
Searching with Increasing Speeds∗

Leszek Gąsieniec, Shuji Kijima, and Jie Min

Abstract

In the classical search problem on the line or in higher dimension one is asked to find
the shortest (and often the fastest) route to be adopted by a robot R from the starting
point s towards the target point t located at unknown location and distance D. It is
usually assumed that robot R moves with a fixed unit speed 1. It is well known that
one can adopt a “zig-zag” strategy based on the exponential expansion, which allows to
reach the target located on the line in time ≤ 9D, and this bound is tight. The problem
was also studied in two dimensions where the competitive factor is known to be O(D).

In this paper we study an alteration of the search problem in which robot R
starts moving with the initial speed 1. However, during search it can encounter a
point or a sequence of points enabling faster and faster movement. The main goal is
to adopt the route which allows R to reach the target t as quickly as possible. We
study two variants of the considered search problem: (1) with the global knowledge
and (2) with the local knowledge. In variant (1) robot R knows a priori the location
of all intermediate points as well as their expulsion speeds. In this variant we study
the complexity of computing optimal search trajectories. In variant (2) the relevant
information about points in P is acquired by R gradually, i.e., while moving along the
adopted trajectory. Here the focus is on the competitive factor of the solution, i.e., the
ratio between the solutions computed in variants (2) and (1). We also consider two
types of search spaces with points distributed on the line and subsequently with points
distributed in two-dimensional space.

1 Introduction
Search problems refer to frequently considered combinatorial (structural or algorithmic) prob-
lems within and across multiple fields including operations research, computing, mathematics
and others. The search problem in the form studied in this paper was originally posed more
than a half-century ago by Bellman [8] who asked: “A hiker is lost in a forest which size is
not known to her. What is the best path to adopt to escape the forest?”

In more general terms, search problems deal with either single or multiple searchers
looking for a hidden object referred to as target, with the ultimate goal of minimising the
time required to accomplish the task. Numerous variants of the problem have been considered
reflecting on different search spaces (e.g., a geometric setting vs. a graph), whether the target
is fixed or mobile, whether the search space is stable, or if the target is a point or a collection
of points, a curve or a closed non-zero volume region. Another separation line refers to

∗This work was partially done while the first author visited Kyushu University and is supported in part by
the Networks Sciences and Technologies (NeST) initiative in the School of EEECS, University of Liverpool.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/162999371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

deterministic versus randomized search strategies, and whether the searchers have access to
extra tools supporting navigation, see [4, 5, 6, 9, 10, 18, 20, 25, 26].

The search on the line has been analysed in detail by Baeza-Yates et al. in [4] under the
name of the cow-path problem. This seminal work prompted further work on on different
variants of the search problem including extensions [5, 6, 18, 21, 22, 26, 28]. In addition
to the line, Baeza-Yates, et al. [4, 5] studied the cow-path problem on co-centred w infinite
rays, and proposed a deterministic algorithm with the name linear spiral search. The case
with w = 1 is trivial, and for w = 2 (the case with infinite line) the algorithm always finds
the target in time at most 9D, where D is the time needed to move from the starting point
s to the target t. They also provided the lower bound argument showing optimality of their
solution up to lower order terms. In the same work, the authors considered also a system of
rays with w > 2 showing an optimal (up to lower order terms) result of

(
1 + 2 ww

(w−1)w−1

)
·D

time bound to find the target using a deterministic search strategy.
In [6] Baeza-Yates and Schott examined also other variants of the cow-path problem. They
observed that if D is known in advance, the search on the line requires time 3D in the
worst case. They also studied scenarios with two or more robots having uniform speeds.
They show that if robots are able to communicate at arbitrary distance, the total distance
2D must be travelled to find the destination, and 4D if the two robots must reach the
destination. Baeza-Yates and Schott showed also that the total distance travelled when no
communication is present, and both robots must reach the target is also 9D, the same time
it would take a single robot. A similar study, however with an arbitrary number of robots
can be found in [11] where the authors study also the case with different speeds. More tight
analysis for two robots with different speeds was subsequently published in [7]. The case
with multiple speeds was also studied in the context of patrolling linear environments first
by Czyzowicz et al in [14] and in the follow up work of Kawamura and Kobayashi in [23].
Another interesting study on robots with different speeds can be found in [13] where the
authors distinguish between moving and searching speeds.

In terms of probabilistic approach Kao, et al. [22] examined the first randomized algorithm
for the cow-path problem and, for the case of w = 2 rays, he obtained an optimal randomized
4.59112 ·D bound for the search time. They also provided a bound for w > 2 paths, where
they conjecture their this approach to be an optimal randomized strategy.

In this paper we consider the search problem in which the robot can increase its speed
by visiting specific points in space. This work apart from having an intrinsic combinatorial
value can be also seen as a simplification of the gravity assist concept [27] used in space
exploration. Also there is some parallel to sharing schemes with different vehicle types, e.g.,
city bikes combined with electric cars and others.

1.1 The Model and The Search Problem

In this work we consider search by a single robot R either on the infinite line or in two-
dimensional (Euclidean) space. The robot has a zero-visibility radius, moves freely and
starts the exploration with the uniform speed 1. The search space is populated by n points
from set P = {p1, . . . , pn}, with the starting point s = pσ and the target t = pτ , for some
integer 1 ≤ σ 6= τ ≤ n. Similarly to the past work in this area we assume that the points
in P have integer coordinates. This is to avoid dealing with infinitesimal moves and the

2

assumption about non-zero visibility radius of R. Each point pi ∈ P has the associated
expulsion speed vi. More precisely, robot R always leaves pi with the speed vi if the speed it
entered pi was smaller or equal. Please note that R can only go faster, i.e., visiting a node
with a smaller expulsion speed does not affect the current speed of R. For the completeness
we also assume that vσ = 1 and vτ = +∞.

The main task for robot R is to compute (and subsequently adopt) the fastest route
from the starting point s to the target/destination point t taking advantage of the increasing
expulsion speeds of points in P visited on the way to t. We study two variants of the
considered search problem: (1) with the global knowledge and (2) with the local knowledge.
In variant (1) robot R knows a priori the location of all points in P as well as their expulsion
speeds. In this variant we study the complexity of computing optimal search trajectories.
In variant (2) the relevant information about points in P is acquired by R gradually, i.e.,
while moving along the adopted trajectory. Here the focus is on the competitive ratio of
the solution, i.e., the ratio between the solution computed in variant (2) and the optimal
solution from (1). We also consider two types of search spaces with points distributed on
the line and subsequently with points distributed in two-dimensional space.

1.2 Our Contribution

The following results constitute the contribution of this paper.
On the line In variant (1) with full knowledge we show that the line of points can be
processed in time O(n) to find the fastest route from any point in P to t. The algorithm is
based on the known solution for the range queries. In fact after O(n)−time preprocessing
one can query any point on the line for the shortest route to t in time O(log n). In variant (2)
with local knowledge we show that the trajectory based on the classical “zig-zag” strategy
always admits a competitive factor 9. I.e., consistently with the classical version of the search
problem where it is known that one cannot reduce this constant in the worst case.
In 2D space In variant (1) we observe that one can process P with Dijkstra’s algorithm
in time O(n2) to compute the fastest route from any point in P to target t. After this
preprocessing one can query any point on the plane for the shortest route to t in time Q(n),
where Q(n) = polylog(n) refers to query time for the nearest point in additively weighted
Voronoi diagrams of size n. Using this result we show that if there are at most k different
expulsion speeds one can process the points in P in time O(k · n · polylog(n)). In variant
(2) we show that the spiral strategy admits the asymptotically optimal competitive ratio
O(D).

2 Search on the line
In this section we assume that the moves of robot R are limited to an infinite (integer) line L
which contains all points in P offering different expulsion speeds. In section 2.1 we consider
the search problem in the full-knowledge model where we show how to find the fastest route
to from the starting point s to the target t in the optimal time O(n). We also comment
on querying arbitrary points on the line. Later in section 2.2 we show that the classical
zig-zag strategy [5] provides 9-competitive solution also when R is allowed to increase its
speed throughout the searching process.

3

2.1 Variant (1) - with full knowledge

Recall that in this variant robot R is fully aware of its own starting position s, the content
of P including offered speeds and the location of target t.

Example In order to build some intuition we first consider a simple informal example, see
figure Figure 1, where s = p4 is the starting point with the initial speed v4 = 1, each
point pi offers the relevant expulsion speed vi, and the arcs indicate the consecutive steps
(during which R moves with strictly increasing expulsion speeds) on the optimal (fastest)
path towards target t = p8.

Figure 1: Solution example

In the example above the robot must have a very good reason to turn back (as it is initially
moving towards the target) after visiting p5. In other words it must be more beneficial for
the robot to visit (and to adopt the expulsion speeds of) points p3 and p1, rather than going
directly from p5 to p6. This can happen when points p1, p3, and p5 are relatively close to each
other and v5 � v3 � v1. And the total time needed to move with speed v5 from p5 to p3,
then with speed v3 from p3 to p1, and finally with speed v1 towards p6 is smaller than going
directly from p5 to p6 with speed v5. The adopted route has to be faster also from a more
direct route p5 → p3 → p6. This example indicates also that robot R changes the direction
on its walk only in points with higher expulsion speeds.

Motivated by this example one can summarise the properties of the optimal (fastest)
walk to be adopted by the robot as follows.

1. While visiting point pi robot R adopts the expulsion speed vi iff vi is higher than the
current speed of R. This reflects the assumption that at any time R moves with the
highest possible speed encountered so far.

2. Robot R changes the direction on its walk only at points with higher speeds. I.e.,
changing direction without increasing speed always results in suboptimal solution as
one could construct a faster route by turning a bit earlier.

3. It is enough to compute for each point pi ∈ P the closest to the left and to the
right points HL(pi) and HR(pi) with higher expulsion speeds than vi. According
to properties 1 and 2 these are the only points in which the speed and possibly the
direction of the walk change.

4

Let a walk be a direct move from pi ∈ P to pj ∈ P with the expulsion speed vi (walks are
denoted by arcs in the example). Thanks to property 3 one can conclude that in search for
the optimal solution (from any point in P to t) instead of dealing with a quadratic number
of walks, it is enough to consider at most 2n walks connecting any pi ∈ P with the corre-
sponding HL(pi) and HR(pi).

Nearest larger neighbour Note that all these walks can be determined in time O(n) by
swiping (with the help of a single stack) the line of points once in each direction. During each
swipe, e.g., from left to right, while processing each point pi we assume inductively that on
the top of the stack we have the expulsion speeds of pi−1, and below of HL(pi−1), and below
of HL(HL(pi−1)), etc. In order to find HL(pi) we keep removing points from the stack until
we find a point with a higher expulsion speed than vi. We set this point as HL(pi) and to
maintain the invariant we push pi on the top of the stack. The process explained above is a
known solution to the classical nearest larger neighbour problem [3].

Note that the directed graph solely based on points in pi ∈ P and the respective walks pi
to HL(pi) and to HL(pi) is acyclic, I.e., the walks always lead towards higher speeds. Thus
the points in P can be sorted topologically (starting from the target t) in time O(n). Finally,
one can visit these points one by one in the computed order to determine the fastest route
between any point pi ∈ P and target t. Such route is computed instantly on the basis of the
fastest routes already computed for HL(pi) and HR(pi) as the fastest route from pi to t has
to visit first one of these points. The following theorem holds.

Theorem 1 For the collection P of n points on the line one can compute the fastest route
between any point pi and target t in the optimal time O(n).

Having computed optimal routes towards t for all points in P one can also compute for
any point p ∈ L the closest point (to the left and to the right) in P by simple binary search
in time O(log n). This allows to compute the fastest route from any point p to target t in
time O(log n).

2.2 Variant (2) - with local knowledge

Recall that in this case, the robot only knows its initial speed 1 and is not aware of neither the
location of other points nor the expulsion speeds available in them. In what follows we show
that the classical “zig-zag” strategy ZL can be adopted here with the same 9-competitive
guarantee as in the cow-path problem.

Given an instance I of the considered search problem. Let the route S ≡ (s = pσ
vσ=1−−−→

pi2
vi2−→ . . . pil

vil−→ t = pτ) be the optimal solution of I. The points chosen to this solution
are called critical points. This solution is based on l potentially overlapping segments on
the line L. The first segment defined by critical points pσ, pi2 is traversed with the speed
vσ = 1. The next l − 2 segments based on points pij , pij+1

are traversed with the speeds vij
respectively, for all j = 2, . . . , l − 1. The last segment based on points pil , pτ is traversed
with the speed vil . Let dj be the total distance traversed from pσ to pij , for all j = 2, . . . , l,
and dl+1 referring to the total distance traversed on the way to target t = pτ . In addition let
Dj be the absolute (Euclidean) distance between pσ and all critical points included in the

5

optimal solution S. Note that the lengths of l segments defined above can be expressed as
dj − dj−1, for all j = 2, . . . , l, where d1 = 0. And finally, the respective traversal times on
the considered segments are: d2

vσ
on segment (pσ, pi2),

dj+1−dj
vij

on segments (pij , pij+1
), for all

j = 2, . . . , l, including dl+1−dl
vil

on segment (pil , pτ).

Lemma 2 Given a traversal path U = (pi1
vi1−→ pi2

vi2−→ ...
vik−1−−−→ pik) with strictly increasing

expulsion speeds and the traversal time T (U). And another traversal path with the same

points U ′ = (pi1
v′i1−→ pi2

v′i2−→ ...
v′ik−1−−−→ pik) with the traversal time T (U ′), where vij ≤ v′ij , for

all j = 1, . . . , k. Then T (U ′) ≤ T (U).

Proof. The thesis of the lemma follows directly from the fact that all segments are shared
by U and U ′, and each of them is traversed not slower in U ′. �

Lemma 3 If the order of critical points used in the optimal solution S ≡ (s = pσ
vσ=1−−−→

pi2
vi2−→ . . . pil

vil−→ t = pτ) corresponds to the first occurrences of these points on the zigzag
path ZL, the traversal time admitted by ZL is 9-competitive.

Proof. Let PZ be the actual path that robot R adopted on the way to target t, i.e., the
relevant prefix of ZL. Also, let d′j be the length of prefix of PZ until the first encounter of
pij and v′ij be the expulsion speed associated with the segment of PZ connecting pij and
pij+1

. This segment is of length d′ij+1
− d′ij . Thus the total traversal time to target t along

consecutive segments of ZL is

T (PZ) =
l∑

j=1

d′ij+1
− d′ij
v′ij

Note that the speed used by robot R between consecutive critical points can be the same as
in the optimal solution, or it may be faster as due to taking wider swings (on ZL) robot R
can pick some faster expulsion speeds earlier at non-critical points visited on the way. Thus
the (average) speeds adopted between critical points satisfy vij ≤ v′ij . And, the competitive
ratio of the “zig-zag” strategy can be expressed as:

r =
T (PZ)

T (S)
=

∑l
j=1

d′ij+1
−d′ij

v′ij∑l
j=1

dij+1
−dij

vij

≤

∑l
j=1

d′ij+1
−d′ij

vij∑l
j=1

dij+1
−dij

vij

=

d′il
vil

+
∑l−1

j=1 d
′
ij

(1
vij−1

− 1
vij

)

dil
vil

+
∑l−1

j=1 dij(
1

vij−1
− 1

vij
)
.

Now knowing that d′ij ≥ Dij and using the fact from [5] that the distance walked along
ZL towards each critical point pij is d′ij ≤ 9Dij , for each j = 1, . . . , l, we can estimate the
competitive ratio

r ≤
9Dil
vil

+
∑l−1

j=1 9Dij(
1

vij−1
− 1

vij
)

Dil
vil

+
∑l−1

j=1Dij(
1

vij−1
− 1

vij
)

= 9

6

�

We conclude with the following theorem.

Theorem 4 The traversal time admitted by ZL is 9-competitive.

Proof. We already know, see Lemma 3, that the 9-competitive ratio is secured if the order
in which the critical points are visited in the optimal solution is the same as their first
occurrences in ZL. However, if this order is altered certain critical points will be approached
(and segments in between traversed) with faster speeds than in the optimal solution S. This
observation combined with Lemma 2 admit the thesis of the theorem.

�

3 Search on 2d plane
In this section we consider the search problem in 2d Euclidean plane Π. Similarly to the
case on the line we study first the variant with the full knowledge and later focus on the case
where robot R has only local knowledge. Also in this section we assume that the points in
P have integer coordinates.

3.1 Variant (1) - with global knowledge

The task of finding the optimal route in 2d-plane is to some extent similar to the case on
the line. Namely, one can construct a DAG = (P,A) with a collection A of directed edges
(arcs) pi → pj, for all pi, pj ∈ P with vi < vj. Each arc pi → pj has the associated weight
representing the time needed to traverse from pi to pj with the expulsion speed vi available
in pi. The size of DAG is quadratic in |P | = n, thus one can solve the search problem by
finding all shortest (fastest) paths from points in P to target t in time O(n2).

While in the case on the line we managed to reduce the size of such DAG to O(n),
in 2d-plane the challenge is steeper due to greater freedom of movement of robot R. In
addition, after computing all shortest paths in DAG further queries on arbitrary points
(outside of P) for the fastest routes towards target t remain non-trivial. To counterpart,
one can use the concept of additively weighted Voronoi diagrams, see, e.g., [17], based on
points in P where each pi ∈ P has weight wi which reflects the time required to move from
pi to t in DAG. This type of diagram partitions the whole plane into n cells C1, . . . , Cn,
where cell Ci contains all points p for which the value |(p, pi)| + wi is minimised w.r.t. all
i = 1, . . . , n. It is known, that one can compute additively weighted Voronoi diagrams on n
points in time O(n log n) [17]. One can also enhance such diagrams in time O(n · polylogn)
to enable a (randomised) algorithm finding the closest (among n) weighted point in time
Q(n) = polylog(n), see the work of Karavelas and Yvinec [19] based on the ideas from [15].
While this complexity is not as good as the basic query time O(log n) available for unweighed
points, see the classical algorithm of Kirkpatrick for planar point location [24], it still allows

7

us to construct a faster solution to the search problem if there is a relatively small number
k � n of distinct expulsion speeds v∗1 ≥ · · · ≥ v∗k present in the system.

The invariant The improved construction of all fastest paths (to target t) operates in k
rounds and is based on the following invariant. On the conclusion of round i we compute
the fastest routes to t for any point with the expulsion speed at least as fast as v∗i . Let
Pi = {pi1 , . . . , pim} ⊂ P be the set of all such points with the traversal times Ti1 , . . . , Tim
respectively. Note that these times are computed for good, i.e., they never change, as in
further rounds we only add points with strictly smaller expulsion speeds. During round i+1
for each point p ∈ Pi+1 \ Pi we need to determine whether robot should go directly to t or
should be relayed via some point in Pi with a higher expulsion speed. The time of moving
directly to target t can be computed easily, however, choosing the right relay point in Pi is
more complex.

The best relay node In the solution we use additively weighted Voronoi diagrams in which
times Ti1 , . . . , Tim will determine (after proper rescaling) the weights of points in Pi. Recall
that in additively weighted Voronoi diagrams the closest point is chosen according to the
(Euclidean) distance to the point added to its weight. In our problem we try to minimise
the sum of times needed to walk from p to a point pij ∈ Pi and its weight Tij which is
dist(p,pij)

v∗i+1
+Tij . Since the first term is not referring to the Euclidean distance we can multiply

both terms by v∗i+1 to obtain dist(p, pij) + Tij · v∗i+1. This rescaling applied for each point
in Pi does not change the selection of the fastest route to t via points in Pi, while it allows
to use additively weighted Voronoi diagrams to speed up the search for the best relay node
in Pi. Thus if we construct an additively weighted Voronoi diagram for points in Pi with
weights Ti1 · v∗i+1, . . . , Tim · v∗i+1, we can find for any p ∈ Pi+1 \Pi the best relay node in Pi in
polylogarithmic time.

The following theorem holds.

Theorem 5 If the number of distinct speeds is limited to k � n one can find all fastest
routes to target t in time O(n · k · polylog(n)).

Proof. The algorithm works in k rounds. During each round one needs to construct an
additively weighted Voronoi diagram which is enhanced to answer the closest point queries.
The total cost of such construction is k · O(n · polylog(n)). In addition, every point in P is
queried exactly once during the search for the best relay node. This give the total complexity
k ·O(n · polylog(n)) +O(n · polylog(n)) = O(n · k · polylog(n)). �

After computing all fastest paths from points in P to target t one can compute one more
(enhanced) additively weighted Voronoi diagram to provide the fastest route queries for any
point in Π in time Q(n) = polylog(n).

3.1.1 Search on a 2d-grid

In the last part of this section we show that if all points in P are located on a relatively
small grid with at least one dimension limited to size g � n (e.g., the grid has g rows) and
the robot is allowed to use only edges of the grid one can find all fastest routes to target t
in time O(g · n log n).

8

Dynamic nearest larger neighbour In this model we also use the solution to the nearest
larger neighbour problem on the line. However this time we adopt the dynamic version
in which one can ask queries at arbitrary points, remove and add values in time O(log n),
where n is the cap on the number of values currently stored. The three operations can be
implemented with the help of a balanced binary search tree, in which all values are kept in
the leaves and each internal node contains the largest value stored in the respective subtree.

Also here the construction is done by considering distinct expulsion speeds in decreasing
order v∗1 ≥ · · · ≥ v∗k, for some k ≤ n. In fact we use the same notation, division into rounds
and a similar invariant. In particular, we assume that on the conclusion of round i the fastest
routes from all points in Pi to t are already computed and they never change. In addition
we assume that the points from Pi are processed in the relevant rows for the nearest larger
neighbour queries according to their expulsion speeds.

During round i+1 we consider points from Pi+1\Pi in an arbitrary order. Let p ∈ Pi+1\Pi
where p belongs to some column c in the grid. In order to compute the fastest route from p
to t we first compute the fastest direct route (without relay nodes) in constant time. This
route needs to be compared with the best route via some relay node in Pi. In order to find
the best relay node we query each row at column c for the nearest largest value, i.e., to find
the closest points pl and pr, to the left and right respectively, with larger expulsion speeds
for which the fastest routes are already computed in earlier rounds. These are the only relay
points in this row which need to be considered as going directly (i.e., not visiting any other
relay points in this or some other rows which are considered separately) to any other relay
point in this row will always result in slower solution. Thus the fastest route from p to target
t can be computed by examining at most 2g nodes which can be done in time O(g · log n).
And when the fastest route from p is finally computed, we insert p to the nearest larger
neighbour solution in the relevant row in time O(log n).

Finally, since the cost of inclusion (finding the fastest route) of each node in P is bounded
by time O(g · log n) we conclude with the following theorem.

Theorem 6 If the points from P are distributed in a grid with one dimension limited to
g � n and robot R can move only along edges of the grid, all fastest routes towards target t
can be computed in time O(g · n log n).

3.2 Variant (2) - with local knowledge

It is well known that in the classical search problem in 2d space the competitive ratio of
search process is Ω(D) as on the way to target t located at an unspecified distance D robot R
needs to visit all (discrete, with integer coordinates) points within a ball of radius D centred
in s. Since there are Ω(D2) integral points in such ball and the fastest route is of length D
the competitive ratio follows.

In this section we show that analogously to the classical search the spiral strategy admits
also in this case O(D)-competitive solution w.r.t. the fastest route from the starting point s
to target t. Since we adopted the model with the integral points we will use a simplification
of the spiral shape formed of borders bi of increasing in size boxes Bi, where B0 = {s} with
s = (xσ, yσ), and for i ≥ 1 box Bi contains all points u = (x, y), such that |x−xσ|, |y−yσ| ≤ i.
The border bi is defined as Bi \ Bi−1, it has a square shape and it contains exactly 8 · i
integral points, for any i ≥ 0. The spiral strategy instructs robot R to search through the

9

consecutive (with increasing i) borders bi, and to adopt faster expulsion speeds as soon as
they are encountered.

The proof of O(D)-competitiveness is done in two steps. We first relocate points in
set P such that the fastest solution S ′ for the new locations of points is at least as fast
as S, which is the fastest solution for the original location of points in P . We later show
that the spiral based solution is O(D)−competitive with respect to S ′, so in turn it is also
O(D)−competitive with respect to S.

Let D′ ≤ D be the index of the border to which target t belongs to, i.e., t ∈ bD′ and
let S ≡ (s = pi1

vσ=1−−−→ pi2
vi2−→ . . . pil

vil−→ t) be the fastest route from s to t. We construct
a different arrangement (with alternative locations) of points in the solution S in which if
pij ∈ S belongs to border bj, for any j < D′, it is moved to the location (xσ, yσ+j) on the
vertical line originating in s. All other points in S including target t are moved to the location
(xσ, yσ+D′).

Let S ′ ≡ (s = pi′1

vi′1
=1

−−−→ pi′2

vi′2−→ . . . pi′m−1

vi′m−1−−−→ pi′m = t) be the fastest route from s to t
on the newly formed line. We point out here that the time complexity T (S ′) of the solution
S ′ is not worse than the time complexity T (S), in other words T (S ′) ≤ T (S). And this
happens because the distance between any pair of points in S can be only reduced during
the relocation process.

Finally, we show that the time complexity Ts of our spiral strategy applied to points in P
(before rearrangement) is only O(D) multiplicative factor away from T (S ′). In the analysis,
we bound Ts from above by T ∗s referring to the time complexity of a “lazy” strategy in which
while searching border bi robot R uses the fastest expulsion speed v∗(i − 1) encountered
earlier in box Bi−1, and the fastest expulsion speed found in bi (if larger than v∗(i− 1)) will
be used only in border bi+1 and later (until finally substituted by a higher expulsion speed).

In what follows we show that T ∗s
T (S′)

= O(D′). Note that T (S ′) =
∑m

j=2

i′j−i′j−1

vi′
j−1

. On the

other hand in the lazy strategy robot R will search i′2 − i′1 + 1 the most central borders
with the speed vi′1 , then it will search through i′j − i′j−1 borders with speed vi′j−s , for any
j = 3, . . .m, and finally the last i′m− i′m−1 borders with speed vi′m−1

. The size of each border

is not larger than 8 · D, thus we can estimate T ∗s from above by
∑m

j=2

(i′j−i′j−1)·8D′

vi′
j−1

+ 8
vi′1
.

Comparing the two complexities we note that in the summations every term in T ∗s is larger
at most 8D′ times, where D′ ≤ D. The only extra (positive) cost in T ∗s refers to the term
8
vi′1
. However, since robot R has to walk at least distance 1 along P with the speed vs = vi′1

we obtain a good amortisation and finally conclude with the following theorem.

Theorem 7 The spiral search strategy admits asymptotically optimal solution with O(D)-
competitive factor.

4 Conclusion
In this paper we considered the search problem with increasing speeds for models with local
and global knowledge. Several problems remain open. This includes computation of more
accurate asymptotic bound (beyond Big-O) notation of the competitive factor in the solution

10

based on the spiral strategy. Another unanswered question refers to faster computation of
the best routes from points in P to target t when the number of distinct expulsion speeds
can be linear in n. Finally, one could also consider the case with points in P moving along
known or unknown trajectories.

Acknowledgements

The authors would like to thank Jurek Czyzowicz for early discussions on the studied problem
and the anonymous reviewers for a number of corrections and suggestions which helped us
to improve the presentation.

References
[1] S. Alpern, V. Baston, and S. Essegaier. Rendezvous search on a graph. J. Applied

Probability 36(1), pp. 223–231, 1999.

[2] S. Alpern and S. Gal. The Theory of Search Games and Rendezvous. Kluwer Academic
Publishing, Dordrecht, 2003.

[3] T. Asano, S. Bereg, and D.G. Kirkpatrick. Finding nearest larger neighbors. Efficient
Algorithms, 2009, pp. 249–260.

[4] R.A. Baeza-Yates , J.C. Culberson, and G.J.E. Rawlins. Searching with uncertainty.
Proc. SWAT 88: 1st Scandinavian workshop on algorithm theory, 318, pp. 176–189,
1988.

[5] R.A. Baeza-Yates , J.C. Culberson, and G.J.E. Rawlins. Searching in the plane. Infor-
mation and Computation 106 (2), pp. 234–252, 1993.

[6] R.A. Baeza-Yates and R. Schott. Parallel searching in the plane. Computational Geo-
metric Theory and Applications 5(3), pp. 143–154, 1995.

[7] E. Bampas, J. Czyzowicz, L. Gąsieniec, D. Ilcinkas, R. Klasing, T. Kociumaka, and
D. Pająk, Linear Search by a Pair of Distinct-Speed Robots. SIROCCO 2016, pp. 195-
211.

[8] R. Bellman. Minimization problem. Bull. AMS 62(3), p. 270, 1956.

[9] M.A. Bender, A. Fernández, D. Ron, A. Sahai, and S.P. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. STOC’98, pp. 269–278.

[10] P. Bose, J.-L. De Carufel, and S. Durocher. Revisiting the problem of searching a line.
ESA 2013, pp. 205–216.

[11] M. Chrobak, L. Gąsieniec, T. Gorry, and R. Martin: Group Search on the Line. SOF-
SEM 2015, pp. 164-176.

[12] A. Collins, J. Czyzowicz, L. Gąsieniec, A. Labourel. Tell me where I am so I can meet
you sooner. ICALP 2010, pp. 502–514.

11

[13] J. Czyzowicz, L. Gąsieniec, K. Georgiou, E. Kranakis, F MacQuarrie, The Beach-
combers’ Problem: Walking and searching with mobile robots. Theoretical Computer
Science 608, pp. 201–218, 2015.

[14] J. Czyzowicz, L. Gąsieniec, A. Kosowski, E. Kranakis, Boundary Patrolling by Mobile
Agents with Distinct Maximal Speeds, ESA 2011, pp. 701–712.

[15] O. Devillers, Improved incremental randomized Delaunay triangulation. Symposium on
Computational Geometry pp. 106–115, 1998.

[16] Y. Dieudonné, A. Pelc. Anonymous meeting in networks. SODA 2013, pp. 737–747.

[17] S. Fortune, A Sweepline Algorithm for Voronoi Diagrams. Algorithmica 2, pp. 153–174,
1987.

[18] S.K. Ghosh and R. Klein. Online algorithms for searching and exploration in the plane.
Computer Science Review 4(4), pp. 189–201, 2010.

[19] M.I. Karavelas and M. Yvinec, Dynamic Additively Weighted Voronoi Diagrams in 2D.
ESA’02, pp. 586–598.

[20] M. Hammar, B.J. Nilsson, and S. Schuierer. Parallel searching on m rays. Comput.
Geom. 18(3), pp. 125–139, 2001.

[21] A. Jeż, and J. Łopuszański. On the two-dimensional cow search problem. Information
Processing Letters 131(11), pp. 543–547, 2009.

[22] M.Y. Kao, J.H. Reif, and S.R. Tate. Searching in an unknown environment: An optimal
randomized algorithm for the cow-path problem. Information and Computation 109(1),
pp. 63–79, 1996.

[23] A. Kawamura and Y. Kobayashi, Fence patrolling by mobile agents with distinct speeds.
Distributed Computing 28(2), pp. 147–154, 2015.

[24] D.G. Kirkpatrick, Optimal Search in Planar Subdivisions. SIAM J. Computing 12(1)
pp. 28–35, 1983.

[25] E. Koutsoupias, C.H. Papadimitriou, and M. Yannakakis. Searching a fixed graph.
ICALP’96, pp. 280–289.

[26] H. Li and K P. Chong. Search on lines and graphs. Proc. 48th IEEE Conference on
Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference.
(CDC/CCC 2009) 109(11), pp. 5780–5785.

[27] D. Shortt, Gravity assist. www.planetary.org, September 27, 2013.

[28] T. Temple and E. Frazzoli. Whittle-indexability of the cow path problem. American
Control Conference (ACC), 2010, pp. 4152–4158.

12

