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A complementary role of multiparameter flow cytometry and
high-throughput sequencing for minimal residual disease
detection in chronic lymphocytic leukemia: an European
Research Initiative on CLL study
AC Rawstron1, C Fazi2, A Agathangelidis2, N Villamor3, R Letestu4, J Nomdedeu5, C Palacio6, O Stehlikova7, K-A Kreuzer8, S Liptrot9,
D O’Brien9, RM de Tute1, I Marinov10, M Hauwel11, M Spacek12, J Dobber13, AP Kater13, P Gambell14, A Soosapilla15, G Lozanski16,
G Brachtl17,18, K Lin19, J Boysen20, C Hanson20, JL Jorgensen21, M Stetler-Stevenson22, C Yuan22, HE Broome23, L Rassenti23, F Craig24,
J Delgado3, C Moreno5, F Bosch6, A Egle17, M Doubek7, S Pospisilova7, S Mulligan25, D Westerman14, CM Sanders26, R Emerson26,
HS Robins26, I Kirsch26, T Shanafelt20, A Pettitt19, TJ Kipps23, WG Wierda21, F Cymbalista4, M Hallek8, P Hillmen27, E Montserrat3,
and P Ghia2,28 on behalf of ERIC (European Research Initiative on CLL)

In chronic lymphocytic leukemia (CLL) the level of minimal residual disease (MRD) after therapy is an independent predictor of
outcome. Given the increasing number of new agents being explored for CLL therapy, using MRD as a surrogate could greatly
reduce the time necessary to assess their efficacy. In this European Research Initiative on CLL (ERIC) project we have identified and
validated a flow-cytometric approach to reliably quantitate CLL cells to the level of 0.0010% (10− 5). The assay comprises a core
panel of six markers (i.e. CD19, CD20, CD5, CD43, CD79b and CD81) with a component specification independent of instrument and
reagents, which can be locally re-validated using normal peripheral blood. This method is directly comparable to previous
ERIC-designed assays and also provides a backbone for investigation of new markers. A parallel analysis of high-throughput
sequencing using the ClonoSEQ assay showed good concordance with flow cytometry results at the 0.010% (10− 4) level, the MRD
threshold defined in the 2008 International Workshop on CLL guidelines, but it also provides good linearity to a detection limit of
1 in a million (10− 6). The combination of both technologies would permit a highly sensitive approach to MRD detection while
providing a reproducible and broadly accessible method to quantify residual disease and optimize treatment in CLL.
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INTRODUCTION
Treatment of chronic lymphocytic leukemia (CLL) with chemoim-
munotherapy such as fludarabine, cyclophosphamide, rituximab
(FCR) results in high response rates with prolonged progression-
free survival (PFS) and overall survival (OS).1,2 Identifying more
effective treatments using standard end points (e.g. PFS) would
require clinical trials including a very large number of patients and
a long follow-up, as recently acknowledged by regulatory
agencies.3,4

The detection of minimal residual disease (MRD) above a
0.010% (10− 4) threshold is an independent predictor of PFS and
OS in patients with CLL treated with chemoimmunotherapy.5–9

Although novel therapies such as B-cell receptor (BCR) signal

inhibitors can result in prolonged survival without achieving
MRD negativity,10,11 and it remains to be established the actual
prognostic value of achieving an MRD-negative status with
therapies other than chemoimmunotherapy (e.g. FCR), MRD
studies continue to be necessary to evaluate treatment strategies
aimed at disease eradication and cure, including those in which
new agents are combined with cytotoxic drugs (e.g. FLAIR
trial, ISRCTN 01844152).12 Moreover, using MRD as a surrogate
of treatment effectiveness would allow determination of the
efficacy of new therapies without the need for prolonged
observation times.
The European Research Initiative on CLL (ERIC) has previously

harmonized flow cytometry methods to detect residual disease
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using 4-color (4 tubes)13 and 6-color (2 tubes)14 panels. Although
these approaches are effective at the 0.010% threshold
recommended by the International Workshop on CLL to define
absence of detectable MRD,15 both have several technical and
practical limitations, including the necessity of distributing the
blood sample across multiple tubes, which can impair sensitivity in
cases with poor cellularity. The majority of new flow cytometry
instruments offer 8- or 10-color analysis allowing combination of
the required antibodies into a single tube. This could provide an
equivalent level of specificity and sensitivity and facilitate
acquisition of more events per analysis, thus potentially improving
the limit of detection below 0.010% (10− 4).16,17 In addition,
high-throughput sequencing (HTS) technology has already shown
potential to detect MRD at the 10− 6 level.18

Because of all these developments, the ERIC undertook this
study whose primary aim was to identify and validate in multiple
centers a single-tube assay fulfilling the following conditions:
(i) reliable for MRD detection at the levels required by the
International Workshop on CLL guidelines.15 (ii) independent of
instrument/reagent characteristics and (iii) flexible enough to
incorporate and validate new, additional markers in the future.
The secondary aim was to explore the relative merits of the flow
cytometry assay and HTS to detect MRD.

PATIENTS AND METHODS
Patient samples
The diagnosis of CLL was based on International Workshop on CLL
criteria.15 Leukocytes for analysis by flow cytometry and/or HTS were
prepared from a total of 128 samples from 108 patients with CLL or
monoclonal B-cell lymphocytosis, studied either at diagnosis or after FCR-
based treatment (detailed in Supplementary methods). Normal leukocytes
were separated from waste anonymized peripheral blood samples from
healthy women aged 18–30 years or from leucodepletion filters. Informed
consent for sample collection was obtained in all cases. Ethical approval
was obtained for assay development using anonymized surplus waste
material and patient samples sent for diagnosis or detection of residual
disease (UK NRES 04/Q2150/125), and for comparison of HTS (ViViCLL
protocol).

Flow-cytometry and dilution series
For the development of the core marker panel, leukocytes were prepared
by ammonium chloride lysis from five patients with CLL at presentation or
relapse and each diluted into normal leukocytes in five serial 1:10 dilutions
(for a total of 25 samples) and 27 CLL cases sent for routine analysis of MRD
levels after treatment. The sample numbers were selected to meet the
validation criteria for cellular assays.19 Two million leukocytes from the
dilution series were incubated with the CLL MRD antibody cocktail for
30 min, washed twice and the cells acquired on a FACSCanto II and
analyzed using FACSDiva software (BD Biosciences, Oxford, UK). The
antibody clones, fluorochromes and reagent volumes are specified in
Supplementary methods. For the comparison between the 4-color
standard assay, the six-marker core panel and HTS, leukocytes from CLL
patients were prepared as above with ammonium chloride lysis and
diluted into normal leukocytes at different concentrations, from 40×106

down to 40/ml, and acquired on a FC500 cytometer (Beckman-Coulter,
Milan, Italy) starting from the lowest concentration to avoid cross-
contamination. Electronic manipulation of data files for identifying
superfluous antibodies and preparation of samples for developing the
reagent specification are detailed in the Supplementary methods along
with a description of technical aspects and how to calculate to limit of
detection (LOD) and limit of quantification (LOQ).

ClonoSEQ
Immunoglobulin heavy (IGH) complementarity determining regions (CDR3)
were amplified and sequenced using the ClonoSEQ platform (Adaptive
Biotechnologies, Seattle, WA, USA), from (i) the peripheral blood samples of
13 patients affected by CLL and sent for analysis of MRD (see
Supplementary data), using either 400 ng if untreated or 6–7 μg of all
available DNA if treated; (ii) samples generated by dilution of three CLL

cases into leukocytes from leukodepletion filters in serial 1:10 dilutions
(n=18); (iii) 57 samples of peripheral blood from CLL patients at diagnosis
(n=51) or individuals affected by high-count monoclonal B-cell lympho-
cytosis (with 40.5 × 109/l clonal B cells, n= 6), for whom an IG sequence
had been determined by Sanger sequencing as reported previously,20,21 to
assess the efficacy of the clonoSEQ platform in detecting CLL-related IGH
gene rearrangements. For the latter analysis the selected samples were
purposely biased toward ‘difficult’ cases, the selection criteria being as
follows: (a) CDR3 features (namely length, utilization of particular IGHV,
IGHD and IGHJ genes, and somatic hypermutation load); (b) presence of
multiple rearrangements; (c) absence of any detectable or productive IGH
rearrangement; and (d) availability of multiple samples at different time
points from the same case.
The ClonoSEQ platform consists of a set of multiplexed forward primers

matching IGH variable (IGHV) and diversity (IGHD) gene sequences,
combined with a set of reverse primers matching the joining (IGHJ) gene
sequences. In this way all possible mature VDJ and immature DJ IGH
rearrangements can be amplified. Sequencing was performed starting
from the 3′ end of the rearranged J gene and extending upstream 87 base
pairs, which results into covering the whole IGH CDR3 region. Rearranged
IGH CDR3 sequences that contained insertions or deletions that resulted in
frameshifts or premature stop codons were classified as non-productive.
ClonoSEQ analysis was performed and results provided without knowledge
of any previously determined IG sequence or MRD level.

Statistical methods
Assay comparison analysis was performed using Microsoft Excel 2013.
Linearity (LINEST function), correlation coefficient (PEARSON functions),
Bland–Altman plots, mean difference (AVERAGE function) and 95% limit of
agreement, reported as ± 1.96 s.d. (STDEV function), were calculated from
log-transformed data. The minimum population size for the lower limit of
detection and limit of quantification of CLL cells in a multiparameter
analysis has been demonstrated to be 20 and 50 events, respectively;13,14

therefore, the limit of detection is defined as 100× 20/total leukocytes and
the limit of quantification is defined as 100× 50/total leukocytes.
Percentage values are reported to two significant figures. Values above
the limit of quantification were used for method comparison and dilution
analyses. Concordance was considered acceptable for quantitative method
comparison if the 95% limit of agreement was within ± 2-fold (±0.3 log)
based on acceptable performance for BCR-ABL quantitative PCR.22

Concordance was considered acceptable for qualitative method compar-
ison if there was ⩾ 90% agreement in detection of MRD at ⩾ 0.010% vs
o0.010% levels as indicated by the ICCS/ICSH guidelines for validation of
cellular methods.19

For the analysis of IG genes, amplified rearrangement sequences were
analyzed and delineated according to established methods.23 A standard
algorithm for junction analysis and IGHV, IGHD and IGHJ gene identifica-
tion was applied.24

RESULTS
Identifying a core set of markers required for reproducible
detection of MRD in CLL
An eight-color combination comprising CD19, CD20, CD5, CD43,
CD79b, CD81, CD22 and CD3 was assembled based on the
merging of the markers utilized in the previously published 2-tube
6-color ERIC-harmonized panel (Supplementary methods). The
8-color panel was assessed in dilution studies comprising 5 × 1:10
dilutions on five CLL cases and the results showed good linearity
to 0.0010% (Figure 1a). Interoperator variation was also within
acceptable limits using this assay (Supplementary Figure S1).
In order to determine if any markers could be excluded because

of redundancy, the dilution study files as well as data from 27 CLL
cases sent for routine analysis of MRD levels after treatment were
first analyzed with all markers present and then reanalyzed after
excluding single markers. The exclusion of CD5, CD43, CD79b or
CD81 had a substantial impact on the ability to detected MRD
(data not shown) but the exclusion of CD3 and/or CD22 did not
impact results below the limit of detection or above the 0.010%
limit of quantification (Figure 1b). Differences were seen for results
in the 0.0010–0.010% (10− 4–10− 5) range, thereby leading to the
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conclusions that (i) CD3 is not required in all cases but may be
informative if a very high accuracy in the 0.0010–0.010% range is
necessary, and (ii) the inclusion of both CD20 and CD22 is
redundant in cases with typical expression of ⩾ 2 markers CD5,
CD79b, CD43 and CD81. Based on these findings, a core panel
comprising six markers (CD19, CD20, CD5, CD43, CD79b and
CD81) was defined as the most reliable and convenient to identify
typical CLL.

Validation of the six-marker core panel against harmonized 4-color
and 6-color assays
The six-marker core panel was validated in eight CLL cases diluted
into normal peripheral blood leukocytes in serial 1:10 (n= 5) or 1:5
dilutions (n= 3). The results showed good concordance between
observed and expected CLL cell levels (for log-transformed data

above the limit of quantification, linearity = 1.02, correlation
coefficient (Pearson R) = 0.996, average difference =− 0.018 log,
95% limit of agreement ± 0.18 log; Figure 2a). In three of the
dilution series, using cells from leukodepletion filters as a diluent,
it was possible to acquire sufficient total cells to demonstrate a
limit of detection of 0.0010% (10− 5) and a limit of quantification of
0.0025% (2.5 × 10− 5) based on the identification of CLL-phenotype
cells above the 20 and 50 event thresholds respectively and
results within the quantitative range showing acceptable con-
cordance with the expected level (±0.3 log). In this series there
were also sufficient cells to permit comparison with the 4-tube
4-color ERIC-harmonized panel. Even though 2× 106 events were
acquired for each tube, both the limit of detection and
quantification were only 0.0050%, based on detection at the 20
and 50 event thresholds and acceptable concordance with the
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Figure 1. (a) 8-CLR 1-tube panel dilution analysis. Data from serial
dilution analysis of 5 × 1:10 dilutions on five CLL cases were analyzed
using a single-tube eight-marker panel. Markers with a dark gray fill
indicate results above the limit of quantitation; markers with a light
gray fill indicate results below the limit of quantitation but above
the limit of detection; and markers with no fill indicate results below
the limit of detection. For log-transformed data above the
LOQ, linearity= 1.01, correlation coefficient Pearson R= 0.99.
(b) Confirmation that six markers are sufficient for detection of
MRD: Bland–Altman plot comparing MRD level calculated using the
single-tube eight-marker combination against the MRD level
calculated using a six-marker core panel, that is, excluding CD3
and CD22. For log-transformed data above the LOQ, linearity= 1.00,
correlation coefficient Pearson R= 1.00, average difference=
− 0.0026 log, 95% limit of agreement ± 0.012 log. LOQ, limit of
quantification.

0.00001

0.0001

0.001

0.01

0.1

1

10

0.00001 0.0001 0.001 0.01 0.1 1 10

C
LL

 %
 le

uc
oc

yt
es

 u
si

ng
 M

R
D

-c
or

e 
pa

ne
l

Expected CLL % leucocytes 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1 10 100D
iff

er
en

ce
 in

 C
LL

 %
 o

f l
eu

co
cy

te
s 

be
tw

ee
n 

in
di

vi
du

al
re

su
lts

 a
nd

 a
ve

ra
ge

 o
f a

ll 
op

er
at

or
 (l

og
 tr

an
sf

or
m

ed
)

CLL % of leucocytes (average of all operator results)

Above LOQBelow LOD

Figure 2. (a) Six-marker core panel dilution analysis. Data from serial
dilution analysis of eight CLL cases diluted into normal peripheral
blood leukocytes in serial 1:10 (n= 5) or 1:5 dilutions (n= 3). Markers
with a dark gray fill indicate results above the limit of quantitation;
markers with a light gray fill indicate results below the limit of
quantitation but above the limit of detection; and markers with no
fill indicate results below the limit of detection. For log-transformed
data above the LOQ, linearity= 1.02, correlation coefficient Pearson
R= 1.00. (b) Acceptable interoperator variation in analysis of the six-
marker core panel: analytical variation was tested using 19 operators
with experience of flow cytometry but not direct experience of MRD
analysis in CLL using the six-marker core panel. The results showed
good concordance at the 0.010% threshold with and acceptable
95% limit of agreement of ± 0.27 log for results above the limit of
quantitation. For log-transformed data above the LOQ, linearity=
1.02, correlation coefficient Pearson R= 0.99, average difference=
0.013 log, 95% limit of agreement ± 0.27 log.
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expected level, thus inferior to those reached with the one-tube
six-marker core panel. Therefore, the latter was able to improve
detection and quantification capabilities compared with the
4-tube 4-color analysis, in addition to the reduced acquisition
time and amount of reagents needed. Analytical variation was
tested using 19 operators (Supplementary data) and showed
acceptable interoperator variability (95% limit of agreement ± 0.27
log; Figure 2b).

Identifying a platform-independent reagent specification
Neoplastic and normal leukocytes were prelabeled with different
CD19 markers and then mixed and incubated with varying
concentrations of the markers used to differentiate CLL cells from
normal B cells. The prelabeling allowed the percentage of CLL cells
having overlapping expression with normal B cells to be
calculated in each case for each antibody dilution (n= 30). The
separation was considered adequate if there was ⩽ 10% difference
compared with the optimal separation in the dilution series from
the same case. In addition, the relative signal for each marker at
each dilution could be calculated by dividing the median
fluorescence intensity on an internal positive control population
by the median fluorescence intensity on an internal negative
control population was calculated. The calculations are described
in more detail in Supplementary methods and Supplementary

Figure S2. Figure 3 shows the cumulative proportion of cases with
suboptimal discrimination of CLL cells from normal B cells plotted
against the relative signal. An appropriate reagent would provide
optimal separation of CLL cells from normal B cells in 495% of
cases, and the minimum relative signal to achieve this was
calculated for each antibody. The minimum and preferred relative
signal levels are specified in Table 1.

High-throughput versus Sanger sequencing
The application of the ClonoSEQ platform led to the identification
of a dominant clonotypic IGH CDR3 in all 57 CLL/monoclonal B-cell
lymphocytosis samples tested. The size of the dominant clone
ranged from 29% to virtually 100% with an average value of 89%
and a median value of 99%. The dominant IGH CDR3 sequence
was productive in 56/57 samples (98%).
Sanger sequencing was informative in 52/57 (91%) samples. The

negative samples were from two CLL cases with two samples each
from different time points and from one CLL case with a single
sample. When the HTS dominant clonotype of 50 samples (from
46 CLL cases) was compared with the IGH CDR3 sequence
identified by Sanger sequencing, clonal IGH CDR3 sequences were
identical in 42/50 (84%) samples/cases. In five of the eight
discordant samples the result of the Sanger sequencing was a
single unproductive rearrangement with ClonoSEQ identifying a
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Figure 3. Identification of the optimal reagent specification required for MRD analysis. CLL cells and normal B cells were separately labeled
with CD19 PE-Cy7 and CD19 PerCP-Cy5.5, respectively, prior to washing and mixing to create five samples which were then incubated with
serial dilutions antibodies at varying concentrations (neat to 1:243, serial 1:3 dilutions). This permitted calculation of the degree to which CLL
cells overlapped with normal B cells in fluorescence intensity for each marker across a range of signal intensities. The signal intensities were
calculated using internal positive and negative controls and plotted against the proportion of cases with suboptimal separation of CLL cells
from normal B cells, where suboptimal separation was defined as an increase in overlap of 10% or more compared with the lowest overlap for
each dilution series.

Table 1. Target values for markers used in CLL MRD analysis

Antigen Typical expression in CLLa Control populations in normal peripheral blood Minimumb relative
fluorescence intensity (preferred)

Positive Negative

CD5 Positive (420%) CD3+ T cells CD19+ B cells 430 (465)
CD20 Weak CD19+ B cells CD3+ T-cells 410 (420)
CD43 Positive (420%) CD3+ T cells CD20+ B cells 415 (440)
CD79b Weak CD20+ B cells CD3+ T-cells 415 (430)
CD81 Weak CD3+ T cells Granulocytes 412 (420)

aFor the typical expression pattern, 'positive' indicates percentage of cells positive compared with control, and 'weak' indicates at least 20% reduction in
fluorescence intensity relative to the median expression observed with a reference population of polyclonal B cells using the same antibody. bThe minimum
relative fluorescence intensity would provide separation of CLL cells from normal B cells in 495% of cases (see Figure 3) with a preferred relative fluorescence
intensity being the level at which 499% of cases have optimal separation of CLL cells from normal B cells.
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dominant productive clone together with the unproductive clone
identified by Sanger. In another two CLL samples the Sanger clone
was identified also by the HTS sequencing reads but was not the
dominant one.
Concerning samples with double productive rearrangements,

for which the phenotype was consistent with a single monoclonal
population, both productive IGH rearrangements were identified
by the HTS method in all six such samples with one of the two
being the dominant IGH CDR3 sequence. In regard to the data
reproducibility of the HTS method, we included in the analysis
seven cases (namely six CLL and one high-count monoclonal B-cell
lymphocytosis) with two subsequent samples. The dominant IGH
rearrangement clone was identical in all seven cases.

Comparison between the six-marker core panel and HTS
HTS was compared with the six-marker core flow panel
(CD19/CD5/CD22/CD43/CD79b/CD81) and dilutional analysis. The
results demonstrated good linearity to the 10− 6 level (Figure 4).
HTS detected CLL IGHV-D-J sequences in 22% (7/31) samples with
no detectable CLL cells by flow cytometry (i.e. CLL level 0.0001–
0.0010%, 3/13 patient samples and 4/18 dilution samples). There
was acceptable (490%) concordance at the 0.010% threshold
with 3/31 discrepancies (MRD level 0.0080% vs 0.039%, 0.027% vs
0.0040%, 0.56% vs o0.0010% by HTS vs flow cytometry).
Although HTS demonstrated clear superiority in the limit of
detection, there was a relatively high limit of agreement between
the two techniques for data within the quantitative range (down
to 0.010%/10− 4; Figure 5).

DISCUSSION
Quantification of residual disease continues to be an important
tool for the evaluation of treatment efficacy. This international
ERIC project identified a simple and comprehensive approach to
the detection of MRD in CLL that can be adapted to most
laboratories using cytometers with six or more colors, providing
reliable detection of residual CLL cells down to the level of
0.0010% (10− 5) with a single-tube assay. This approach is directly
comparable to previous ERIC-designed 4-color (4 tubes)13 and
6-color (2 tubes)14 assays.
The majority of new flow cytometry instruments offer 8- or

10-color analysis and therefore the six-marker core marker panel
identified in this study (i.e. CD19, CD20, CD5, CD43, CD79b and
CD81) may be combined with additional markers as required: for
example, using CD45 or CD3 to facilitate leukocyte and CLL
cell gating and enumeration; incorporating CD200(ref. 25) or
CD23(ref. 26) to streamline the diagnosis and monitoring; or testing
alternative CLL MRD markers such as ROR1(ref. 27) or CD160.28 To
achieve this, CD3 and CD22 can be excluded in situations where
they do not add a significant discriminatory value. CD3 was
required in previous harmonized panels to exclude contaminating
CD3+CD19+ events phenotypically similar to CLL cells in marker
combinations not containing CD81/CD43.14 Here we demon-
strated a lack of added value for CD3 in samples with CLL cells
above the limit of quantification when combined with the six-
marker core panel which incorporates CD81/CD43. Although CD22
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Figure 5. Comparison of the six-marker core MRD flow assay with the 4-CLR 4-tube MRD flow assay and ClonoSEQ HTS. Data from serial
dilution studies (n= 18) and from patient samples after FCR-based therapy (n= 12) were analyzed using the harmonized 4-CLR ERIC panel, the
six-marker core panel and ClonoSEQ high-throughput sequencing. (a) Comparison of the six-marker core MRD flow assay with the ERIC 4-tube
4-CLR panel: For log-transformed data above the LOQ, linearity= 0.99, correlation coefficient Pearson R= 1.00, average difference=− 0.044
log, 95% limit of agreement ± 0.17 log. (b) Comparison of the six-marker core MRD flow assay with ClonoSEQ HTS: For log-transformed data
above the LOQ, linearity= 0.89, correlation coefficient Pearson R= 0.75, average difference=− 0.12 log, 95% limit of agreement ± 1.3 log.
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was part of previous panels to discriminate CLL cells from normal
B cells in patients exposed to anti-CD20 monoclonal antibodies, it
has already been demonstrated that all normal mature B cells are
absent in patients undergoing anti-CD20 treatment.29 Although
CD20 remains a better discriminator of CLL cells from normal B
cells under other circumstances30 panels using either CD20 or
CD22 may be equally effective.31 The combination of the required
markers into a single test allows the acquisition of a larger number
of cells, thereby permitting an improved limit of MRD detection.
Nevertheless, the key benefit is likely to be a greater reproduci-
bility and a wider access for MRD detection at the threshold of
0.010% (10− 4) with greater confidence in the MRD status. The
optimal approach for MRD detection may vary depending on the
setting, and the recommended options are shown in Table 2.
The approach to detect MRD presented here is applicable to

more than 95% of typical CLL cases.13 A pretreatment sample is
not essential unless the diagnosis indicates an atypical phenotype,
in which case the applicability of the MRD assay should be
confirmed prior to treatment. Flow-cytometry assays typically
target a coefficient of variation below 20%(ref. 19) but this is not
consistent with other MRD approaches such as BCR-ABL
quantitative PCR which target a 95% limit of agreement of
± 2-fold (±0.3 log).22 Using this target, the interoperator variation
is within acceptable limits for laboratories either with consolidated
experience in flow cytometry analysis or after an education
session of approximately 1 h. The identification of a platform-
independent reagent specification means that individual labora-
tories are not restricted to using reagents from specific
manufacturers and can rapidly determine the applicability of a
panel using normal peripheral blood. In most cases the MRD
analysis will contain sufficient internal controls to validate the
assay after completion.
The development of this assay was primarily based on

peripheral blood analysis because of the logistical difficulty in
obtaining normal bone marrow. Moreover it has been shown
previously that hematogones, plasmablasts and plasma cells can
be easily differentiated from CLL cells based primarily on CD81
and CD5 expression.13,31 However, the core panel has now been or
is being tested prospectively in several trials including ADMIRE,

ARCTIC, COSMIC, FLAIR and GALACTIC (ISCRTN references
42165735, 16544962, 51382468, 01844152, 64035629 respectively,
http://medhealth.leeds.ac.uk/info/443/haematological), and the
LLR TAP IcICLLe trial of Ibrutinib monotherapy (ISRCTN12695354)
with available data confirming that CLL MRD analysis in bone
marrow is readily achievable with the six-marker core panel
(abstract S794 EHA Learning Center. Rawstron A. Jun 14, 2015;
103177). Examples of analysis using the six-marker core panel in
patients treated with venetoclax, ofatumumab and ibrutinib are
shown in Supplementary Figure S3.
The comparison between Sanger and HTS sequencing supports

the application of HTS techniques like the one provided by the
ClonoSEQ platform for the production of high quality and quantity
IGH CDR3 data in the majority of CLL patients irrespective of any
IGH sequence properties, the number of productive IGH
rearrangements or the presence of two clonal markers. This
analysis also demonstrated that HTS techniques could enhance
the detection of productive rearrangements not identified by
Sanger sequencing. Of note, the ClonoSEQ assay demonstrated a
good concordance with flow for detection of MRD using the
0.010% (10− 4) threshold with a much better sensitivity and good
linearity across the range of MRD levels to 1 in a million (10− 6).
HTS does not require analysis on fresh material but can be applied
to stored DNA, and therefore might be easier to be used in clinical
trials than flow cytometry which typically requires samples to be
less than 48 h old. However, the variation in quantification
between flow cytometry and HTS could be higher than preferable
and thus further work is warranted to standardize the quantitative
analysis of HTS.
CLL-associated IGH sequences are frequently unmutated and

stereotyped (i.e. identical sequences in different patients) and may
be present in the normal IG repertoire. The detection of a CLL-
associated IGH sequence in an unrelated disease-free sample is a
possibility using HTS but analysis of the data in this series
indicates that this would affect o5% of cases with a maximum
false-positive result below 0.0020% (see Supplementary results).
Since the IG rearrangement remains unaltered over time, knowing
the clonotype at diagnosis of each patient allows a very sensitive
determination of the upper limit of residual disease in each

Table 2. Harmonized methods for residual disease detection using ERIC-harmonized approaches

Application Assay Advantages Disadvantages

Trials aiming for disease control
rather than eradication, e.g.
continuous BCR pathway
inhibition

Clonality
assessment

• Relatively inexpensive and simple • Requires capacity to reflex to
full MRD assay if CLL cells
o1.0% and/or B cells
polyclonal

Trials focusing on achieving
o0.010% MRD, i.e. with broadly
similar responses rates to FCR,

4-color
4-tube

• Published outcome data.
• Does not require pretreatment phenotype for
typical CLL

• Limit of detection 40.0050%
• More material required to
achieve higher detection limits

requiring an MRD assessment
that is published and has been
used in previous clinical trials

6-color
2-tube

• Harmonized with 4-color assay
• Does not require pretreatment phenotype for
typical CLL

• Intermediate LOD/LOQ
• Intermediate amount of
material required to achieve
higher detection limits

Trials aiming for significant
improvements in disease
depletion compared with FCR

6-color core
panel for
⩾ 6-color assays
1-tube

• Permits flexibility for individual laboratory
requirements

• LOD 0.0010% (10-5), LOQ 0.0025%
• Allows simultaneous analysis of additional
markers

• Knowledge of pretreatment
phenotype preferable

High throughput
sequencing

• LOD 0.00010% (10-6)
• Objective analysis, does not necessarily require
expert interpretation

• Further development work on
standardization of the
quantification

Abbreviations: LOD, limit of detection; LOQ, limit of quantification.
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patient. Therefore our results confirm previous studies demon-
strating the potential to detect one neoplastic cell in a million
(10− 6) normal leukocytes, a sensitivity level that is only limited by
the amount of DNA that can be analyzed.
Although it is currently unclear what the impact of BCR

signal inhibitors and other small molecules will be in CLL therapy,
there are already trials using these agents in combination and
pursuing disease eradication. MRD studies are important to
assess the degree of response to therapy in trials aimed at
eradicating CLL, and could expedite the evaluation of efficacy
for new CLL treatments. To achieve these goals, the approach to
determine MRD in CLL should be reliable, easy to perform
and simple to interpret so that it can be applied routinely.
This paper presents a method that fulfills those conditions,
providing a core set of markers that can be easily re-validated in
an individual laboratory. More interestingly, the combination
of markers presented here permits a lower detection limit
to be attained than that achieved by current harmonized
methods (0.010%/10 − 4). It is conceivable that achieving an
MRD level below 0.0010%/10 − 5 will translate into better clinical
outcome, but this would need to be investigated prospectively.
In line with this we also found that HTS can reliably detect
disease below the levels that can be assessed by flow cytometry.
It is likely therefore that HTS, either by itself or in combination
with flow cytometry, may prove to be a valuable resource
to improve MRD detection.
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