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Abstract

We consider an individual or household endowed with an initial wealth, having an
income and consuming goods and services. The wealth development rate is assumed
to be a deterministic continuous function of time. The objective is to maximize the
discounted consumption. Via the Hamilton–Jacobi–Bellman approach we prove the
existence and the uniqueness of the solution to the considered problem in the viscosity
sense. Furthermore we derive an algorithm for explicit calculation of the value function
and optimal strategy. It turns out that the value function is in general not continuous.
The method is illustrated by two examples.
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1 Introduction

Maximizing the expected utility of an individual from consumption and by controlling

investment has been a classical problem in mathematical finance for a long time. The

interested reader is referred to papers by Karatzas et al. [8, 9] or Cox and Huang [5].

In actuarial science consumption is often interpreted as dividend payout. Numerous papers

and books have been written on the topic of dividend maximization in the framework

of the classical risk model, its diffusion approximation or piecewise deterministic Markov

processes. A summarization of actuarial findings of the last 50 years can be found in Avanzi

[1] or Albrecher and Thonhauser [2].

In this paper we consider an individual or household whose income stream is described by a

deterministic process with continuous drift function. The drift function can attain negative
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values or be even periodic, whereas the assumption of a non-negative drift is common

in literature. A suitable example provide households with income depending on seasonal

agriculture or tourism, which is characteristic for developing countries.

We assume that the primal interest of the individual/household is to maximize the cumu-

lated value of discounted consumption from a given time up to a finite time horizon. Or,

in other words, to maximize cumulated discounted utility from consumption, given a linear

utility function. One may notice that in the literature the dividend maximization problem

is usually stated on an infinite time horizon. The present problem formulation can be re-

garded as a non stochastic limiting case of Grandits [7], who deals with a pure consumption

maximization problem on a finite time horizon for a diffusion type wealth process.

Upon first sight the problem seems to be relatively easy to solve. However, some diffi-

culties arise such as that the value function turns out to be discontinuous even in semi-

continuity sense. Furthermore for applying the viscosity solution approach to the associated

Hamilton–Jacobi–Bellman equation we also have to take into account the discontinuity of

the considered value function. For semi-continuous viscosity solutions the problem of ex-

istence and uniqueness of a solution to Hamilton–Jacobi–Bellman equations with convex

Hamiltonians was dealt with by Barron and Jensen [3]. There the main idea is to transfer

the uniqueness requirement on solutions to their lower semi-continuous envelopes. In this

paper we will first use the concept of weak comparison, described for example in Fleming

and Soner [6], and finally show the strong uniqueness using specific properties of the value

function. For a general introduction into the theory of viscosity solutions see for example

Bardi and Capuzzo-Dolcetta [4].

The contribution of the present paper, beyond the discussion of the HJB approach, is to

establish an algorithm that allows to determine a closed form expression for the value func-

tion and the optimal strategy.

The paper is structured as follows. At first we give a mathematical formulation of the model

and state some important properties of the value function. Section 2, which is the main

part of the paper, is dedicated to algorithm derivation. The Hamilton–Jacobi–Bellman

approach is discussed in Section 3. For the sake of clarity of presentation we postpone the

proofs of this section to an Appendix. Two illustrative examples are given in Section 4.
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Let us now start with the model formulation. The deterministic wealth process minus

consumption is given by:

• dXC
t = µt dt− dCt with X0− = x and for 0 ≤ t ≤ T ,

• µt is continuous on [0, T ] with only finitely many zeros in [0, T ],

• C = (Ct)t∈[0,T ] is cumulated consumption, càdlàg, increasing, ∆Cs ≤ XC
s−.

The value of a given strategy is given by

J(0, x, C) =

∫ τ−

0−
e−βt dCt + e−βτXC

τ ,

where β > 0 is some discounting rate and τ = inf{t > 0 |XC
t < 0}∧T . Of course τ depends

on C, if some distinctions are needed we will indicate them.

For application/derivation of some dynamic programming principle we need

XC
s = x+

∫ s

t

µr dr − Cs, for 0 ≤ t ≤ s ≤ T and Xt− = x ,

J(t, x, C) =

∫ τ−

t−
e−βs dCs + e−βτXC

τ .

We tacitly assume the adaptions on the definitions of τ and C. We write C(t, x) for the

set of admissible consumption strategies when starting at time t at level x ≥ 0. The value

function of the associated maximization problem is given by

V (t, x) = sup
C∈C(t,x)

J(t, x, C) for (t, x) ∈ [0, T )× [0,∞) ,

V (T, x) = e−βTx for x ∈ [0,∞) , (1)

V (t, x) = 0 for (t, x) ∈ [0, T ] × (−∞, 0) .

In the following we will denote the requirements V (t, x) = 0 for (t, x) ∈ [0, T ] × (−∞, 0)

and V (T, x) = e−βTx for x ∈ [0,∞) by (P1).

For later purpose we mention that for s ≥ τ we have Cs = Cτ− and Xs = Xτ , i.e. con-

sumption stops at the event of ruin.

The reader may notice that we assume a strategy to be càdlàg and hence the controlled

process XC as a post-consumption process, compare Schmidli [11, p. 80]. As a conse-

quence we have to include a possible initial consumption C0 > 0 and to exclude a too
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large consumption leading to ruin in the value function. In the following Lemma we state

useful properties of the value function, which can be obtained immediately from the model

assumptions.

Lemma 1.1

The value function V (t, x) fulfils

• V (t, x) is increasing in x, (P2)

• V (t, x) ≤ e−βtx+ λ(t) for λ(t) =
∫ T

t
|µs|e−βs ds. (P3)

Proof: Let y > x and C be an ε-optimal strategy at (t, x), i.e. V (t, x) ≤ V C(t, x) + ε. For

initial capital y at t construct a strategy C̃ as follows: payout y−x immediately and follow

the strategy C. Thus, we have

V (t, y)− V (t, x) ≥ V C̃(t, y)− V C(t, x)− ε = (y − x)e−βt − ε .

Because ε was arbitrary, we obtain the result.

For every admissible consumption strategy C it holds

∫ τ−

t−
e−βs dCs + e−βτXC

τ ≤ xe−βt +

∫ τ

t

e−βs|µs| ds .

It follows V (t, x) ≤ e−βtx+
∫ T

t
|µs|e−βs ds. �

2 Optimal Strategy - Construction of a Solution

The following Lemma turns out to be crucial for the construction of the optimal consump-

tion strategy.

Lemma 2.1

Assume that in (t, x) ∈ [0, T ] × [0,∞) it is optimal to payout ∆Ct. Then for (t, y) with

y ∈ (x − ∆Ct, x) it is optimal to payout y − x + ∆Ct and to continue with the optimal

strategy for the point (t, x).

Proof: We have that

V (t, x−∆Ct) = V (t, x)− e−βt∆Ct .
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By the assumption of the Lemma we get for the value of the strategy C∗ (which for y ∈

(x−∆Ct, x) pays y − x+∆Ct) that

J(t, y, C∗) = V (t, x−∆Ct) + e−βt(y − x+∆Ct)

= V (t, x) + e−βt(y − x) .

Assume that there is some policy C̃ such that

J(t, y, C̃) > J(t, y, C∗).

Now define a strategy Ĉ for initial point (t, x) as follows: payout y − x and continue with

C̃. We derive:

J(t, x, Ĉ) = e−βt(x− y) + J(t, y, C̃)

> e−βt(x− y) + J(t, y, C∗) = V (t, x),

which yields a contradiction to the optimality of the payment ∆Ct for (t, x). �

Assertion:

The value function V (t, x) is determined by one of the two following cases:

A

V (t, x) = e−βtx+ α0I[0,γ1)(x) + α1I[γ1,γ2)(x) + . . .+ αnI[γn,∞)(x) ,

where n ∈ N0 (n = 0 has the consequence V (t, x) = e−βtx+ α0) and

• 0 ≤ α0 < α1 < . . . < αn,

• 0 < γ1 < γ2 < . . . < γn,

• µs ≥ 0 for all s ∈ [t− ε, t] for some ε > 0.

B

V (t, x) = e−βtx+ α0I[0,γ1)(x) + α1I[γ1,γ2)(x) + . . .+ αnI[γn,∞)(x) ,

where again n ∈ N0 and

• 0 ≤ α0 < α1 < . . . < αn,

5



Figure 1: Situation in case A

• 0 < γ1 < γ2 < . . . < γn,

• µs ≤ 0 for all s ∈ [t− ε, t] for some ε > 0.

We are going to prove this assertion by showing that if starting in situation A or B, V (t, x)

again is of that type if time runs backward. In total we derive an algorithm which, starting

with V (T, x) (at time T we are either in situation A or B depending on the sign of µT with

n = 0 and α0 = 0), constructs the whole value function and optimal strategy.

Proof: Assume µ(T ) > 0 or lim
t→T

sgn(µ(t)) = 1, i.e. we are in case A.

Let M(t) =
∫ t

0 µr dr and s̄ = sup{s < t |µs < 0} be the last time before t where the drift

changes its sign. Furthermore define

s0 = sup{s < t |M(s) + γ1 −M(t) = 0} ,

s1 = sup{s < t | e−βs(M(s) + γ1 −M(t)) +

∫ t

s

e−βrµr dr + α0 > e−βtγ1 + α1}

= sup{s < t |
∫ t

s

µr(e
−βr − e−βs)dr > γ1(e

−βt − e−βs) + α1 − α0} .

The point in time s1 is the first time on the first curve (given by M(s) + γ1 −M(t), going

backward in time from t) where it is preferable to payout everything and consume the

drift up to time t instead of staying there, reaching the point (t, γ1) where one receives

e−βtγ1 + α1. Figure 1 illustrates the specific situation of case A.

Let s∗ = max{s̄, s0, s1}. At first we are going to look at the problem on the set:

{(s, x) | s∗ ≤ s < t, 0 ≤ x < M(s) + γ1 −M(t)} ,
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where we assert that it is optimal to payout everything and to stay on the x-axis (i.e.

consume the drift). This strategy C∗ is determined by:






∆C∗
s = Xs−,

Ċ∗
r = µr, r ∈ [s, t) .

Assume from time s < t on we follow an arbitrary strategy C and switch to the optimal

one at time t. Let τ = inf{r > s |XC
r < 0} ∧ t, we have

J(s, y, C) =

∫ τ−

s−
e−βr dCr + V (t,XC

t−)I{τ=t}

=

∫ τ−

s−
e−βr (− dXC

r + µr dr) + V (t,XC
t−)I{τ=t} .

Using N(s) =
∫ s

0 e
−βrµr dr and integration by parts we derive

J(s, y, C) =N(τ)−N(s)−
{

e−βrXC
r

∣

∣

∣

r=τ−

r=s−
+ β

∫ τ

s

e−βrXC
r dr

}

+ V (t,Xt−)I{τ=t}

=N(τ)−N(s) + e−βsXC
s− − e−βτXC

τ− − β

∫ τ

s

e−βrXC
r dr (2)

+ I{τ=t}

(

e−βtXC
t− +

n
∑

i=0

αiI[γi,γi+1)(X
C
t−)

)

.

Since s ≥ s∗ ≥ s0 the level γ1 can not be reached by XC , therefore (2) is equivalent to

J(s, y, C) = N(τ)−N(s) + e−βsXC
s− − e−βτXC

τ− − β

∫ τ

s

e−βrXC
r dr

+ I{τ=t}
(

e−βtXC
t− + α0

)

(3)

≤ N(t)−N(s) + e−βsXC
s− + α0 .

The last inequality is due to the fact that N(·) is increasing. We observe that there is an

equality in (3) for the above defined strategy C∗, which yields that V (s, x) = e−βsx+α0,new

with α0,new = α0 +N(t)−N(s), i.e. V (s, x) is again of the claimed form.

Now we look at points {(s, x) | s∗ ≤ s < t, x =M(s) + γ1 −M(t)}, here the level γ1 can be

reached. Instead of (3) we have

N(τ)−N(s) + e−βsXC
s− − β

∫ τ

s

e−βrXC
r dr + I{τ=t, XC

t−<γ1}α0 + I{τ=t, XC
t−=γ1}α1 . (4)

Suppose there is some r ∈ [s, t] with XC
r < M(r) + γ1 −M(t), then at time t level γ1 can

not be attained and (4) is smaller than

N(t)−N(s) + e−βsXC
s− + α0.
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Whereas the policy staying on the curve, doing nothing, delivers the value e−βtγ1 + α1.

Since s ≥ s∗ ≥ s1 the last policy yields a higher value such that

V (s,M(s) + γ1 −M(t)) = e−βtγ1 + α1, for s
∗ ≤ s < t .

As a first consequence we have that V is not continuous along the curve M(s)+ γ1−M(t).

In a second step we deal with points which are in between the first curve M(s)+ γ1 −M(t)

and the second one M(s) + γ2 −M(t). As we know from the above discussion it is optimal

to stay on the first curve, in combination with Lemma 2.1 we obtain that it is not optimal

to jump from above this curve to a level below.

Define

s2 = sup{s < t | (γ2 − γ1)e
−βs + α1 + e−βtγ1 > α2 + e−βtγ2}, (5)

which is the first time (going backwards from t) such that it is as good to stay on the second

curve as to jump down to the first curve and stay there. Actually this curve vanishes in s2

together with the associated discontinuity of V .

Substituting the level x = 0 by the first curve in the previous step of the proof we obtain

in an analogue way that for s ≥ s∗ ∨ s2 if M(s) + γ1 −M(t) < x < M(s) + γ2 −M(t) it is

optimal to jump down to the first curve and stay there. If x is already on the second curve

it is optimal to stay there up to time t.

An application of these thoughts to areas between higher curves M(s) + γj −M(t) proves

the claimed structure of V (s, x) and determines the optimal policy. In total we get with sk

k = 3, . . . , n defined like s2 in (5):

• if for some index j we have sj > s̄, then the line of discontinuity given by M(s) +

γj −M(t) vanishes before a switch to case B

• if s0 > s̄, then the first line of discontinuity on the time axis vanishes (this may

happen as well for the higher curves “later”, if these curves still exist.)

• in case µs ≥ 0 the number of discontinuities can only decrease.

Now we can deal with the assumption that V (t, x) is in case B. Let
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Figure 2: Situation in case B

s̄ =sup{s < t |µs > 0},

s0 =sup{s < t | e−βs(M(s)−M(t)) > α0},

s∗ =max{s0, s̄},

notice s0 is the first point in time from t backwards, where it is better to leave the lowest

curve M(s)−M(t) by paying out everything instead of waiting until time t. The situation

containing the curves M(s) + γj −M(t) is illustrated in Figure 2.

We claim that on {(s, x) | s∗ ≤ s < t, 0 ≤ x < M(s) − M(t)} it is optimal to payout

everything immediately. For an arbitrary strategy C we have as in case A that:

J(s, x,C) =N(τ)−N(s) + e−βsXC
s− − e−βτXC

τ− − β

∫ τ

s

e−βrXC
r dr

+ I{τ=t}

(

e−βtXC
t− +

n
∑

i=0

αiI[γi,γi+1)(X
C
t−)

)

. (6)

Since s ≥ s∗ and x < M(s)−M(t) ruin happens before time t, therefore (6) is equal to

N(τ)−N(s) + e−βsXC
s− − β

∫ τ

s

e−βrXC
r dr ≤ e−βsXC

s−.

The last equality holds since N(·) is decreasing, the “≤” changes to a “=” in the case

everything is paid out immediately. Therefore V (s, x) = e−βsx on {(s, x) | s∗ ≤ s < t, 0 ≤

x < M(s)−M(t)}.

Now look at {(s, x) | s∗ ≤ s < t, 0 ≤ x =M(s)−M(t)} (points on the lowest curve), in this
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Figure 3: The first discontinuity curve γ1(s).

case (t, 0) can be reached. We have

J(s, x,C) =N(τ)−N(s) + e−βsXC
s− − e−βτXC

τ− − β

∫ τ

s

e−βrXC
r dr + I{τ=t}α0. (7)

If there is some r ∈ [s, t] such that XC
r < M(r) − M(t), one cannot reach (t, 0) and

(7) is smaller or equal to e−βsXC
s . Staying on the curve gives the value α0. Because of

s ≥ s∗ ≥ s0 this yields the higher value and V (s,M(s) −M(t)) = α0 for s∗ ≤ s < t. If

α0 > 0 a discontinuity along M(s)−M(t) for s < t is generated in (t, 0) which vanishes at

time s0.

The areas between the following higher curves can be treated as in case A. �

In the remark below we sum up some important properties of the value function following

from the above proof.

Remark 2.2

• If µ(T ) > 0 or lim
t→T

sgn(µ(t)) = 1, then the value function is continuous on (s∗, T ] ×

[0,∞), where s∗ = sup{s ∈ [0, T ) : µs < 0}. On (s∗, T ] × [0,∞) it is optimal to

payout everything and the value function is given by

V (t, x) = e−βtx+

∫ T

t

e−βsµ(s) ds .

In particular, the value function is continuous if µ(t) ≥ 0 for all t ∈ [0, T ]. (P4)

Assume s∗ > 0 and α0(s
∗) =

∫ T

s∗
e−βsµs ds > 0. Then the first discontinuity curve is
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given by γ1(s) = −
∫ s∗

s
µr dr. In Figure 3 we see the function M(s) =

∫ T

s
µr dr and

the first discontinuity curve γ1(s) starting in s∗.

• The value function is right continuous in the x-component with

lim
h→0

V (t, x+ h)− V (t, x)

h
= e−βt . (P5)

• There exist 0 = tm+1 < ... < t1 = T and continuously differentiable, either strictly

increasing or strictly decreasing functions

0 < γ2,1 < ... < γ2,n2
, ..., 0 < γm+1,1 < ... < γm+1,nm+1

such that V (t, x) is continuous

on [0, T ] × [0,∞)\S with S =
m+1
⋃

j=2

nj
⋃

i=1
{(s, γj,i(s)), s ∈ [tj , tj−1)}. Furthermore, V is

continuously differentiable in x on every set {(s, x) : tj < s < tj−1, γj,i−1(s) < x <

γj,i(s)}. (P6)

3 Dynamic programming - heuristics for Hamilton–Jacobi–

Bellman equation

As starting point for the derivation of some Hamilton–Jacobi–Bellman (HJB) equation we

need the following dynamic programming principle:

V (t, x) = sup
C∈C(t,x)

{

∫ T̄∧τ−

t−
e−βs dCs + V (T̄ ∧ τ,XC

T̄∧τ−)

}

, (8)

for t ≤ T̄ ≤ T .

Proof: Let C ∈ C(t, x), then

J(t, x, C) =

(
∫ τ−

t−
e−βs dCs + e−βτXτ

)

I{τ≤T̄}

+

(

∫ T̄−

t−
e−βs dCs +

∫ τ−

T̄−
e−βs dCs + e−βτXτ

)

I{τ>T̄}

=

∫ T̄∧τ−

t−
e−βs dCs + J(T̄ ∧ τ,XC

T̄∧τ−, C) ,

where strategy C is taken for T̄ ≤ s ≤ τ (just the C from T̄ onwards). Therefore obviously

we have:

V (t, x) ≤ sup
C∈C(t,x)

{

∫ T̄∧τ−

t−
e−βs dCs + V (T̄ ∧ τ,XC

T̄∧τ−)

}

.
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Now set W (t, x) to be equal to the right hand side of (8) and let C∗ be an ε/2 > 0 optimal

strategy for it,

W (t, x)− ε

2
≤
∫ T̄∧τ−

t−
e−βs dC∗

s + V (T̄ ∧ τ,XC∗

T̄∧τ−).

Since everything is deterministic we can choose again an ε/2 > 0 optimal strategy C̄ for

(T̄ ∧ τ,XC∗

T̄∧τ−) such that V (T̄ ∧ τ,XC∗

T̄∧τ−)− ε/2 ≤ J(T̄ ∧ τ,XC∗

T̄∧τ−, C̄). Then

W (t, x)− ε ≤
∫ T̄∧τC∗−

t−
e−βs dC∗

s +

∫ τ C̄−

T̄∧τC∗−
e−βs dC̄s + e−β(τ C̄∧τC∗

)XC̃
(

τ C̄∧τC∗
)

= J(t, x, C̃) ≤ V (t, x)

where XC̃ results from taking strategy C∗ form t to T̄ and if not ruined before going on

with C̄, i.e. C̃s = C∗
s I{t≤s<T̄} + C̄s I{T̄≤s≤T} and stopping it if ruin occurs. Therefore for

every ε > 0 we have

W (t, x)− ε ≤ V (t, x) ≤W (t, x) ,

which proves (8). �

Now we can in a heuristic way derive the associated HJB equation. Suppose V (t, x) ∈

C1,1([0, T ] × [0,∞)) and that Cs =
∫ s

t
cz dz for some non-negative and continuous density

c : [t, T ] → R
+. Let C be an ε > 0 optimal strategy for V (t, x) (x > 0), then

V (t, x)− ε ≤
(
∫ t+h

t

e−βscs ds+ V (t+ h, x+

∫ t+h

t

(µs − cs) ds

)

for
√
ε > h > 0 small enough such that x +

∫ t+h

t
(µs − cs) ds ≥ 0. Applying a Taylor

expansion we get:

−ε ≤
(

he−βtct + h(Vt(t, x) + (µt − ct)Vx(t, x)) + o(h)
)

≤ 0 .

Dividing by h we have

−
√
ε ≤

(

e−βtct + (Vt(t, x) + (µt − ct)Vx(t, x)) + o(1)
)

≤ 0 .

Taking h→ 0 indicates the following HJB equation for problem (1),

0 = max
(

e−βt − Vx(t, x), Vt(t, x) + µt Vx(t, x)
)

, (9)

0 = V (t, x), for (t, x) ∈ [0, T ] × (−∞, 0) ,

e−βTx = V (T, x), for x ≥ 0 .
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Since the optimal consumption strategy indicates that there are possible discontinuities of

V (t, x) in t and x we may need to show that (9) is fulfilled in a viscosity sense.

Definition 3.1

The upper semi-continuous (usc) envelope of V (t, x) is defined by

V ∗(t, x) = lim sup
(s,y)→(t,x)

(s,y)∈[0,T ]×[0,∞)

V (s, y), (t, x) ∈ [0, T ] × [0,∞) .

The lower semi-continuous (lsc) envelope of V (t, x) is defined by

V∗(t, x) = lim inf
(s,y)→(t,x)

(s,y)∈[0,T ]×[0,∞)

V (s, y), (t, x) ∈ [0, T ] × [0,∞) .

Definition 3.2

We say that a linearly bounded function W : [0, T ]× [0,∞) → R

• is a viscosity supersolution if for every ϕ ∈ C(1,1)[0, T ]× [0,∞):

max{e−βt̄ − ϕx(t̄, x̄), ϕt(t̄, x̄) + µt̄ϕx(t̄, x̄)} ≤ 0,

at every (t̄, x̄) ∈ (0, T )×(0,∞) which is a (strict) minimizer ofW∗−ϕ on [0, T ]×[0,∞)

with W∗(t̄, x̄) = ϕ(t̄, x̄).

• is a viscosity subsolution if for every ψ ∈ C(1,1)[0, T ]× [0,∞):

max{e−βt̄ − ψx(t̄, x̄), ψt(t̄, x̄) + µt̄ψx(t̄, x̄)} ≥ 0 ,

at every (t̄, x̄) ∈ (0, T )×(0,∞) which is a (strict) maximizer ofW ∗−ψ on [0, T ]×[0,∞)

with W ∗(t̄, x̄) = ψ(t̄, x̄).

W is a viscosity solution if it is both super- and subsolution.

Note: ψ ≥W ∗ ≥W ≥W∗ ≥ ϕ.

Theorem 3.3

The function V (t, x) given by (1) is a viscosity solution to (9).

For proof see Appendix.

To show the uniqueness of the value function we need the following Lemma, which indicates

that some properties of the value function can be transferred to the envelopes.
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Lemma 3.4

For x ∈ [0,∞) we have

V ∗(T, x) = V∗(T, x) = e−βTx .

For proof see Appendix.

Next we show the uniqueness of the value function. Since we are dealing with a disconti-

nuous value function, a classical Comparison Theorem common for the continuous case,

see for example Bardi and Capuzzo-Dolcetta [4] and references therein, cannot be applied.

Therefore, at first we show the uniqueness in the sense of weak comparison, i.e. we show

the uniqueness up to discontinuities. The usual technique to prove the uniqueness is to

compare the usc envelope u∗ of a subsolution u and the lsc envelope v∗ of a supersolution

v. Because we will be dealing only with continuity regions of the value function it holds

u = u∗ and v = v∗.

Theorem 3.5

Let u be a sub- and v a supersolution to HJB Equation (9), having the properties (P1) –

(P6) and fulfilling u(t, x) ≤ v(t, x) on {0}×[0, x]∪[0, T ]×{0}. Then it holds u(t, x) ≤ v(t, x)

on R, where R := [0, T ] × [0,∞)\S with S defined in Remark 2.2.

For proof see Appendix.

Remark 3.6

Theorem 3.5 signifies the uniqueness of the value function in the regions, where it is continu-

ous. Due to Section 2 the value function has only finitely many discontinuities on [0, T ]×{0}

and finitely many discontinuity curves, which are continuously differentiable functions of

time. Furthermore we know that V (t, x) is right continuous in the x component. It is easy

to see that the listed properties imply the uniqueness of the value function also on S.

4 Examples

In this section we consider two examples where we calculate the value function explicitly

for given drift µ(t). For the first example we give a detailed construction, by means of

the algorithm from Section 2, of the value function. Analogously, but requiring more
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cumbersome calculations, one can deal with the second one for which we just give the final

result and an illustrating plot.

Example 4.1

We choose T = 3π and set µt = sin(t) and β = 0.04, consequently M(t) =
∫ t

0 sin(s) ds.

The value function V fulfils V (T, x) = e−βTx at (T, x).

Using the notation of Section 2 we have that:

γ
(0)
0 = 0, γ

(0)
1 = ∞, n = 0, α

(0)
0 = 0 and sin(s) > 0 on [3π − ε, 3π).

Step 1:

Consider

s̄(1) := sup{s ≤ 3π : sin(s) < 0} = 2π ;

Since γ
(0)
1 = ∞, we have s∗1 = s̄(1) = 2π.

On the set A0 := {(s, x) : 2π < s ≤ 3π, 0 ≤ x < ∞} it is optimal to payout the whole

surplus immediately. Thus, we can give a closed expression for V (s, x) on the set A0:

V (s, x) = e−βsx+

∫ T

s

e−βr sin(r) dr

= e−βsx+
1

β2 + 1

{

e−βs cos(s) + βe−βs sin(s) + e−βT
}

.

Now we are able to calculate the new γ- and α-functions: γ
(1)
1 = ∞ and

α
(1)
0 (s) =

1

β2 + 1

{

e−βs cos(s) + βe−βs sin(s) + e−βT
}

.

Step 2:

For s ∈ [2π − ε, 2π) it holds sin(s) < 0 and we set t = 2π in the backward algorithm. Like

above we calculate s∗2 = 1.248846988π, γ
(2)
1 (s) =M(s)−M(2π) = 1− cos(s). Observe that

since α
(1)
0 (2π) > 0 the point in time s∗2 is bigger than the next change of sign of µt, i.e. the

discontinuity curve γ
(2)
1 (s) vanishes at this point.

On the set A1 := {(s, x) : s∗2 ≤ s < 2π, 0 ≤ x < 1 − cos(s)} we have, by the above results,

that it is optimal to payout everything immediately, i.e. V (s, x) = e−βsx, which implies

α
(2)
0 = 0.

Step 3:
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Figure 4: The value function V (t, x) for µt = sin(t)

On the set {(s, x) : s∗2 ≤ s < 2π, x ≥ 1 − cos(s)} it is optimal to payout the difference to

the γ
(2)
1 -curve and to do nothing until t = 2π.

Thus, we have V (s, 1 − cos(s)) = α
(1)
0 (2π) = e−βs(1 − cos(s)) + α

(2)
1 . Now it is easy to

calculate α
(2)
1 :

α
(2)
1 (s) : = α

(1)
0 (2π)− e−βs(1− cos(s))

=
1

β2 + 1

{

e−β2π cos(2π) + βe−β2π sin(2π) + e−β3π
}

− e−βs(1− cos(s)) .

Altogether V (s, x) = e−βsx+ α
(2)
1 (s) on {(s, x) : s∗2 < s ≤ 2π, x ≥ 1− cos(s)}.

Step 4:

It holds sin(s) < 0 in an ε environment of 1.248846988π. We calculate s∗3 = π, and obtain

that V (t, x) = e−βtx on {(s, x) : π ≤ s < 1.248846988π, 0 ≤ x <∞} (in this area one pays

out everything and gets ruined!). Therefore α
(3)
0 = 0 and γ

(3)
1 = ∞.

Step 5:

For 0 ≤ s ≤ π we are in the same the situation like in the beginning of the example, with

the consequence that V (t, x) = e−βtx+ e−βsx+ 1
β2+1

{

e−βs cos(s) + βe−βs sin(s) + e−βπ
}

.
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Summarizing the results and letting a := e−β2π+e−β3π

β2+1
yields

V (t, x) = e−βtx+ I[0,π)(t)
1

β2 + 1

{

e−βt cos(t) + βe−βt sin(t) + e−βπ
}

+ I[1.2488π,2π)×[1−cos(t),∞)(t, x)
{

a− e−βt(1− cos(t))
}

+ I[2π,3π)(t)
1

β2 + 1

{

e−βt cos(t) + βe−βt sin(t) + e−β3π
}

.

In Figure 4.1 we see that V (t, x) consists of 5 parts (which have different shadings). Each

part corresponds to some dividend payout behaviour of the insurer, which are described in

Steps 1 – 5 above. The discontinuity region of V (t, x) is given by

D :=
{

(t, x) : t ∈ [1.248846988π, 2π) , x = 1− cos(t)
}

.

One easily verifies that V (t, x) fulfils (P1) – (P6) and solves the HJB equation (9). �

Example 4.2

In this example we consider the case where the drift function has a linear component

µt = sin(t) + 0.01t+0.2. Using the same algorithm like in Example 4.1, we obtain a closed

form expression for the value function, but calculations in this case are quite tedious.

Let

f(t, s) =

∫ s

t

(sin(r) + 0.01r + 0.2)e−βr dr,

g(t, s) =

∫ s

t

(sin(r) + 0.01r + 0.2) dr.

Then the value function is given by:

V (t, x) = e−βtx+ I[1.9162π,3π)(t)f(t, 3π)

+ I[1.075π,1.9162π)(t)I[−g(t,1.9162π),∞)(x)
{

f(1.9162π, 3π) + e−βtg(t, 1.9262π)
}

+ I[0.524π,1.075π)(t)I[0,−g(t,1.9162π))(x)f(t, 1.075π)

+ I[0.524π,1.075π)(t)I[−g(t,1.9162π),∞)(x)
{

f(1.9162π, 3π) + e−βtg(t, 1.9162π)
}

+ I[0,0.524π](t)
{

f(t, 0.524π) + f(1.9162π, 2π))
}

.

The value function now consists of 6 parts, in Figure 4.2 they differ in shadings and cor-

respond to different types of strategies. The upper right, upper left and the both bottom

parts correspond to the strategy “payout everything”. The both top centre parts corre-

spond to the strategy “payout the difference to the γ1 curve and remain on γ1. Like in the

17



10,0

7,5

5,0 x

0

0,0

1 2 3

2,5

t

4
2,5

5 6

5,0

7 8 9

7,5

0,0

10,0

12,5

Figure 5: The value function V (t, x) for µt = sin(t) + 0.01t+ 0.2.

previous case it is easy to check that V (t, x) fulfils conditions (P1) – (P6) and solves the

HJB equation (9). �

Appendix

HJB equation - viscosity solution

Proof of Theorem 3.3

We start with the supersolution proof (see the method in Mnif & Sulem [10]).

Let ϕ be an appropriate test function and (t, x) ∈ (0, T )×(0,∞) such that V∗(t, x) = ϕ(t, x)

is a minimizer of V∗−ϕ. Let {(tn, xn)} ⊂ (0, T )×(0,∞) be a sequence with (tn, xn) → (t, x)

such that V (tn, xn) → V∗(tn, xn) as n→ ∞. Since V ≥ V∗ ≥ ϕ we have for a given strategy

Cn ∈ C(tn, xn) some small h > 0 from (8):

ϕ(tn, xn)− ϕ(tn, xn) + V (tn, xn) ≥
∫ tn+h∧τn−

tn−
e−βs dCn

s + ϕ(tn + h ∧ τn,XCn

tn+h∧τn−) .

(10)

We have by the choice of (tn, xn) that γn = V (tn, xn) − ϕ(tn, xn) → V∗(t, x) − ϕ(t, x) = 0

and γn ≥ 0. If we choose Cn
s = δ for s ≥ tn (one constant payment at time tn) for δ > 0

such that XC
tn = xn − δ > 0. We can choose δ > 0 small enough with xn − δ ≥ 0 for all n.
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We obtain by sending h→ 0 and n→ ∞:

ϕ(t, x) ≥ e−βtδ + ϕ(t, x− δ) .

From which we get 0 ≥ e−βt − ϕx(t, x).

If we choose Cn
s = 0 for s ≥ tn we obtain from (10)

γn ≥ ϕ(tn + h ∧ τ, xn +

∫ tn+h∧τ

tn

µs ds)− ϕ(tn, xn) .

Since everything is deterministic we can take h > 0 small enough such that xn+
∫ tn+h

tn
µs ds ≥

0 for all n. A Taylor expansion gives

γn
h

≥ ϕt(tn, xn) + µtnϕx(tn, xn) + o(1). (11)

If {γn} is equal to zero for only finitely many n we take a strictly positive subsequence {γ′n}

and choose h =
√

γ′n and n large enough such that there is no ruin before tn + h.

If {γn} is equal to zero for infinitely many n we take a subsequence {γ∗n} with γ∗n = 0 for

n ∈ N.

We get for (11) if n→ ∞

0 ≥ ϕt(t, x) + µtϕx(t, x) ,

which proves the supersolution property.

For proving the subsolution property we need to show:

For every ψ̄ ∈ C(1,1)[0, T ] × [0,∞):

max{e−βt̄ − ψ̄x(t̄, x̄), ψ̄t(t̄, x̄) + µt̄ψ̄x(t̄, x̄)} ≥ 0 ,

at every (t̄, x̄) ∈ (0, T ) × (0,∞) which is a (strict) maximizer of V ∗ − ψ̄ on [0, T ] × [0,∞)

with V ∗(t̄, x̄) = ψ̄(t̄, x̄).

As usual the subsolution proof is done via contradiction. Suppose there are some (t̄, x̄) and

ψ̄ with the properties stated before but with

max{e−βt̄ − ψ̄x(t̄, x̄), ψ̄t(t̄, x̄) + µt̄ψ̄x(t̄, x̄)} < −2ξ , (12)

for some ξ > 0.

Consider the function

ψ(t, x) = ψ̄(t, x) +
(x− x̄)2 + (t− t̄)2

t̄2 + x̄2
ξ .
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Then it holds V ∗(t̄, x̄) = ψ̄(t̄, x̄) = ψ(t̄, x̄), ψ̄x(t̄, x̄) = ψx(t̄, x̄) and ψ̄t(t̄, x̄) = ψt(t̄, x̄) which

gives

max{e−βt̄ − ψx(t̄, x̄), ψt(t̄, x̄) + µt̄ψx(t̄, x̄)} < −2ξ.

Because ψ(t, x) is continuously differentiable in both t and x and µt is continuous, there is

δ ∈ (0,
√
t̄2+x̄2

2 ) such that

max{e−βt − ψx(t, x), ψt(t, x) + µtψx(t, x)} < −ξ

for (t, x) ∈ Bδ(t̄, x̄). We obtain V ∗(t, x) ≤ ψ̄(t, x) = ψ(t, x) − δ2

t̄2+x̄2 ξ for (t, x) ∈ ∂Bδ(t̄, x̄).

Let now ε = 1
2

δ2

t̄2+x̄2 ξ, then on Bδ(t̄, x̄) we have

max{e−βt − ψx(t, x), ψt(t, x) + µtψx(t, x)} < −ε , (13)

while for (t, x) /∈ Bδ(t̄, x̄) we have

V ∗(t, x) = ψ(t, x) − 2 ε .

Now let (tn, xn) → (t̄, x̄) such that V (tn, xn) → V ∗(t̄, x̄) and assume (w.l.g.) that (tn, xn) ∈

Bδ(t̄, x̄) for all n ∈ N.

Let Cn ∈ C(tn, xn), XCn
be the corresponding wealth starting in (tn, xn) and τ

∗ = τn ∧ T̄

(with some T̄ such that tn < T̄ ≤ T for all n) where

τn = inf{s ≥ tn |XCn

s /∈ Bδ(t̄, x̄)} .

At first we observe XCn

can only have downward jumps in the x direction and that V (t, x)

is increasing in x. Because of continuity of µt, jumps in the wealth process are due to jumps

in the consumption process and we have XCn

s −XCn

s− = −∆Cn
s .

Suppose τ∗ = τn, i.e. stopping because of leaving Bδ(t̄, x̄). Then either we hit the boundary

continuously or leave the ball due to a jump at time τ∗ in which case Xτ∗− ∈ Bδ(t̄, x̄). From

the above estimates we get

V (τ∗,XCn

τ∗−) ≤ ψ(τ∗,XCn

τ∗−)− 2 εI{Xτ∗−=Xτ∗} .

If τ∗ = T̄ then XCn

τ∗ as well XCn

τ∗− as are still inside the ball and we have

V (τ∗,XCn

τ∗−) ≤ ψ(τ∗,XCn

τ∗−) .

20



In total we arrive at

V (τ∗,XCn

τ∗−) ≤ψ(τ∗,XCn

τ∗−)− 2 εI{τn=τ∗∧Xτ∗−=Xτ∗}}

=ψ(tn, xn) +

∫ τ∗

tn

ψt(s,X
Cn

s ) + µsψx(s,X
Cn

s ) ds

−
∫ τ∗−

tn−
ψx(s,X

Cn

s ) dCn,c
s +

∑

tn≤s<τ∗,XCn
s 6=XCn

s−

ψ(s,XCn

s )− ψ(s,XCn

s− )

− 2 εI{τn=τ∗∧Xτ∗−=Xτ∗} .

In the above formula Cn,c denotes the continuous part of strategy Cn.

If XCn
s 6= XCn

s− we have that XCn

s −XCn

s− = −∆Cn
s and we can write

∑

tn≤s<τ∗,XCn
s 6=XCn

s−

ψ(s,XCn

s )− ψ(s,XCn

s− ) = −
∑

tn≤s<τ∗, XCn
s 6=XCn

s−

(
∫ ∆Cn

s

0
ψx(s, x− α) dα

)

.

Combining the last expression with the continuous part of Cn and using e−βt ≤ ψx(t, x) on

Bδ(t̄, x̄) we arrive at

−
∫ τ∗−

tn−
ψx(s,X

Cn

s ) dCn,c
s +

∑

tn≤s<τ∗,XCn
s 6=XCn

s−

ψ(s,XCn

s )− ψ(s,XCn

s− )

≤ −
∫ τ∗−

tn−
e−βs dCn,c

s −
∑

tn≤s<τ∗, XCn
s 6=XCn

s−

(

e−βs∆Cn
s

)

= −
∫ τ∗−

tn−
e−βs dCn

s .

Finally using ψt(s,X
Cn

s ) + µsψx(s,X
Cn

s ) ≤ −ε from (13) we get

V (τ∗,XCn

τ∗−) +
∫ τ∗−

tn−
e−βs dCn

s + (τ∗ − tn)ε+ 2 εI{τn=τ∗∧Xτ∗−=Xτ∗} ≤ ψ(tn, xn) ,

which is the same as

V (τ∗,XCn

τ∗−) +
∫ τ∗−

tn−
e−βs dCn

s + (τ∗ − tn)ε+ 2 εI{τn=τ∗∧Xτ∗−=Xτ∗} ≤ ψ(tn, xn)

≤ V (tn, xn) + (ψ(tn, xn)− V (tn, xn)) .

Since also ψ(tn, xn) → V ∗(t̄, x̄) if n→ ∞ we can choose n large enough such that

0 ≤ ψ(tn, xn)− V (tn, xn) ≤
(τ∗ − tn)ε+ 2 εI{τn=τ∗∧Xτ∗−=Xτ∗}

2
.

We get

V (τ∗,XCn

τ∗−) +
∫ τ∗−

tn−
e−βs dCn

s +
(τ∗ − tn)ε+ 2 εI{τn=τ∗∧Xτ∗−=Xτ∗}

2
≤ V (tn, xn) . (14)
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Now before we can state that (14) is a contradiction to (8). We have to discuss the case

τ∗ = τn = tn, where an immediate lump-sum consumption leads to xn = XCn

τ∗− > XCn

τ∗ /∈

Bδ(t̄, x̄). We notice that property (P6) and the construction of the value function show

that in this case V is continuously differentiable around the point (t̄, x̄) and Vx(t̄, x̄) = e−βt̄.

Therefore V ∗ = V around (t̄, x̄) which furthermore yields that ψx(t̄, x̄) = e−βt̄. Since the

test function ψ is continuously differentiable in x, inequality (13) can not be true and states

a contradiction to (12).

Thus we have, when stating (12), that there exists an area around (t̄, x̄) inside which it

is not optimal to consume a lump sum from the wealth. Consequently a strategy Cn, for

playing a role in the dynamic programming principle for n large enough such that (tn, xn)

are inside this non-paying area, has the feature that XCn

t can leave Bδ(t̄, x̄) through a jump

not before leaving the non-paying area continuously.

Therefore τ∗ > tn, which completes the proof and we can conclude that V (t, x) is a viscosity

solution to (9). �

Proof of Lemma 3.4

Since V (t, x) ≥ e−βtx for (t, x) ∈ [0, T ]× [0,∞) (you can always payout everything and quit

by consuming a small constant rate such that Xt+ < 0) we also have

V ∗(t, x) ≥ e−βtx ,

V∗(t, x) ≥ e−βtx .

From e−βTx = V (T, x) ≥ V∗(T, x) we get V∗(T, x) = e−βTx.

Assume that V ∗(T, x) > e−βTx, then there exists some η > 0 with

V ∗(T, x) ≥ 2η + e−βTx .

Now choose a sequence (tn, xn) → (T, x) such that V (tn, xn) → V ∗(T, x). There is some

n0 > 0 such that for n ≥ n0 we have

V (tn, xn) ≥ η + e−βTx . (15)

Let Cn ∈ C(tn, xn) and define τn = inf{t ≥ tn |XCn

t < 0} ∧ T . Since Cn is admissible

we have ∆Cn
tn ≤ xn, there is no lump sum payment leading to ruin. Furthermore by the
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definition of tn we have τn − tn → 0 if n → ∞. Now fix some ε > 0 and choose n large

enough such that
∫ τn−

tn−
e−βr dCn

r + e−βτnXCn

τn− ≤ e−βtnCn
tn + e−βtn(xn − Cn

tn) + ε = e−βtnxn + ε .

Taking a supremum over strategies Cn we get V (tn, xn) ≤ e−βtnxn + ε which contradicts

(15) since ε is arbitrary and if (tn, xn) → (T, x) we have e−βtnxn → e−βTx. �

Proof of Theorem 3.5:

Assume there is (t̂, x̂) ∈ R such that u(t̂, x̂)− v(t̂, x̂) > 0. W.l.o.g. we assume t̂ ∈ [tj , tj−1)

and x̂ ∈
(

γj,i(t̂), γj,i+1(t̂)
)

with tj < tj−1, γj,i < γj,i+1 defined as in Section 2 and in

Remark 2.2. We also assume, that the comparison principle is already shown for the

intervals [tl, tl−1) with l ∈ {j − 1, ...,m}, i.e. u(t, x) ≤ v(t, x) on [tj , T ] × R+. Note that

Lemma 3.4 yields u(x, T ) = v(x, T ) for all x ∈ R+.

Define vk = kv for k > 1. It is easy to check, that kṽ is still a supersolution with lsc

envelope kv. Choose k > 1 such that u(t̂, x̂) − vk(t̂, x̂) > 0. Due to Lemma 1.1 we obtain

the following inequality:

u(t, x)− vk(t, x) = u(t, x)− kv(t, x) ≤ xe−βt(1− k) + λ(t)

≤ xe−βtj−1(1− k) + λ(0) =: η .

It is clear that u(t, x) − vk(t, x) ≤ 0 for x ≤ λ(0)
k−1e

βtj−1 =: η. If γj,i+1 = ∞ on [tj , tj−1)

consider

A := {(t, x) : tj ≤ t < tj−1, γj,i(t) < x < η} .

If γj,i+1 <∞ on [tj, tj−1) consider

A := {(t, x) : tj ≤ t < tj−1, γj,i(t) < x < γj,i+1(t)} .

W.l.o.g. we assume γj,i+1(t) < ∞ on [tj, tj−1) and γj,l(t), l ∈ {1, ..., nj}, increasing on

[tj, tj−1).

Note that due to properties (P5) and (P6) the function u(t, x) − vk(t, x) is continuously

differentiable and decreasing on A. In particular, x̂ ≥ γj,1(t̂).

Define further

M := sup
(t,x)∈A

{u(t, x)− vk(t, x)} .
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From above we know that M < λ(0) <∞ and obtain

0 < u(t̂, x̂)− vk(t̂, x̂) ≤M .

Since u − vk is continuous on A there is (t∗, x∗) ∈ A with u(t∗, x∗) − vk(t∗, x∗) > M
2 > 0.

Define further H := {(t, x, s, y) : (t, x) , (s, y) ∈ A, y − x ≥ 0 , t− s ≥ 0}, m := k
2 and for

ξ > 0:

fξ(t, x, s, y) = u(t, x)eβs − vk(s, y)eβt − ξ

2
(x− y)2

−
{ 2m

ξ2(y − x+ t− s) + ξ
+

1

(x− γj,i(t))ξ
+

1

(γj,i+1(s)− y)ξ

}

.

Then it holds

fξ(t, γj,i(t), s, y) = fξ(t, x, s, γj,i+1(s)) = −∞

for (t, γj,i(t), s, y), (t, x, s, γj,i+1(s)) ∈ H̄. Note that (t, x, s, γj,i(s)), (t, γj,i+1(t), s, y) ∈ H

only if t = s, which yields fξ(t, x, s, γj,i(s)), fξ(t, γj,i+1(t), s, y) < 0.

Let Mξ = sup
H

fξ. Because fξ is continuous on H there is (tξ, xξ, sξ, yξ) ∈ H̄ such that

Mξ = fξ(tξ, xξ, sξ, yξ). Since (t∗, x∗) ∈ A, it holds γj,i(t
∗) < x∗ < γj,i+1(t

∗), from which it

follows

Mξ ≥ fξ(t
∗, x∗, t∗, x∗) =

(

u(t∗, x∗)− vk(t∗, x∗)
)

eβt
∗ − 2m

ξ

− 1

(γj,i+1(t∗)− x∗)ξ
− 1

(x∗ − γj,i(t∗))ξ

>
M

2
eβt

∗ − 2m

ξ
− 1

(γj,i+1(t∗)− x∗)ξ
− 1

(x∗ − γj,i(t∗))ξ
.

We obtain directly

Mξ > 0 for ξ > 4
2m+ 1/(x∗ − γj,i(t

∗)) + 1/(γj,i+1(t
∗)− x∗)

Met∗
=: ξ0

lim inf
ξ→∞

Mξ ≥
M

2
> 0 .

Next we show that there is ξ1 such that (tξ, xξ , sξ, yξ) /∈ ∂H for ξ ≥ ξ1 ∨ ξ0.
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The boundary of H is given by

∂H = {(t, x, s, y) : (t, x) ∈ A , (s, y) ∈ ∂A , s < t , x < y}

∪ {(t, x, s, y) : (t, x) ∈ ∂A , (s, y) ∈ A , s < t , x < y}

∪ {(t, x, s, y) : (t, x), (s, y) ∈ Ā , s ≤ t , x = y}

∪ {(t, x, s, y) : (t, x), (s, y) ∈ Ā , s = t , x < y} . (16)

Let us first consider the boundary of the set A:

∂A = {(t, γj,i+1(t)) : t ∈ [tj , tj−1]} ∪ {(t, γj,i(t)) : t ∈ [tj , tj−1]}

∪
j
⋃

l=j−1

{(tl, x) : x ∈ [γj,i(tl), γj,i+1(tl)]} .

Consider the first two sets. By the construction of fξ and H̄ it holds fξ(t, x, s, y) < 0 if

x ∈ {γj,i+1(t), γj,i(t)} or y ∈ {γj,i+1(s), γj,i(s)}.

For tl = tj−1 it holds fξ(tj−1, x, s, y), fξ(t, x, tj−1, y) ≤ 0 by the assumption u(t, x) −

vk(t, x) ≤ 0 on [tj−1, T ]× R+.

It remains to consider tl = tj. We have

d

dy
fξ(t, x, s, y) = −keβte−βs − ξ(y − x) +

2m
(

ξ(y − x+ t− s) + 1
)2 − 1

(γj,i+1(s)− y)2ξ

≤ −k − ξ(y − x) + 2m− 1

(γj,i+1(s)− y)2ξ
≤ 0 .

That is, fξ(t, x, s, y) is decreasing in y. Also it holds

d

dx
fξ(t, x, s, x) = e−β(t−s) − keβ(t−s) +

1

(x− γj,i(t))2ξ
− 1

(γj,i+1(s)− x)2ξ

≤ 1− k +
1

(x− γj,i(t))2ξ
.

Since fξ(t, γj,i(t), s, y) = −∞ and fξ continuous there is δ > 0 for all t ∈ [tj, tj−1] s.t.

fξ(t, x, s, y) ≤ 0 for x − γj,i(t) < δ. In other words fξ(t, x, s, x) is decreasing in x for

x − γj,i(t) ≥ δ and ξ > 1
δ2(k−1)

. Since t ≥ s and y ≥ x it holds (tj, x, s, y) ∈ H̄ ⇒

(tj, x, s, y) = (tj, x, tj , y), which gives

fξ(tj , x, s, y) = fξ(tj , x, tj , y) ≤ fξ(tj , x, tj , x)

≤















fξ(tj , γj,i(tj), tj , γj,i(tj)) < 0 : x− γj,i(tj) ≥ δ

0 : otherwise

.
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On the other hand because the functions γj,i, γj,i+1 are increasing it holds

(t, x, tj , y) ∈ H̄ ⇒ γj,i(t) ≤ x ≤ y ≤ γj,i+1(tj) ,

and we can conclude like above fξ(t, x, tj , y) ≤ 0.

Now we know that (tξ, xξ, sξ, yξ) ∈ H\∂H for ξ > max{ξ1, ξ0}, ξ1 := 1
δ2(k−1) .

Note further that it holds

fξ(tξ, xξ, sξ, xξ) + fξ(tξ, yξ, sξ, yξ) ≤ 2fξ(tξ, xξ , sξ, yξ) .

Choose now a sequence ξn → ∞ such that (tξn , xξn , sξn , yξn) → (t̄, x̄, s̄, ȳ). From above we

obtain

ξn

(

(xξn − yξn)
2
)

≤ u(tξn , xξn)e
βsξn − u(tξn , yξn)e

βsξn

+ vk(sξn , xξn)e
βtξn − vk(sξn , yξn)e

βtξn

− yξn − xξn
(xξn − γj,i(tξn))(yξn − γj,i(tξn))ξ

− yξn − xξn
(γj,i+1(sξn)− xξn)(γj,i+1(sξn)− yξn)ξ

+
4m(yξn − xξn)

(

ξn(tξn − sξn) + 1
)(

ξn(yξn − xξn + tξn − sξn) + 1
)

≤ −
(

e−β(tξn−sξn ) + keβ(tξn−sξn )
)

(yξn − xξn)

+
4m(yξn − xξn)

(

ξn(tξn − sξn) + 1
)(

ξn(yξn − xξn + tξn − sξn) + 1
) . (17)

It is obvious that the right hand side is bounded. Then the left hand side is bounded as

well, which is possible only if (xξn − yξn)
2 → 0 as n→ ∞. We conclude x̄ = ȳ. Taking now

the limits on the both sides in (17) yields

lim
n→∞

ξn(xξn − yξn)
2 ≤ 0 ,

which implies ξn(xξn − yξn)
2 → 0. Also we obtain immediately

0 ≤ lim
ξn→∞

ξn(yξn − xξn) ≤ −e−β(tξn−sξn ) − keβ(tξn−sξn)

+
4m

(

ξn(tξn − sξn) + 1
)(

ξn(yξn − xξn + tξn − sξn) + 1
)

< 4m .
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Note that ξn(tξn−sξn) → ∞ implies lim
ξn→∞

ξn(yξn−xξn) < 0, which is a contradiction. Thus,

we conclude lim
ξn→∞

ξn(tξn − sξn) <∞, from which it follows t̄ = s̄ and ξn(tξn − sξn)
2 → 0.

Note that x̄ is bounded away from γj,i+1(t̄) and γj,i(t̄).

Define the functions

ψ(t, x) =
{ξn

2
(x− yξn)

2 +
2m

ξ2n(yξn − x+ t− sξn) + ξn
+

1

(x− γj,i(t))ξn

}

+ vk(sξn , yξn)e
βt +

1

(yξn − γj,i+1(sξn))ξn
+Mξn ,

φ(s, y) = −
{ξn

2
(xξn − y)2 +

2m

ξ2n(y − xξn + tξn − s) + ξn
+

1

(xξn − γj,i(tξn))ξn

}

+ u(tξn , xξn)e
βs − 1

(y − γj,i+1(s))ξn
−Mξn .

These functions are continuously differentiable in t and in x. Furthermore u(t, x)eβsξn −

ψ(t, x) attains its maximum at (tξn , xξn); v
k(s, y)eβtξn − φ(s, y) attains its minimum at

(sξn , yξn). Thus, ψ(t, x)e−βsξn and φ(s, y)e−βtξn are test functions for u(t, x) and vk(s, y)

respectively. From

lim
n→∞

ψx(tξn , xξn) = lim
n→∞

φy(sξn , yξn) = 2m = k , (18)

we conclude that there is N ∈ N such that for n > N it holds

e−βtξn − ψx(tξn , xξn)e
−βsξn ≤ 0 , e−βsξn − φx(sξn , yξn)e

−βtξn ≤ 0 .

Therefore it holds by Definition 3.2 of viscosity sub- and supersolutions:

0 ≥ φs(sξn , yξn) + µsξnφy(sξn , yξn) ,

0 ≤ ψt(tξn , xξn) + µtξnψx(tξn , xξn) .

Subtracting the above inequalities, rearranging the terms and letting ξn → ∞ yields the

following relation

lim
n→∞

(u(tξn , xξn)− vk(sξn , yξn)) ≤ 0 .

On the other hand we know

0 <
M

2
≤ lim inf

ξ→∞
Mξ ≤ lim

n→∞
Mξn = lim

n→∞
(u(tξn , xξn)− vk(sξn , yξn)) ,

which is a contradiction. �
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