample.

r2 = 1 −
∑

i(yi − fi)
2∑

i(yi − y)2
, y =

1

N

N∑
i

yi (3)

In Amato et al. [6] samples with values of r2 strictly smaller than 0.7 are discarded.
Contrarily, any sample with r2 ≥ 0.7 is accepted.

The procedure described in Amato et al. 2012 [6] does not consider the experimental
uncertainty inherently present in the data. Taking the experimental uncertainty into account
will remove the fictitious assumption of single-valued data points. Interval datasets can be
treated equivalently to single-valued ones and fitted to a mathematical formula. The resulting
fitted model will be expressed as an envelope of curves rather than a single one. This procedure
adds rigour and robustness to the statistical fitting procedure and provides a better discriminant
to assess the validity of an experimental sample set. The r-squared coefficient will be obtained
as a whole range which will then be compared against a given discriminant.

3.3. Limitations of the existing practice
The existing estimation procedure makes several assumptions. The most prominent ones are
the following:
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• The dust removal function f(M) is unknown and assumed dependent on M only

• f(M) is strictly increasing

• The exponential model of Eq. 2 is a consequence of the above model’s assumptions

• The discriminant to accept samples is a single-values coefficient of determination

Including the measurement precision inherently in the data and performing robust regression
will weaken the fourth assumption. In addition, using a more reliable prediction numerical tool
for the regression analysis, such as IPM or ANN, will remove the third assumptions and will
provide more insights into the physical model.

4. Statistics for imprecise data
Regardless of the instrument accuracy the precision of a single datum is always finite. In fact,
substituting single measurements with real numbers is a sometime strong assumption. This is
even more applicable when measurements come from devices that were not originally designed
for that specific purpose, like in the case of experimental settings to quantify the amount of
non-exhaust particles on paved roads.

When the data set has imprecision, computing statistics can be challenging. For example, for
data in the form of intervals, using näıve interval analysis yields results with inflated uncertainty
because of the repeating variables problem. Moreover, finding optimal bounds on many basic
statistics is a NP-hard problem that grows in difficulty with the size of the data set. It
is practically impossible to solve these problems for large data sets with simple space-filling
strategies, such as random sampling, in which, for instance, the formula for the variance is
treated like a black box evaluated for many possible configurations of the data points within
their respective intervals.

Ferson et al. [8] provided a suggestive solution to the problem by looking at the different
classifications of interval data. In this work, it is shown how both bounds on the variance can
be computed in linear time in several cases, without the need to solve a quadratic programming
problem. The work detailed in [8] is being developed via accessible software libraries [9] that
are intended to provide convenient access to basic statistics for interval and censored data. The
library of algorithms develop on-line and stand-alone software for analyzing data sets containing
imprecision as well as sampling uncertainty. The algorithms in the library require users to make
fewer dubious assumptions about the data set than currently popular methods for handling
data censoring, missingness, and lack of independence. The library currently supports methods
to compute over two dozen measures of location, dispersion and distribution shape, including
confidence intervals, as well as several inferential methods for linear and logistic regressions,
t-tests, F-tests, and outlier detection.

5. Regression analysis with imprecision
Robust estimations are obtained performing regression analysis on the interval dataset. The
regression analysis consists in fitting a three-parameter exponential to the data as shown in
Figure 1. When the data are in the form of intervals regression analysis needs to be performed
virtually for every possible combination of datapoints within the intervals. The results of interval
regression are in the form of an envelope of optimal fitting curves which include all the possible
solutions of the least square problem. The numerical technique is compared with a double-loop
optimisation, where the inner loop computes the optimal fitting via least square minimisation
and the outer loop finds the limiting curves of the regression envelope.

6. Conclusions
Statistical fitting techniques may hinder the actual physics of the phenomenon under study if
used to determine the parameters of the model.
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Figure 2. Augmented interval dataset. Figure 3. Robust interval regression.

Assumptions on the model are strong and should be supported by appropriate uncertainty
models.

7. Future work
The work will benefit from replacing the least-square regression with a kernel based IPM that can
also be used for outlier detection to produce more reliable statistics. This links with improving
the model of the dust removal function, and provide better connection to the emission flux of
particles.
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